mpnormtest.pro 9 KB
;+
; NAME:
;   MPNORMTEST
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Compute the probability of a given normally distributed Z value
;
; MAJOR TOPICS:
;   Curve and Surface Fitting, Statistics
;
; CALLING SEQUENCE:
;   PROB = MPNORMTEST(Z, [/CLEVEL, /SLEVEL ])
;
; DESCRIPTION:
;
;  The function MPNORMTEST() computes the probability for the
;  magnitude of a value drawn from the normal distribution to equal or
;  exceed the given value Z.  This can be used for confidence testing
;  of a measured value obeying the normal distribution.
;
;    P_NORM(ABS(X) > Z) = PROB
;
;  In specifying the returned probability level the user has two
;  choices:
;
;    * return the confidence level when the /CLEVEL keyword is passed;
;      OR
;
;    * return the significance level (i.e., 1 - confidence level) when
;      the /SLEVEL keyword is passed (default).
;
;  Note that /SLEVEL and /CLEVEL are mutually exclusive.
;
; INPUTS:
;
;   Z - the value to best tested.  Z should be drawn from a normal
;       distribution with zero mean and unit variance.  If a given
;       quantity Y has mean MU and standard deviation STD, then Z can
;       be computed as Z = (Y-MU)/STD.
;
; RETURNS:
;
;  Returns a scalar or vector of probabilities, as described above,
;  and according to the /SLEVEL and /CLEVEL keywords.
;
; KEYWORD PARAMETERS:
;
;   SLEVEL - if set, then PROB describes the significance level
;            (default).
;
;   CLEVEL - if set, then PROB describes the confidence level.
;
; EXAMPLES:
;
;   print, mpnormtest(5d, /slevel)
;
;   Print the probability for the magnitude of a randomly distributed
;   variable with zero mean and unit variance to exceed 5, as a
;   significance level.
;
; REFERENCES:
;
;   Algorithms taken from CEPHES special function library, by Stephen
;   Moshier. (http://www.netlib.org/cephes/)
;
; MODIFICATION HISTORY:
;   Completed, 1999, CM
;   Documented, 16 Nov 2001, CM
;   Reduced obtrusiveness of common block and math error handling, 18
;     Nov 2001, CM
;   Corrected error in handling of CLEVEL keyword, 05 Sep 2003
;   Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
;   Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
;   Add usage message, 24 Nov 2006, CM
;   Usage message with /CONTINUE, 23 Sep 2009, CM
;
;  $Id: mpnormtest.pro,v 1.9 2009/09/23 20:12:46 craigm Exp $
;-
; Copyright (C) 1997-2001, 2003, 2009, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-

forward_function cephes_polevl, cephes_erfc, cephes_erf, mpnormtest

;; Set machine constants, once for this session.  Double precision
;; only.
pro cephes_setmachar
  COMPILE_OPT strictarr
  common cephes_machar, cephes_machar_vals
  if n_elements(cephes_machar_vals) GT 0 then return

  if (!version.release) LT 5 then dummy = check_math(1, 1)

  mch = machar(/double)
  machep = mch.eps
  maxnum = mch.xmax
  minnum = mch.xmin
  maxlog = alog(mch.xmax)
  minlog = alog(mch.xmin)
  maxgam = 171.624376956302725D

  cephes_machar_vals = {machep: machep, maxnum: maxnum, minnum: minnum, $
                        maxlog: maxlog, minlog: minlog, maxgam: maxgam}

  if (!version.release) LT 5 then dummy = check_math(0, 0)
  return
end

function cephes_polevl, x, coef
  COMPILE_OPT strictarr
  ans = coef[0]
  nc  = n_elements(coef)
  for i = 1L, nc-1 do ans = ans * x + coef[i]
  return, ans
end

pro cephes_set_erf_common
  COMPILE_OPT strictarr
  common cephes_erf_data, pp, qq, rr, ss, tt, uu, uthresh

  pp = [ 2.46196981473530512524D-10, 5.64189564831068821977D-1, $
         7.46321056442269912687D0,   4.86371970985681366614D1,  $
         1.96520832956077098242D2,   5.26445194995477358631D2,  $
         9.34528527171957607540D2,   1.02755188689515710272D3,  $
         5.57535335369399327526D2 ]

  qq = [ 1.00000000000000000000D0,   1.32281951154744992508D1,  $
         8.67072140885989742329D1,   3.54937778887819891062D2,  $
         9.75708501743205489753D2,   1.82390916687909736289D3,  $
         2.24633760818710981792D3,   1.65666309194161350182D3,  $
         5.57535340817727675546D2 ]
  
  rr = [ 5.64189583547755073984D-1,  1.27536670759978104416D0,  $
         5.01905042251180477414D0,   6.16021097993053585195D0,  $
         7.40974269950448939160D0,   2.97886665372100240670D0   ]

  ss = [ 1.00000000000000000000D0,   2.26052863220117276590D0,  $
         9.39603524938001434673D0,   1.20489539808096656605D1,  $
         1.70814450747565897222D1,   9.60896809063285878198D0,  $
         3.36907645100081516050D0 ]

  tt = [ 9.60497373987051638749D0,   9.00260197203842689217D1,  $
         2.23200534594684319226D3,   7.00332514112805075473D3,  $
         5.55923013010394962768D4 ]

  uu = [ 1.00000000000000000000D0,   3.35617141647503099647D1,  $
         5.21357949780152679795D2,   4.59432382970980127987D3,  $
         2.26290000613890934246D4,   4.92673942608635921086D4   ]

  uthresh = 37.519379347D
  return
end

;							erfc.c
;   
;   	Complementary error function
;   
;   
;   
;    SYNOPSIS:
;   
;    double x, y, erfc();
;   
;    y = erfc( x );
;   
;   
;   
;    DESCRIPTION:
;   
;   
;     1 - erf(x) =
;   
;                              inf. 
;                                -
;                     2         | |          2
;      erfc(x)  =  --------     |    exp( - t  ) dt
;                  sqrt(pi)   | |
;                              -
;                               x
;   
;   
;    For small x, erfc(x) = 1 - erf(x); otherwise rational
;    approximations are computed.
;   
;   
;   
;    ACCURACY:
;   
;                         Relative error:
;    arithmetic   domain     # trials      peak         rms
;       DEC       0, 9.2319   12000       5.1e-16     1.2e-16
;       IEEE      0,26.6417   30000       5.7e-14     1.5e-14
;   
;   
;    ERROR MESSAGES:
;   
;      message         condition              value returned
;    erfc underflow    x > 9.231948545 (DEC)       0.0
;   
;   
;   /
function cephes_erfc, a

  COMPILE_OPT strictarr
  common cephes_erf_data
  if n_elements(p) EQ 0 then cephes_set_erf_common

  common cephes_machar, machvals
  MAXLOG = machvals.maxlog

  if a LT 0 then x = -a else x = a
  if x LT 1. then return, 1.D - cephes_erf(a)
  
  z = -a * a
  if z LT -MAXLOG then begin
      under:
;      message, 'ERROR: underflow', /info
      if a LT 0 then return, 2.D else return, 0.D
  endif

  z = exp(z)
  if x LT 8. then begin
      p = cephes_polevl(x, pp)
      q = cephes_polevl(x, qq)
  endif else begin
      p = cephes_polevl(x, rr)
      q = cephes_polevl(x, ss)
  endelse

  y = (z*p)/q
  if a LT 0 then y = 2.D - y
  if y EQ 0 then goto, under

  return, y
end

;							erf.c
;   
;   	Error function
;   
;   
;   
;    SYNOPSIS:
;   
;    double x, y, erf();
;   
;    y = erf( x );
;   
;   
;   
;    DESCRIPTION:
;   
;    The integral is
;   
;                              x 
;                               -
;                    2         | |          2
;      erf(x)  =  --------     |    exp( - t  ) dt.
;                 sqrt(pi)   | |
;                             -
;                              0
;   
;    The magnitude of x is limited to 9.231948545 for DEC
;    arithmetic; 1 or -1 is returned outside this range.
;   
;    For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
;    erf(x) = 1 - erfc(x).
;   
;   
;   
;    ACCURACY:
;   
;                         Relative error:
;    arithmetic   domain     # trials      peak         rms
;       DEC       0,1         14000       4.7e-17     1.5e-17
;       IEEE      0,1         30000       3.7e-16     1.0e-16
;   
;   
function cephes_erf, x
  COMPILE_OPT strictarr
  common cephes_erf_data
  if abs(x) GT 1. then return, 1.D - cephes_erfc(x)
  if n_elements(p) EQ 0 then cephes_set_erf_common
  z = x * x
  y = x * cephes_polevl(z, tt) / cephes_polevl(z, uu)
  return, y
end

function mpnormtest, a, clevel=clevel, slevel=slevel

  COMPILE_OPT strictarr

  if n_params() EQ 0 then begin
      message, 'USAGE: PROB = MPNORMTEST(Z, [/CLEVEL, /SLEVEL ])', /cont
      return, !values.d_nan
  endif

  cephes_setmachar   ;; Set machine constants

  y = a*0
  sqrth = sqrt(2.D)/2.D
  x = a * sqrth

  ;; Default is to return the significance level
  if n_elements(slevel) EQ 0 AND n_elements(clevel) EQ 0 then slevel = 1
  if keyword_set(slevel) then begin
      for i = 0L, n_elements(y)-1 do begin
          if abs(x[i]) LT sqrth then y[i] = 1.D - cephes_erf(abs(x[i])) $
          else                       y[i] = cephes_erfc(abs(x[i]))
      endfor
  endif else if keyword_set(clevel) then begin
      for i = 0L, n_elements(y)-1 do begin
          if abs(x[i]) LT sqrth then y[i] = cephes_erf(abs(x[i])) $
          else                       y[i] = 1.D - cephes_erfc(x[i])
      endfor
  endif else begin
      message, 'ERROR: must specify one of CLEVEL, SLEVEL'
  endelse

  return, y
end