mpnormlim.pro
8.64 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
;+
; NAME:
; MPNORMLIM
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Compute confidence limits for normally distributed variable
;
; MAJOR TOPICS:
; Curve and Surface Fitting, Statistics
;
; CALLING SEQUENCE:
; Z = MPNORMLIM(PROB, [/CLEVEL, /SLEVEL ])
;
; DESCRIPTION:
;
; The function MPNORMLIM() computes confidence limits of a normally
; distributed variable (with zero mean and unit variance), for a
; desired probability level. The returned values, Z, are the
; limiting values: a the magnitude of a normally distributed value
; is greater than Z by chance with a probability PROB:
;
; P_NORM(ABS(X) > Z) = PROB
;
; In specifying the probability level the user has two choices:
;
; * give the confidence level (default);
;
; * give the significance level (i.e., 1 - confidence level) and
; pass the /SLEVEL keyword; OR
;
; Note that /SLEVEL and /CLEVEL are mutually exclusive.
;
; INPUTS:
;
; PROB - scalar or vector number, giving the desired probability
; level as described above.
;
; RETURNS:
;
; Returns a scalar or vector of normal confidence limits.
;
; KEYWORD PARAMETERS:
;
; SLEVEL - if set, then PROB describes the significance level.
;
; CLEVEL - if set, then PROB describes the confidence level
; (default).
;
; EXAMPLE:
;
; print, mpnormlim(0.99d, /clevel)
;
; Print the 99% confidence limit for a normally distributed
; variable. In this case it is about 2.58 sigma.
;
; REFERENCES:
;
; Algorithms taken from CEPHES special function library, by Stephen
; Moshier. (http://www.netlib.org/cephes/)
;
; MODIFICATION HISTORY:
; Completed, 1999, CM
; Documented, 16 Nov 2001, CM
; Reduced obtrusiveness of common block and math error handling, 18
; Nov 2001, CM
; Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
; Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
; Add usage message, 24 Nov 2006, CM
;
; $Id: mpnormlim.pro,v 1.6 2006/11/25 01:44:13 craigm Exp $
;-
; Copyright (C) 1997-2001, 2006, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
forward_function cephes_polevl, cephes_ndtri, mpnormlim
;; Set machine constants, once for this session. Double precision
;; only.
pro cephes_setmachar
COMPILE_OPT strictarr
common cephes_machar, cephes_machar_vals
if n_elements(cephes_machar_vals) GT 0 then return
if (!version.release) LT 5 then dummy = check_math(1, 1)
mch = machar(/double)
machep = mch.eps
maxnum = mch.xmax
minnum = mch.xmin
maxlog = alog(mch.xmax)
minlog = alog(mch.xmin)
maxgam = 171.624376956302725D
cephes_machar_vals = {machep: machep, maxnum: maxnum, minnum: minnum, $
maxlog: maxlog, minlog: minlog, maxgam: maxgam}
if (!version.release) LT 5 then dummy = check_math(0, 0)
return
end
function cephes_polevl, x, coef
COMPILE_OPT strictarr
ans = coef[0]
nc = n_elements(coef)
for i = 1L, nc-1 do ans = ans * x + coef[i]
return, ans
end
function cephes_ndtri, y0
;
; Inverse of Normal distribution function
;
;
;
; SYNOPSIS:
;
; double x, y, ndtri();
;
; x = ndtri( y );
;
;
;
; DESCRIPTION:
;
; Returns the argument, x, for which the area under the
; Gaussian probability density function (integrated from
; minus infinity to x) is equal to y.
;
;
; For small arguments 0 < y < exp(-2), the program computes
; z = sqrt( -2.0 * log(y) ); then the approximation is
; x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
; There are two rational functions P/Q, one for 0 < y < exp(-32)
; and the other for y up to exp(-2). For larger arguments,
; w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
;
;
; ACCURACY:
;
; Relative error:
; arithmetic domain # trials peak rms
; DEC 0.125, 1 5500 9.5e-17 2.1e-17
; DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17
; IEEE 0.125, 1 20000 7.2e-16 1.3e-16
; IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
;
;
; ERROR MESSAGES:
;
; message condition value returned
; ndtri domain x <= 0 -MAXNUM
; ndtri domain x >= 1 MAXNUM
COMPILE_OPT strictarr
common cephes_ndtri_data, s2pi, p0, q0, p1, q1, p2, q2
if n_elements(s2pi) EQ 0 then begin
s2pi = sqrt(2.D*!dpi)
p0 = [ -5.99633501014107895267D1, 9.80010754185999661536D1, $
-5.66762857469070293439D1, 1.39312609387279679503D1, $
-1.23916583867381258016D0 ]
q0 = [ 1.D, $
1.95448858338141759834D0, 4.67627912898881538453D0, $
8.63602421390890590575D1, -2.25462687854119370527D2, $
2.00260212380060660359D2, -8.20372256168333339912D1, $
1.59056225126211695515D1, -1.18331621121330003142D0 ]
p1 = [ 4.05544892305962419923D0, 3.15251094599893866154D1, $
5.71628192246421288162D1, 4.40805073893200834700D1, $
1.46849561928858024014D1, 2.18663306850790267539D0, $
-1.40256079171354495875D-1,-3.50424626827848203418D-2,$
-8.57456785154685413611D-4 ]
q1 = [ 1.D, $
1.57799883256466749731D1, 4.53907635128879210584D1, $
4.13172038254672030440D1, 1.50425385692907503408D1, $
2.50464946208309415979D0, -1.42182922854787788574D-1,$
-3.80806407691578277194D-2,-9.33259480895457427372D-4 ]
p2 = [ 3.23774891776946035970D0, 6.91522889068984211695D0, $
3.93881025292474443415D0, 1.33303460815807542389D0, $
2.01485389549179081538D-1, 1.23716634817820021358D-2,$
3.01581553508235416007D-4, 2.65806974686737550832D-6,$
6.23974539184983293730D-9 ]
q2 = [ 1.D, $
6.02427039364742014255D0, 3.67983563856160859403D0, $
1.37702099489081330271D0, 2.16236993594496635890D-1,$
1.34204006088543189037D-2, 3.28014464682127739104D-4,$
2.89247864745380683936D-6, 6.79019408009981274425D-9]
endif
common cephes_machar, machvals
MAXNUM = machvals.maxnum
if y0 LE 0 then begin
message, 'ERROR: domain', /info
return, -MAXNUM
endif
if y0 GE 1 then begin
message, 'ERROR: domain', /info
return, MAXNUM
endif
code = 1
y = y0
exp2 = exp(-2.D)
if y GT (1.D - exp2) then begin
y = 1.D - y
code = 0
endif
if y GT exp2 then begin
y = y - 0.5
y2 = y * y
x = y + y * y2 * cephes_polevl(y2, p0) / cephes_polevl(y2, q0)
x = x * s2pi
return, x
endif
x = sqrt( -2.D * alog(y))
x0 = x - alog(x)/x
z = 1.D/x
if x LT 8. then $
x1 = z * cephes_polevl(z, p1) / cephes_polevl(z, q1) $
else $
x1 = z * cephes_polevl(z, p2) / cephes_polevl(z, q2)
x = x0 - x1
if code NE 0 then x = -x
return, x
end
; MPNORMLIM - given a probability level, return the corresponding
; "sigma" level.
;
; p - Either the significance level (if SLEVEL is set) or the
; confidence level (if CLEVEL is set). This should be the
; two-tailed level, ie:
;
; * SLEVEL: p = Prob(|z| > z0)
; * CLEVEL: p = Prob(|z| < z0)
;
function mpnormlim, p, clevel=clevel, slevel=slevel
COMPILE_OPT strictarr
if n_params() EQ 0 then begin
message, 'USAGE: Z = MPNORMLIM(PROB, [/CLEVEL, /SLEVEL ])', /info
return, !values.d_nan
endif
cephes_setmachar ;; Set machine constants
;; Default is to assume the confidence level
if n_elements(clevel) EQ 0 then clevel = 1
y = 0 * p
;; cephes_ndtri accepts the integrated probability from negative
;; infinity to z, so we have to compute.
if keyword_set(slevel) then begin
p1 = 0.5D * p ;; Take only one of the two tails
for i = 0L, n_elements(y)-1 do begin
y[i] = - cephes_ndtri(p1[i])
endfor
endif else if keyword_set(clevel) then begin
p1 = 0.5D + 0.5D * p ;; On binary computers this computation is
;; exact (to the machine precision), so don't worry about it.
;; This computation shaves off the top half of the confidence
;; region, and then adds the "negative infinity to zero part.
for i = 0L, n_elements(y)-1 do begin
y[i] = cephes_ndtri(p1[i])
endfor
endif else begin
message, 'ERROR: must specify one of CLEVEL or SLEVEL'
endelse
return, y
end