mpftest.pro 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
;+
; NAME:
;   MPFTEST
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Compute the probability of a given F value
;
; MAJOR TOPICS:
;   Curve and Surface Fitting, Statistics
;
; CALLING SEQUENCE:
;   PROB = MPFTEST(F, DOF1, DOF2, [/SIGMA, /CLEVEL, /SLEVEL ])
;
; DESCRIPTION:
;
;  The function MPFTEST() computes the probability for a value drawn
;  from the F-distribution to equal or exceed the given value of F.
;  This can be used for confidence testing of a measured value obeying
;  the F-distribution (i.e., for testing the ratio of variances, or
;  equivalently for the addition of parameters to a fitted model).
;
;    P_F(X > F; DOF1, DOF2) = PROB
;
;  In specifying the returned probability level the user has three
;  choices:
;
;    * return the confidence level when the /CLEVEL keyword is passed;
;      OR
;
;    * return the significance level (i.e., 1 - confidence level) when
;      the /SLEVEL keyword is passed (default); OR
;
;    * return the "sigma" of the probability (i.e., compute the
;      probability based on the normal distribution) when the /SIGMA
;      keyword is passed.
;
;  Note that /SLEVEL, /CLEVEL and /SIGMA are mutually exclusive.
;
;  For the ratio of variance test, the two variances, VAR1 and VAR2,
;  should be distributed according to the chi-squared distribution
;  with degrees of freedom DOF1 and DOF2 respectively.  The F-value is
;  computed as:
;
;     F = (VAR1/DOF1) / (VAR2/DOF2)
;
;  and then the probability is computed as:
;
;     PROB = MPFTEST(F, DOF1, DOF2, ... )
;
;
;  For the test of additional parameters in least squares fitting, the
;  user should perform two separate fits, and have two chi-squared
;  values.  One fit should be the "original" fit with no additional
;  parameters, and one fit should be the "new" fit with M additional
;  parameters.
;
;    CHI1 - chi-squared value for original fit
;
;    DOF1 - number of degrees of freedom of CHI1 (number of data
;           points minus number of original parameters)
;
;    CHI2 - chi-squared value for new fit
;
;    DOF2 - number of degrees of freedom of CHI2
;
;  Note that according to this formalism, the number of degrees of
;  freedom in the "new" fit, DOF2, should be less than the number of
;  degrees of freedom in the "original" fit, DOF1 (DOF2 < DOF1); and
;  also CHI2 < CHI1.
;
;  With the above definition, the F value is computed as:
;
;    F = ( (CHI1-CHI2)/(DOF1-DOF2) )   /  (CHI2/DOF2)
;
;  where DOF1-DOF2 is equal to M, and then the F-test probability is
;  computed as:
;
;     PROB = MPFTEST(F, DOF1-DOF2, DOF2, ... )
;
;  Note that this formalism assumes that the addition of the M
;  parameters is a small peturbation to the overall fit.  If the
;  additional parameters dramatically changes the character of the
;  model, then the first "ratio of variance" test is more appropriate,
;  where F = (CHI1/DOF1) / (CHI2/DOF2).
;
; INPUTS:
;
;   F - ratio of variances as defined above.
;
;   DOF1 - number of degrees of freedom in first variance component.
;
;   DOF2 - number of degrees of freedom in second variance component.
;
;
; RETURNS:
;
;  Returns a scalar or vector of probabilities, as described above,
;  and according to the /SLEVEL, /CLEVEL and /SIGMA keywords.
;
; KEYWORD PARAMETERS:
;
;   SLEVEL - if set, then PROB describes the significance level
;            (default).
;
;   CLEVEL - if set, then PROB describes the confidence level.
;
;   SIGMA - if set, then PROB is the number of "sigma" away from the
;           mean in the normal distribution.
;
; EXAMPLE:
;
;   chi1 = 62.3D & dof1 = 42d
;   chi2 = 54.6D & dof2 = 40d
;
;   f = ((chi1-chi2)/(dof1-dof2)) / (chi2/dof2)
;   print, mpftest(f, dof1-dof2, dof2)
;
;   This is a test for addition of parameters.  The "original"
;   chi-squared value was 62.3 with 42 degrees of freedom, and the
;   "new" chi-squared value was 54.6 with 40 degrees of freedom.
;   These values reflect the addition of 2 parameters and the
;   reduction of the chi-squared value by 7.7.  The significance of
;   this set of circumstances is 0.071464757.
;
; REFERENCES:
;
;   Algorithms taken from CEPHES special function library, by Stephen
;   Moshier. (http://www.netlib.org/cephes/)
;
; MODIFICATION HISTORY:
;   Completed, 1999, CM
;   Documented, 16 Nov 2001, CM
;   Reduced obtrusiveness of common block and math error handling, 18
;     Nov 2001, CM
;   Added documentation, 30 Dec 2001, CM
;   Documentation corrections (thanks W. Landsman), 17 Jan 2002, CM
;   Example docs were corrected (Thanks M. Perez-Torres), 17 Feb 2002,
;     CM
;   Example corrected again (sigh...), 13 Feb 2003, CM
;   Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
;   Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
;   Usage message with /CONTINUE, 23 Sep 2009, CM
;
;  $Id: mpftest.pro,v 1.10 2009/09/23 20:12:46 craigm Exp $
;-
; Copyright (C) 1999,2001,2002,2003,2009, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-

forward_function cephes_incbet, cephes_incbcf, cephes_incbd, cephes_pseries

;; Set machine constants, once for this session.  Double precision
;; only.
pro cephes_setmachar
  COMPILE_OPT strictarr
  common cephes_machar, cephes_machar_vals
  if n_elements(cephes_machar_vals) GT 0 then return

  if (!version.release) LT 5 then dummy = check_math(1, 1)

  mch = machar(/double)
  machep = mch.eps
  maxnum = mch.xmax
  minnum = mch.xmin
  maxlog = alog(mch.xmax)
  minlog = alog(mch.xmin)
  maxgam = 171.624376956302725D

  cephes_machar_vals = {machep: machep, maxnum: maxnum, minnum: minnum, $
                        maxlog: maxlog, minlog: minlog, maxgam: maxgam}

  if (!version.release) LT 5 then dummy = check_math(0, 0)
  return
end

;							incbet.c
;   
;   	Incomplete beta integral
;   
;   
;    SYNOPSIS:
;   
;    double a, b, x, y, incbet();
;   
;    y = incbet( a, b, x );
;   
;   
;    DESCRIPTION:
;   
;    Returns incomplete beta integral of the arguments, evaluated
;    from zero to x.  The function is defined as
;   
;                     x
;        -            -
;       | (a+b)      | |  a-1     b-1
;     -----------    |   t   (1-t)   dt.
;      -     -     | |
;     | (a) | (b)   -
;                    0
;   
;    The domain of definition is 0 <= x <= 1.  In this
;    implementation a and b are restricted to positive values.
;    The integral from x to 1 may be obtained by the symmetry
;    relation
;   
;       1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
;   
;    The integral is evaluated by a continued fraction expansion
;    or, when b*x is small, by a power series.
;   
;    ACCURACY:
;   
;    Tested at uniformly distributed random points (a,b,x) with a and b
;    in "domain" and x between 0 and 1.
;                                           Relative error
;    arithmetic   domain     # trials      peak         rms
;       IEEE      0,5         10000       6.9e-15     4.5e-16
;       IEEE      0,85       250000       2.2e-13     1.7e-14
;       IEEE      0,1000      30000       5.3e-12     6.3e-13
;       IEEE      0,10000    250000       9.3e-11     7.1e-12
;       IEEE      0,100000    10000       8.7e-10     4.8e-11
;    Outputs smaller than the IEEE gradual underflow threshold
;    were excluded from these statistics.
;   
;    ERROR MESSAGES:
;      message         condition      value returned
;    incbet domain      x<0, x>1          0.0
;    incbet underflow                     0.0
function cephes_incbet, aa, bb, xx

  COMPILE_OPT strictarr
  forward_function cephes_incbcf, cephes_incbd, cephes_pseries

  common cephes_machar, machvals
  MINLOG = machvals.minlog
  MAXLOG = machvals.maxlog
  MAXGAM = machvals.maxgam
  MACHEP = machvals.machep

  if aa LE 0. OR bb LE 0. then goto, DOMERR

  if xx LE 0. OR xx GE 1. then begin
      if xx EQ 0 then return, 0.D
      if xx EQ 1. then return, 1.D
      DOMERR:
      message, 'ERROR: domain', /info
      return, 0.D
  endif

  flag = 0
  if bb * xx LE 1. AND xx LE 0.95 then begin
      t = cephes_pseries(aa, bb, xx)
      goto, DONE
  endif

  w = 1.D - xx

  if xx GT aa/(aa+bb) then begin
      flag = 1
      a = bb
      b = aa
      xc = xx
      x = w
  endif else begin
      a = aa
      b = bb
      xc = w
      x = xx
  endelse

  if flag EQ 1 AND b*x LE 1. AND x LE 0.95 then begin
      t = cephes_pseries(a, b, x)
      goto, DONE
  endif

  ;; Choose expansion for better convergence
  y = x * (a+b-2.) - (a-1.)
  if y LT 0. then w = cephes_incbcf(a, b, x) $
  else            w = cephes_incbd(a, b, x) / xc

  ;; Multiply w by the factor
  ;;    a      b   _             _     _
  ;;   x  (1-x)   | (a+b) / ( a | (a) | (b) ) .   */
  y = a * alog(x)
  t = b * alog(xc)
  if (a+b) LT MAXGAM AND abs(y) LT MAXLOG AND abs(t) LT MAXLOG then begin
      t = ((xc^b) * (x^a)) * w * gamma(a+b) / ( a * gamma(a) * gamma(b) )
      goto, DONE
  endif

  ;; Resort to logarithms
  y = y + t + lngamma(a+b) - lngamma(a) - lngamma(b)
  y = y + alog(w/a)
  if y LT MINLOG then t = 0.D $
  else                t = exp(y)
  
  DONE:
  if flag EQ 1 then begin
      if t LE MACHEP then t = 1.D - MACHEP $
      else                t = 1.D - t
  endif
  
  return, t
end

;; Continued fraction expasion #1 for incomplete beta integral
function cephes_incbcf, a, b, x

  COMPILE_OPT strictarr
  common cephes_machar, machvals
  MACHEP = machvals.machep
  
  big = 4.503599627370496D15
  biginv = 2.22044604925031308085D-16

  k1 = a
  k2 = a + b
  k3 = a
  k4 = a + 1.
  k5 = 1.
  k6 = b - 1.
  k7 = k4
  k8 = a + 2.

  pkm2 = 0.D
  qkm2 = 1.D
  pkm1 = 1.D
  qkm1 = 1.D
  ans = 1.D
  r = 1.D
  n = 0L
  thresh = 3.D * MACHEP
  
  repeat begin
      xk = - (x * k1 * k2 ) / (k3 * k4)
      pk = pkm1 + pkm2 * xk
      qk = qkm1 + qkm2 * xk
      pkm2 = pkm1
      pkm1 = pk
      qkm2 = qkm1
      qkm1 = qk

      xk = ( x * k5 * k6 ) / ( k7 * k8)
      pk = pkm1 + pkm2 * xk
      qk = qkm1 + qkm2 * xk
      pkm2 = pkm1
      pkm1 = pk
      qkm2 = qkm1
      qkm1 = qk

      if qk NE 0 then r = pk/qk
      if r NE 0 then begin
          t = abs( (ans-r)/r )
          ans = r
      endif else begin
          t = 1.D
      endelse

      if t LT thresh then goto, CDONE
      k1 = k1 + 1.
      k2 = k2 + 1.
      k3 = k3 + 2.
      k4 = k4 + 2.
      k5 = k5 + 1.
      k6 = k6 - 1.
      k7 = k7 + 2.
      k8 = k8 + 2.

      if abs(qk) + abs(pk) GT big then begin
          pkm2 = pkm2 * biginv
          pkm1 = pkm1 * biginv
          qkm2 = qkm2 * biginv
          qkm1 = qkm1 * biginv
      endif
      if abs(qk) LT biginv OR abs(pk) LT biginv then begin
          pkm2 = pkm2 * big
          pkm1 = pkm1 * big
          qkm2 = qkm2 * big
          qkm1 = qkm1 * big
      endif
      
      n = n + 1
  endrep until n GE 300

  CDONE:
  return, ans
end

;; Continued fraction expansion #2 for incomplete beta integral
function cephes_incbd, a, b, x

  COMPILE_OPT strictarr
  common cephes_machar, machvals
  MACHEP = machvals.machep

  big = 4.503599627370496D15
  biginv = 2.22044604925031308085D-16

  k1 = a
  k2 = b - 1.
  k3 = a
  k4 = a + 1.
  k5 = 1.
  k6 = a + b
  k7 = a + 1.
  k8 = a + 2.
  
  pkm2 = 0.D
  qkm2 = 1.D
  pkm1 = 1.D
  qkm1 = 1.D
  z = x / (1.D - x)
  ans = 1.D
  r = 1.D
  n = 0L
  thresh = 3.D * MACHEP
  
  repeat begin
      xk = -(z * k1 * k2) / (k3 * k4)
      pk = pkm1 + pkm2 * xk
      qk = qkm1 + qkm2 * xk
      pkm2 = pkm1
      pkm1 = pk
      qkm2 = qkm1
      qkm1 = qk
      
      xk = (z * k5 * k6) / (k7 * k8)
      pk = pkm1 + pkm2 * xk
      qk = qkm1 + qkm2 * xk
      pkm2 = pkm1
      pkm1 = pk
      qkm2 = qkm1
      qkm1 = qk
      
      if qk NE 0 then r = pk/qk
      if r NE 0 then begin
          t = abs( (ans-r)/r )
          ans = r
      endif else begin
          t = 1.D
      endelse

      if t LT thresh then goto, CDONE
      
      k1 = k1 + 1.
      k2 = k2 - 1.
      k3 = k3 + 2.
      k4 = k4 + 2.
      k5 = k5 + 1.
      k6 = k6 + 1.
      k7 = k7 + 2.
      k8 = k8 + 2.

      if abs(qk) + abs(pk) GT big then begin
          pkm2 = pkm2 * biginv
          pkm1 = pkm1 * biginv
          qkm2 = qkm2 * biginv
          qkm1 = qkm1 * biginv
      endif
      if abs(qk) LT biginv OR abs(pk) LT biginv then begin
          pkm2 = pkm2 * big
          pkm1 = pkm1 * big
          qkm2 = qkm2 * big
          qkm1 = qkm1 * big
      endif
      
      n = n + 1
  endrep until n GE 300

  CDONE:
  return, ans
end

;; Power series for incomplete beta integral.
;; Use when b*x is small and x not too close to 1
function cephes_pseries, a, b, x

  COMPILE_OPT strictarr
  common cephes_machar, machvals
  MINLOG = machvals.minlog
  MAXLOG = machvals.maxlog
  MAXGAM = machvals.maxgam
  MACHEP = machvals.machep

  ai = 1.D/a
  u = (1.D - b) * x
  v = u / (a + 1.D)
  t1 = v
  t = u
  n = 2.D
  s = 0.D
  z = MACHEP * ai

  while abs(v) GT z do begin
      u = (n-b) * x / n
      t = t * u
      v = t / (a+n)
      s = s + v
      n = n + 1.D
  endwhile
  s = s + t1 + ai

  u = a * alog(x)
  if (a+b) LT MAXGAM AND abs(u) LT MAXLOG then begin
      t = gamma(a+b)/(gamma(a)*gamma(b))
      s = s * t * x^a
  endif else begin
      t = lngamma(a+b) - lngamma(a) - lngamma(b) + u + alog(s)
      if t LT MINLOG then s = 0.D else s = exp(t)
  endelse

  return, s
end

; MPFTEST
;  Returns the significance level of a particular F-statistic.
;     P(x; nu1, nu2)  is probability for F to exceed x 
;  x - the F-ratio
;    For ratio of variance test:
;      x = (chi1sq/nu1) / (chi2sq/nu2)
;      p = mpftest(x, nu1, nu2)
;    For additional parameter test:
;      x = [ (chi1sq-chi2sq)/(nu1-nu2) ] / (chi2sq/nu2)
;      p = mpftest(x, nu1-nu2, nu2)
;
;  nu1 - number of DOF in chi1sq
;  nu2 - number of DOF in chi2sq   nu2 < nu1

function mpftest, x, nu1, nu2, slevel=slevel, clevel=clevel, sigma=sigma

  COMPILE_OPT strictarr

  if n_params() LT 3 then begin
      message, 'USAGE: PROB = MPFTEST(F, DOF1, DOF2, [/SIGMA, /CLEVEL, /SLEVEL ])', /cont
      return, !values.d_nan
  endif

  cephes_setmachar   ;; Set machine constants

  if nu1 LT 1 OR nu2 LT 1 OR x LT 0. then begin
      message, 'ERROR: domain', /info
      return, 0.D
  endif

  w = double(nu2) / (double(nu2) + double(nu1)*double(x))
  
  s = cephes_incbet(0.5D * nu2, 0.5D * nu1, w)
  ;; Return confidence level if requested
  if keyword_set(clevel) then return, 1D - s
  if keyword_set(sigma)  then return, mpnormlim(s, /slevel)

  ;; Return significance level otherwise.
  return, s
  
end