mpcurvefit.pro
25.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
;+
; NAME:
; MPCURVEFIT
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Perform Levenberg-Marquardt least-squares fit (replaces CURVEFIT)
;
; MAJOR TOPICS:
; Curve and Surface Fitting
;
; CALLING SEQUENCE:
; YFIT = MPCURVEFIT(X, Y, WEIGHTS, P, [SIGMA,] FUNCTION_NAME=FUNC,
; ITER=iter, ITMAX=itmax,
; CHISQ=chisq, NFREE=nfree, DOF=dof,
; NFEV=nfev, COVAR=covar, [/NOCOVAR, ] [/NODERIVATIVE, ]
; FUNCTARGS=functargs, PARINFO=parinfo,
; FTOL=ftol, XTOL=xtol, GTOL=gtol, TOL=tol,
; ITERPROC=iterproc, ITERARGS=iterargs,
; NPRINT=nprint, QUIET=quiet,
; ERRMSG=errmsg, STATUS=status)
;
; DESCRIPTION:
;
; MPCURVEFIT fits a user-supplied model -- in the form of an IDL
; function -- to a set of user-supplied data. MPCURVEFIT calls
; MPFIT, the MINPACK-1 least-squares minimizer, to do the main
; work.
;
; Given the data and their uncertainties, MPCURVEFIT finds the best
; set of model parameters which match the data (in a least-squares
; sense) and returns them in the parameter P.
;
; MPCURVEFIT returns the best fit function.
;
; The user must supply the following items:
; - An array of independent variable values ("X").
; - An array of "measured" *dependent* variable values ("Y").
; - An array of weighting values ("WEIGHTS").
; - The name of an IDL function which computes Y given X ("FUNC").
; - Starting guesses for all of the parameters ("P").
;
; There are very few restrictions placed on X, Y or FUNCT. Simply
; put, FUNCT must map the "X" values into "Y" values given the
; model parameters. The "X" values may represent any independent
; variable (not just Cartesian X), and indeed may be multidimensional
; themselves. For example, in the application of image fitting, X
; may be a 2xN array of image positions.
;
; MPCURVEFIT carefully avoids passing large arrays where possible to
; improve performance.
;
; See below for an example of usage.
;
; USER FUNCTION
;
; The user must define a function which returns the model value. For
; applications which use finite-difference derivatives -- the default
; -- the user function should be declared in the following way:
;
; ; MYFUNCT - example user function
; ; X - input independent variable (vector same size as data)
; ; P - input parameter values (N-element array)
; ; YMOD - upon return, user function values
; ; DP - upon return, the user function must return
; ; an ARRAY(M,N) of derivatives in this parameter
; ;
; PRO MYFUNCT, x, p, ymod, dp
; ymod = F(x, p) ;; Model function
;
; if n_params() GE 4 then begin
; ; Create derivative and compute derivative array
; dp = make_array(n_elements(x), n_elements(p), value=x[0]*0)
;
; ; Compute derivative if requested by caller
; for i = 0, n_elements(p)-1 do dp(*,i) = FGRAD(x, p, i)
; endif
; END
;
; where FGRAD(x, p, i) is a model function which computes the
; derivative of the model F(x,p) with respect to parameter P(i) at X.
; The returned array YMOD must have the same dimensions and type as
; the "measured" Y values. The returned array DP[i,j] is the
; derivative of the ith function value with respect to the jth
; parameter.
;
; User functions may also indicate a fatal error condition
; using the ERROR_CODE common block variable, as described
; below under the MPFIT_ERROR common block definition.
;
; If NODERIVATIVE=1, then MPCURVEFIT will never request explicit
; derivatives from the user function, and instead will user numerical
; estimates (i.e. by calling the user function multiple times).
;
; CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD
;
; The behavior of MPFIT can be modified with respect to each
; parameter to be fitted. A parameter value can be fixed; simple
; boundary constraints can be imposed; limitations on the parameter
; changes can be imposed; properties of the automatic derivative can
; be modified; and parameters can be tied to one another.
;
; These properties are governed by the PARINFO structure, which is
; passed as a keyword parameter to MPFIT.
;
; PARINFO should be an array of structures, one for each parameter.
; Each parameter is associated with one element of the array, in
; numerical order. The structure can have the following entries
; (none are required):
;
; .VALUE - the starting parameter value (but see the START_PARAMS
; parameter for more information).
;
; .FIXED - a boolean value, whether the parameter is to be held
; fixed or not. Fixed parameters are not varied by
; MPFIT, but are passed on to MYFUNCT for evaluation.
;
; .LIMITED - a two-element boolean array. If the first/second
; element is set, then the parameter is bounded on the
; lower/upper side. A parameter can be bounded on both
; sides. Both LIMITED and LIMITS must be given
; together.
;
; .LIMITS - a two-element float or double array. Gives the
; parameter limits on the lower and upper sides,
; respectively. Zero, one or two of these values can be
; set, depending on the values of LIMITED. Both LIMITED
; and LIMITS must be given together.
;
; .PARNAME - a string, giving the name of the parameter. The
; fitting code of MPFIT does not use this tag in any
; way. However, the default ITERPROC will print the
; parameter name if available.
;
; .STEP - the step size to be used in calculating the numerical
; derivatives. If set to zero, then the step size is
; computed automatically. Ignored when AUTODERIVATIVE=0.
; This value is superceded by the RELSTEP value.
;
; .RELSTEP - the *relative* step size to be used in calculating
; the numerical derivatives. This number is the
; fractional size of the step, compared to the
; parameter value. This value supercedes the STEP
; setting. If the parameter is zero, then a default
; step size is chosen.
;
; .MPSIDE - the sidedness of the finite difference when computing
; numerical derivatives. This field can take four
; values:
;
; 0 - one-sided derivative computed automatically
; 1 - one-sided derivative (f(x+h) - f(x) )/h
; -1 - one-sided derivative (f(x) - f(x-h))/h
; 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h)
;
; Where H is the STEP parameter described above. The
; "automatic" one-sided derivative method will chose a
; direction for the finite difference which does not
; violate any constraints. The other methods do not
; perform this check. The two-sided method is in
; principle more precise, but requires twice as many
; function evaluations. Default: 0.
;
; .MPMAXSTEP - the maximum change to be made in the parameter
; value. During the fitting process, the parameter
; will never be changed by more than this value in
; one iteration.
;
; A value of 0 indicates no maximum. Default: 0.
;
; .TIED - a string expression which "ties" the parameter to other
; free or fixed parameters. Any expression involving
; constants and the parameter array P are permitted.
; Example: if parameter 2 is always to be twice parameter
; 1 then use the following: parinfo(2).tied = '2 * P(1)'.
; Since they are totally constrained, tied parameters are
; considered to be fixed; no errors are computed for them.
; [ NOTE: the PARNAME can't be used in expressions. ]
;
; .MPPRINT - if set to 1, then the default ITERPROC will print the
; parameter value. If set to 0, the parameter value
; will not be printed. This tag can be used to
; selectively print only a few parameter values out of
; many. Default: 1 (all parameters printed)
;
;
; Future modifications to the PARINFO structure, if any, will involve
; adding structure tags beginning with the two letters "MP".
; Therefore programmers are urged to avoid using tags starting with
; the same letters; otherwise they are free to include their own
; fields within the PARINFO structure, and they will be ignored.
;
; PARINFO Example:
; parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
; limits:[0.D,0]}, 5)
; parinfo(0).fixed = 1
; parinfo(4).limited(0) = 1
; parinfo(4).limits(0) = 50.D
; parinfo(*).value = [5.7D, 2.2, 500., 1.5, 2000.]
;
; A total of 5 parameters, with starting values of 5.7,
; 2.2, 500, 1.5, and 2000 are given. The first parameter
; is fixed at a value of 5.7, and the last parameter is
; constrained to be above 50.
;
; INPUTS:
; X - Array of independent variable values.
;
; Y - Array of "measured" dependent variable values. Y should have
; the same data type as X. The function FUNCT should map
; X->Y.
;
; WEIGHTS - Array of weights to be used in calculating the
; chi-squared value. If WEIGHTS is specified then the ERR
; parameter is ignored. The chi-squared value is computed
; as follows:
;
; CHISQ = TOTAL( (Y-FUNCT(X,P))^2 * ABS(WEIGHTS) )
;
; Here are common values of WEIGHTS:
;
; 1D/ERR^2 - Normal weighting (ERR is the measurement error)
; 1D/Y - Poisson weighting (counting statistics)
; 1D - Unweighted
;
; P - An array of starting values for each of the parameters of the
; model. The number of parameters should be fewer than the
; number of measurements. Also, the parameters should have the
; same data type as the measurements (double is preferred).
;
; Upon successful completion the new parameter values are
; returned in P.
;
; If both START_PARAMS and PARINFO are passed, then the starting
; *value* is taken from START_PARAMS, but the *constraints* are
; taken from PARINFO.
;
; SIGMA - The formal 1-sigma errors in each parameter, computed from
; the covariance matrix. If a parameter is held fixed, or
; if it touches a boundary, then the error is reported as
; zero.
;
; If the fit is unweighted (i.e. no errors were given, or
; the weights were uniformly set to unity), then SIGMA will
; probably not represent the true parameter uncertainties.
;
; *If* you can assume that the true reduced chi-squared
; value is unity -- meaning that the fit is implicitly
; assumed to be of good quality -- then the estimated
; parameter uncertainties can be computed by scaling SIGMA
; by the measured chi-squared value.
;
; DOF = N_ELEMENTS(X) - N_ELEMENTS(P) ; deg of freedom
; CSIGMA = SIGMA * SQRT(CHISQ / DOF) ; scaled uncertainties
;
; RETURNS:
;
; Returns the array containing the best-fitting function.
;
; KEYWORD PARAMETERS:
;
; CHISQ - the value of the summed, squared, weighted residuals for
; the returned parameter values, i.e. the chi-square value.
;
; COVAR - the covariance matrix for the set of parameters returned
; by MPFIT. The matrix is NxN where N is the number of
; parameters. The square root of the diagonal elements
; gives the formal 1-sigma statistical errors on the
; parameters IF errors were treated "properly" in MYFUNC.
; Parameter errors are also returned in PERROR.
;
; To compute the correlation matrix, PCOR, use this:
; IDL> PCOR = COV * 0
; IDL> FOR i = 0, n-1 DO FOR j = 0, n-1 DO $
; PCOR(i,j) = COV(i,j)/sqrt(COV(i,i)*COV(j,j))
;
; If NOCOVAR is set or MPFIT terminated abnormally, then
; COVAR is set to a scalar with value !VALUES.D_NAN.
;
; DOF - number of degrees of freedom, computed as
; DOF = N_ELEMENTS(DEVIATES) - NFREE
; Note that this doesn't account for pegged parameters (see
; NPEGGED).
;
; ERRMSG - a string error or warning message is returned.
;
; FTOL - a nonnegative input variable. Termination occurs when both
; the actual and predicted relative reductions in the sum of
; squares are at most FTOL (and STATUS is accordingly set to
; 1 or 3). Therefore, FTOL measures the relative error
; desired in the sum of squares. Default: 1D-10
;
; FUNCTION_NAME - a scalar string containing the name of an IDL
; procedure to compute the user model values, as
; described above in the "USER MODEL" section.
;
; FUNCTARGS - A structure which contains the parameters to be passed
; to the user-supplied function specified by FUNCT via
; the _EXTRA mechanism. This is the way you can pass
; additional data to your user-supplied function without
; using common blocks.
;
; By default, no extra parameters are passed to the
; user-supplied function.
;
; GTOL - a nonnegative input variable. Termination occurs when the
; cosine of the angle between fvec and any column of the
; jacobian is at most GTOL in absolute value (and STATUS is
; accordingly set to 4). Therefore, GTOL measures the
; orthogonality desired between the function vector and the
; columns of the jacobian. Default: 1D-10
;
; ITER - the number of iterations completed.
;
; ITERARGS - The keyword arguments to be passed to ITERPROC via the
; _EXTRA mechanism. This should be a structure, and is
; similar in operation to FUNCTARGS.
; Default: no arguments are passed.
;
; ITERPROC - The name of a procedure to be called upon each NPRINT
; iteration of the MPFIT routine. It should be declared
; in the following way:
;
; PRO ITERPROC, FUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
; PARINFO=parinfo, QUIET=quiet, ...
; ; perform custom iteration update
; END
;
; ITERPROC must either accept all three keyword
; parameters (FUNCTARGS, PARINFO and QUIET), or at least
; accept them via the _EXTRA keyword.
;
; FUNCT is the user-supplied function to be minimized,
; P is the current set of model parameters, ITER is the
; iteration number, and FUNCTARGS are the arguments to be
; passed to FUNCT. FNORM should be the
; chi-squared value. QUIET is set when no textual output
; should be printed. See below for documentation of
; PARINFO.
;
; In implementation, ITERPROC can perform updates to the
; terminal or graphical user interface, to provide
; feedback while the fit proceeds. If the fit is to be
; stopped for any reason, then ITERPROC should set the
; common block variable ERROR_CODE to negative value (see
; MPFIT_ERROR common block below). In principle,
; ITERPROC should probably not modify the parameter
; values, because it may interfere with the algorithm's
; stability. In practice it is allowed.
;
; Default: an internal routine is used to print the
; parameter values.
;
; ITMAX - The maximum number of iterations to perform. If the
; number is exceeded, then the STATUS value is set to 5
; and MPFIT returns.
; Default: 200 iterations
;
; NFEV - the number of FUNCT function evaluations performed.
;
; NFREE - the number of free parameters in the fit. This includes
; parameters which are not FIXED and not TIED, but it does
; include parameters which are pegged at LIMITS.
;
; NOCOVAR - set this keyword to prevent the calculation of the
; covariance matrix before returning (see COVAR)
;
; NODERIVATIVE - if set, then the user function will not be queried
; for analytical derivatives, and instead the
; derivatives will be computed by finite differences
; (and according to the PARINFO derivative settings;
; see above for a description).
;
; NPRINT - The frequency with which ITERPROC is called. A value of
; 1 indicates that ITERPROC is called with every iteration,
; while 2 indicates every other iteration, etc. Note that
; several Levenberg-Marquardt attempts can be made in a
; single iteration.
; Default value: 1
;
; PARINFO - Provides a mechanism for more sophisticated constraints
; to be placed on parameter values. When PARINFO is not
; passed, then it is assumed that all parameters are free
; and unconstrained. Values in PARINFO are never
; modified during a call to MPFIT.
;
; See description above for the structure of PARINFO.
;
; Default value: all parameters are free and unconstrained.
;
; QUIET - set this keyword when no textual output should be printed
; by MPFIT
;
; STATUS - an integer status code is returned. All values greater
; than zero can represent success (however STATUS EQ 5 may
; indicate failure to converge). It can have one of the
; following values:
;
; 0 improper input parameters.
;
; 1 both actual and predicted relative reductions
; in the sum of squares are at most FTOL.
;
; 2 relative error between two consecutive iterates
; is at most XTOL
;
; 3 conditions for STATUS = 1 and STATUS = 2 both hold.
;
; 4 the cosine of the angle between fvec and any
; column of the jacobian is at most GTOL in
; absolute value.
;
; 5 the maximum number of iterations has been reached
;
; 6 FTOL is too small. no further reduction in
; the sum of squares is possible.
;
; 7 XTOL is too small. no further improvement in
; the approximate solution x is possible.
;
; 8 GTOL is too small. fvec is orthogonal to the
; columns of the jacobian to machine precision.
;
; TOL - synonym for FTOL. Use FTOL instead.
;
; XTOL - a nonnegative input variable. Termination occurs when the
; relative error between two consecutive iterates is at most
; XTOL (and STATUS is accordingly set to 2 or 3). Therefore,
; XTOL measures the relative error desired in the approximate
; solution. Default: 1D-10
;
; YERROR - upon return, the root-mean-square variance of the
; residuals.
;
;
; EXAMPLE:
;
; ; First, generate some synthetic data
; npts = 200
; x = dindgen(npts) * 0.1 - 10. ; Independent variable
; yi = gauss1(x, [2.2D, 1.4, 3000.]) ; "Ideal" Y variable
; y = yi + randomn(seed, npts) * sqrt(1000. + yi); Measured, w/ noise
; sy = sqrt(1000.D + y) ; Poisson errors
;
; ; Now fit a Gaussian to see how well we can recover
; p0 = [1.D, 1., 1000.] ; Initial guess
; yfit = mpcurvefit(x, y, 1/sy^2, p0, $ ; Fit a function
; FUNCTION_NAME='GAUSS1P',/autoderivative)
; print, p
;
; Generates a synthetic data set with a Gaussian peak, and Poisson
; statistical uncertainty. Then the same function is fitted to the
; data to see how close we can get. GAUSS1 and GAUSS1P are
; available from the same web page.
;
;
; COMMON BLOCKS:
;
; COMMON MPFIT_ERROR, ERROR_CODE
;
; User routines may stop the fitting process at any time by
; setting an error condition. This condition may be set in either
; the user's model computation routine (MYFUNCT), or in the
; iteration procedure (ITERPROC).
;
; To stop the fitting, the above common block must be declared,
; and ERROR_CODE must be set to a negative number. After the user
; procedure or function returns, MPFIT checks the value of this
; common block variable and exits immediately if the error
; condition has been set. By default the value of ERROR_CODE is
; zero, indicating a successful function/procedure call.
;
; REFERENCES:
;
; MINPACK-1, Jorge More', available from netlib (www.netlib.org).
; "Optimization Software Guide," Jorge More' and Stephen Wright,
; SIAM, *Frontiers in Applied Mathematics*, Number 14.
;
; MODIFICATION HISTORY:
; Translated from MPFITFUN, 25 Sep 1999, CM
; Alphabetized documented keywords, 02 Oct 1999, CM
; Added QUERY keyword and query checking of MPFIT, 29 Oct 1999, CM
; Check to be sure that X and Y are present, 02 Nov 1999, CM
; Documented SIGMA for unweighted fits, 03 Nov 1999, CM
; Changed to ERROR_CODE for error condition, 28 Jan 2000, CM
; Copying permission terms have been liberalized, 26 Mar 2000, CM
; Propagated improvements from MPFIT, 17 Dec 2000, CM
; Corrected behavior of NODERIVATIVE, 13 May 2002, CM
; Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002
; Make more consistent with comparable IDL routines, 30 Jun 2003, CM
; Minor documentation adjustment, 03 Feb 2004, CM
; Fix error in documentation, 26 Aug 2005, CM
; Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
; Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
; Fix bug in handling of explicit derivatives with errors/weights
; (the weights were not being applied), CM, 2012-07-22
; Add more documentation on calling interface for user function and
; parameter derivatives, CM, 2012-07-22
; Better documentation for STATUS, CM, 2016-04-29
;
; $Id: mpcurvefit.pro,v 1.12 2016/05/19 16:08:49 cmarkwar Exp $
;-
; Copyright (C) 1997-2000, 2002, 2003, 2004, 2005, 2012, 2016 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
FORWARD_FUNCTION mpcurvefit_eval, mpcurvefit, mpfit
; This is the call-back function for MPFIT. It evaluates the
; function, subtracts the data, and returns the residuals.
function mpcurvefit_eval, p, dp, _EXTRA=extra
COMPILE_OPT strictarr
common mpcurvefit_common, fcn, x, y, wts, f, fcnargs
;; The function is evaluated here. There are four choices,
;; depending on whether (a) FUNCTARGS was passed to MPCURVEFIT, which
;; is passed to this function as "hf"; or (b) the derivative
;; parameter "dp" is passed, meaning that derivatives should be
;; calculated analytically by the function itself.
if n_elements(fcnargs) GT 0 then begin
if n_params() GT 1 then call_procedure, fcn, x, p, f, dp,_EXTRA=fcnargs $
else call_procedure, fcn, x, p, f, _EXTRA=fcnargs
endif else begin
if n_params() GT 1 then call_procedure, fcn, x, p, f, dp $
else call_procedure, fcn, x, p, f
endelse
;; Compute the deviates, applying the weights
result = (y-f)*wts
;; Apply weights to derivative quantities
if n_params() GT 1 then begin
np = n_elements(p)
nf = n_elements(f)
for j = 0L, np-1 do dp[j*nf] = dp[j*nf:j*nf+nf-1] * wts
endif
;; Make sure the returned result is one-dimensional.
result = reform(result, n_elements(result), /overwrite)
return, result
end
function mpcurvefit, x, y, wts, p, perror, function_name=fcn, $
iter=iter, itmax=maxiter, $
chisq=bestnorm, nfree=nfree, dof=dof, $
nfev=nfev, covar=covar, nocovar=nocovar, yerror=yerror, $
noderivative=noderivative, tol=tol, ftol=ftol, $
FUNCTARGS=fa, parinfo=parinfo, $
errmsg=errmsg, STATUS=status, QUIET=quiet, $
query=query, _EXTRA=extra
COMPILE_OPT strictarr
status = 0L
errmsg = ''
;; Detect MPFIT and crash if it was not found
catch, catcherror
if catcherror NE 0 then begin
MPFIT_NOTFOUND:
catch, /cancel
message, 'ERROR: the required function MPFIT must be in your IDL path', /info
return, !values.d_nan
endif
if mpfit(/query) NE 1 then goto, MPFIT_NOTFOUND
catch, /cancel
if keyword_set(query) then return, 1
if n_params() EQ 0 then begin
message, "USAGE: YFIT = MPCURVEFIT(X, Y, WTS, P, DP)", /info
return, !values.d_nan
endif
if n_elements(x) EQ 0 OR n_elements(y) EQ 0 then begin
message, 'ERROR: X and Y must be defined', /info
return, !values.d_nan
endif
if n_elements(fcn) EQ 0 then fcn = 'funct'
if n_elements(noderivative) EQ 0 then noderivative = 0
common mpcurvefit_common, fc, xc, yc, wc, mc, ac
fc = fcn & xc = x & yc = y & wc = sqrt(abs(wts)) & mc = 0L
ac = 0 & dummy = size(temporary(ac))
if n_elements(fa) GT 0 then ac = fa
if n_elements(tol) GT 0 then ftol = tol
result = mpfit('mpcurvefit_eval', p, maxiter=maxiter, $
autoderivative=noderivative, ftol=ftol, $
parinfo=parinfo, STATUS=status, nfev=nfev, BESTNORM=bestnorm,$
covar=covar, perror=perror, niter=iter, nfree=nfree, dof=dof,$
ERRMSG=errmsg, quiet=quiet, _EXTRA=extra)
;; Retrieve the fit value
yfit = temporary(mc)
;; Now do some clean-up
xc = 0 & yc = 0 & wc = 0 & mc = 0 & ac = 0
if NOT keyword_set(quiet) AND errmsg NE '' then $
message, errmsg, /info $
else $
p = result
yerror = p[0]*0
if n_elements(dof) GT 0 AND dof[0] GT 0 then begin
yerror[0] = sqrt( total( (y-yfit)^2 ) / dof[0] )
endif
return, yfit
end