mpcurvefit.pro 25.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
;+
; NAME:
;   MPCURVEFIT
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Perform Levenberg-Marquardt least-squares fit (replaces CURVEFIT)
;
; MAJOR TOPICS:
;   Curve and Surface Fitting
;
; CALLING SEQUENCE:
;   YFIT = MPCURVEFIT(X, Y, WEIGHTS, P, [SIGMA,] FUNCTION_NAME=FUNC, 
;                     ITER=iter, ITMAX=itmax, 
;                     CHISQ=chisq, NFREE=nfree, DOF=dof, 
;                     NFEV=nfev, COVAR=covar, [/NOCOVAR, ] [/NODERIVATIVE, ]
;                     FUNCTARGS=functargs, PARINFO=parinfo,
;                     FTOL=ftol, XTOL=xtol, GTOL=gtol, TOL=tol,
;                     ITERPROC=iterproc, ITERARGS=iterargs,
;                     NPRINT=nprint, QUIET=quiet, 
;                     ERRMSG=errmsg, STATUS=status)
;
; DESCRIPTION:
;
;  MPCURVEFIT fits a user-supplied model -- in the form of an IDL
;  function -- to a set of user-supplied data.  MPCURVEFIT calls
;  MPFIT, the MINPACK-1 least-squares minimizer, to do the main
;  work.
;
;  Given the data and their uncertainties, MPCURVEFIT finds the best
;  set of model parameters which match the data (in a least-squares
;  sense) and returns them in the parameter P.  
;
;  MPCURVEFIT returns the best fit function.
;  
;  The user must supply the following items:
;   - An array of independent variable values ("X").
;   - An array of "measured" *dependent* variable values ("Y").
;   - An array of weighting values ("WEIGHTS").
;   - The name of an IDL function which computes Y given X ("FUNC").
;   - Starting guesses for all of the parameters ("P").
;
;  There are very few restrictions placed on X, Y or FUNCT.  Simply
;  put, FUNCT must map the "X" values into "Y" values given the
;  model parameters.  The "X" values may represent any independent
;  variable (not just Cartesian X), and indeed may be multidimensional
;  themselves.  For example, in the application of image fitting, X
;  may be a 2xN array of image positions.
;
;  MPCURVEFIT carefully avoids passing large arrays where possible to
;  improve performance.
;
;  See below for an example of usage.
;   
; USER FUNCTION
;
;  The user must define a function which returns the model value.  For
;  applications which use finite-difference derivatives -- the default
;  -- the user function should be declared in the following way:
;
;    ; MYFUNCT - example user function
;    ;   X - input independent variable (vector same size as data)
;    ;   P - input parameter values (N-element array)
;    ;   YMOD - upon return, user function values
;    ;   DP - upon return, the user function must return
;    ;          an ARRAY(M,N) of derivatives in this parameter
;    ;
;    PRO MYFUNCT, x, p, ymod, dp
;     ymod = F(x, p)         ;; Model function
;     
;     if n_params() GE 4  then begin
;       ; Create derivative and compute derivative array
;       dp = make_array(n_elements(x), n_elements(p), value=x[0]*0)
;
;       ; Compute derivative if requested by caller
;       for i = 0, n_elements(p)-1 do dp(*,i) = FGRAD(x, p, i)
;     endif
;    END
;
;  where FGRAD(x, p, i) is a model function which computes the
;  derivative of the model F(x,p) with respect to parameter P(i) at X.
;  The returned array YMOD must have the same dimensions and type as
;  the "measured" Y values.  The returned array DP[i,j] is the
;  derivative of the ith function value with respect to the jth
;  parameter.
;
;  User functions may also indicate a fatal error condition
;  using the ERROR_CODE common block variable, as described
;  below under the MPFIT_ERROR common block definition.
; 
;  If NODERIVATIVE=1, then MPCURVEFIT will never request explicit
;  derivatives from the user function, and instead will user numerical
;  estimates (i.e. by calling the user function multiple times).
;
; CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD
;
;  The behavior of MPFIT can be modified with respect to each
;  parameter to be fitted.  A parameter value can be fixed; simple
;  boundary constraints can be imposed; limitations on the parameter
;  changes can be imposed; properties of the automatic derivative can
;  be modified; and parameters can be tied to one another.
;
;  These properties are governed by the PARINFO structure, which is
;  passed as a keyword parameter to MPFIT.
;
;  PARINFO should be an array of structures, one for each parameter.
;  Each parameter is associated with one element of the array, in
;  numerical order.  The structure can have the following entries
;  (none are required):
;  
;     .VALUE - the starting parameter value (but see the START_PARAMS
;              parameter for more information).
;  
;     .FIXED - a boolean value, whether the parameter is to be held
;              fixed or not.  Fixed parameters are not varied by
;              MPFIT, but are passed on to MYFUNCT for evaluation.
;  
;     .LIMITED - a two-element boolean array.  If the first/second
;                element is set, then the parameter is bounded on the
;                lower/upper side.  A parameter can be bounded on both
;                sides.  Both LIMITED and LIMITS must be given
;                together.
;  
;     .LIMITS - a two-element float or double array.  Gives the
;               parameter limits on the lower and upper sides,
;               respectively.  Zero, one or two of these values can be
;               set, depending on the values of LIMITED.  Both LIMITED
;               and LIMITS must be given together.
;  
;     .PARNAME - a string, giving the name of the parameter.  The
;                fitting code of MPFIT does not use this tag in any
;                way.  However, the default ITERPROC will print the
;                parameter name if available.
;  
;     .STEP - the step size to be used in calculating the numerical
;             derivatives.  If set to zero, then the step size is
;             computed automatically.  Ignored when AUTODERIVATIVE=0.
;             This value is superceded by the RELSTEP value.
;
;     .RELSTEP - the *relative* step size to be used in calculating
;                the numerical derivatives.  This number is the
;                fractional size of the step, compared to the
;                parameter value.  This value supercedes the STEP
;                setting.  If the parameter is zero, then a default
;                step size is chosen.
;
;     .MPSIDE - the sidedness of the finite difference when computing
;               numerical derivatives.  This field can take four
;               values:
;
;                  0 - one-sided derivative computed automatically
;                  1 - one-sided derivative (f(x+h) - f(x)  )/h
;                 -1 - one-sided derivative (f(x)   - f(x-h))/h
;                  2 - two-sided derivative (f(x+h) - f(x-h))/(2*h)
;
;              Where H is the STEP parameter described above.  The
;              "automatic" one-sided derivative method will chose a
;              direction for the finite difference which does not
;              violate any constraints.  The other methods do not
;              perform this check.  The two-sided method is in
;              principle more precise, but requires twice as many
;              function evaluations.  Default: 0.
;
;     .MPMAXSTEP - the maximum change to be made in the parameter
;                  value.  During the fitting process, the parameter
;                  will never be changed by more than this value in
;                  one iteration.
;
;                  A value of 0 indicates no maximum.  Default: 0.
;  
;     .TIED - a string expression which "ties" the parameter to other
;             free or fixed parameters.  Any expression involving
;             constants and the parameter array P are permitted.
;             Example: if parameter 2 is always to be twice parameter
;             1 then use the following: parinfo(2).tied = '2 * P(1)'.
;             Since they are totally constrained, tied parameters are
;             considered to be fixed; no errors are computed for them.
;             [ NOTE: the PARNAME can't be used in expressions. ]
;
;     .MPPRINT - if set to 1, then the default ITERPROC will print the
;                parameter value.  If set to 0, the parameter value
;                will not be printed.  This tag can be used to
;                selectively print only a few parameter values out of
;                many.  Default: 1 (all parameters printed)
;
;  
;  Future modifications to the PARINFO structure, if any, will involve
;  adding structure tags beginning with the two letters "MP".
;  Therefore programmers are urged to avoid using tags starting with
;  the same letters; otherwise they are free to include their own
;  fields within the PARINFO structure, and they will be ignored.
;  
;  PARINFO Example:
;  parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
;                       limits:[0.D,0]}, 5)
;  parinfo(0).fixed = 1
;  parinfo(4).limited(0) = 1
;  parinfo(4).limits(0)  = 50.D
;  parinfo(*).value = [5.7D, 2.2, 500., 1.5, 2000.]
;  
;  A total of 5 parameters, with starting values of 5.7,
;  2.2, 500, 1.5, and 2000 are given.  The first parameter
;  is fixed at a value of 5.7, and the last parameter is
;  constrained to be above 50.
;
; INPUTS:
;   X - Array of independent variable values.
;
;   Y - Array of "measured" dependent variable values.  Y should have
;       the same data type as X.  The function FUNCT should map
;       X->Y.
;
;   WEIGHTS - Array of weights to be used in calculating the
;             chi-squared value.  If WEIGHTS is specified then the ERR
;             parameter is ignored.  The chi-squared value is computed
;             as follows:
;
;                CHISQ = TOTAL( (Y-FUNCT(X,P))^2 * ABS(WEIGHTS) )
;
;             Here are common values of WEIGHTS:
;
;                1D/ERR^2 - Normal weighting (ERR is the measurement error)
;                1D/Y     - Poisson weighting (counting statistics)
;                1D       - Unweighted
;
;   P - An array of starting values for each of the parameters of the
;       model.  The number of parameters should be fewer than the
;       number of measurements.  Also, the parameters should have the
;       same data type as the measurements (double is preferred).
;
;       Upon successful completion the new parameter values are
;       returned in P.
;
;       If both START_PARAMS and PARINFO are passed, then the starting
;       *value* is taken from START_PARAMS, but the *constraints* are
;       taken from PARINFO.
; 
;   SIGMA - The formal 1-sigma errors in each parameter, computed from
;           the covariance matrix.  If a parameter is held fixed, or
;           if it touches a boundary, then the error is reported as
;           zero.
;
;           If the fit is unweighted (i.e. no errors were given, or
;           the weights were uniformly set to unity), then SIGMA will
;           probably not represent the true parameter uncertainties.
;
;           *If* you can assume that the true reduced chi-squared
;           value is unity -- meaning that the fit is implicitly
;           assumed to be of good quality -- then the estimated
;           parameter uncertainties can be computed by scaling SIGMA
;           by the measured chi-squared value.
;
;              DOF     = N_ELEMENTS(X) - N_ELEMENTS(P) ; deg of freedom
;              CSIGMA  = SIGMA * SQRT(CHISQ / DOF)     ; scaled uncertainties
;
; RETURNS:
;
;   Returns the array containing the best-fitting function.
;
; KEYWORD PARAMETERS:
;
;   CHISQ - the value of the summed, squared, weighted residuals for
;           the returned parameter values, i.e. the chi-square value.
;
;   COVAR - the covariance matrix for the set of parameters returned
;           by MPFIT.  The matrix is NxN where N is the number of
;           parameters.  The square root of the diagonal elements
;           gives the formal 1-sigma statistical errors on the
;           parameters IF errors were treated "properly" in MYFUNC.
;           Parameter errors are also returned in PERROR.
;
;           To compute the correlation matrix, PCOR, use this:
;           IDL> PCOR = COV * 0
;           IDL> FOR i = 0, n-1 DO FOR j = 0, n-1 DO $
;                PCOR(i,j) = COV(i,j)/sqrt(COV(i,i)*COV(j,j))
;
;           If NOCOVAR is set or MPFIT terminated abnormally, then
;           COVAR is set to a scalar with value !VALUES.D_NAN.
;
;   DOF - number of degrees of freedom, computed as
;             DOF = N_ELEMENTS(DEVIATES) - NFREE
;         Note that this doesn't account for pegged parameters (see
;         NPEGGED).
;
;   ERRMSG - a string error or warning message is returned.
;
;   FTOL - a nonnegative input variable. Termination occurs when both
;          the actual and predicted relative reductions in the sum of
;          squares are at most FTOL (and STATUS is accordingly set to
;          1 or 3).  Therefore, FTOL measures the relative error
;          desired in the sum of squares.  Default: 1D-10
;
;   FUNCTION_NAME - a scalar string containing the name of an IDL
;                   procedure to compute the user model values, as
;                   described above in the "USER MODEL" section.
;
;   FUNCTARGS - A structure which contains the parameters to be passed
;               to the user-supplied function specified by FUNCT via
;               the _EXTRA mechanism.  This is the way you can pass
;               additional data to your user-supplied function without
;               using common blocks.
;
;               By default, no extra parameters are passed to the
;               user-supplied function.
;
;   GTOL - a nonnegative input variable. Termination occurs when the
;          cosine of the angle between fvec and any column of the
;          jacobian is at most GTOL in absolute value (and STATUS is
;          accordingly set to 4). Therefore, GTOL measures the
;          orthogonality desired between the function vector and the
;          columns of the jacobian.  Default: 1D-10
;
;   ITER - the number of iterations completed.
;
;   ITERARGS - The keyword arguments to be passed to ITERPROC via the
;              _EXTRA mechanism.  This should be a structure, and is
;              similar in operation to FUNCTARGS.
;              Default: no arguments are passed.
;
;   ITERPROC - The name of a procedure to be called upon each NPRINT
;              iteration of the MPFIT routine.  It should be declared
;              in the following way:
;
;              PRO ITERPROC, FUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
;                PARINFO=parinfo, QUIET=quiet, ...
;                ; perform custom iteration update
;              END
;         
;              ITERPROC must either accept all three keyword
;              parameters (FUNCTARGS, PARINFO and QUIET), or at least
;              accept them via the _EXTRA keyword.
;          
;              FUNCT is the user-supplied function to be minimized,
;              P is the current set of model parameters, ITER is the
;              iteration number, and FUNCTARGS are the arguments to be
;              passed to FUNCT.  FNORM should be the
;              chi-squared value.  QUIET is set when no textual output
;              should be printed.  See below for documentation of
;              PARINFO.
;
;              In implementation, ITERPROC can perform updates to the
;              terminal or graphical user interface, to provide
;              feedback while the fit proceeds.  If the fit is to be
;              stopped for any reason, then ITERPROC should set the
;              common block variable ERROR_CODE to negative value (see
;              MPFIT_ERROR common block below).  In principle,
;              ITERPROC should probably not modify the parameter
;              values, because it may interfere with the algorithm's
;              stability.  In practice it is allowed.
;
;              Default: an internal routine is used to print the
;                       parameter values.
;
;   ITMAX - The maximum number of iterations to perform.  If the
;             number is exceeded, then the STATUS value is set to 5
;             and MPFIT returns.
;             Default: 200 iterations
;
;   NFEV - the number of FUNCT function evaluations performed.
;
;   NFREE - the number of free parameters in the fit.  This includes
;           parameters which are not FIXED and not TIED, but it does
;           include parameters which are pegged at LIMITS.
;
;   NOCOVAR - set this keyword to prevent the calculation of the
;             covariance matrix before returning (see COVAR)
;
;   NODERIVATIVE - if set, then the user function will not be queried
;                  for analytical derivatives, and instead the
;                  derivatives will be computed by finite differences
;                  (and according to the PARINFO derivative settings;
;                  see above for a description).
;
;   NPRINT - The frequency with which ITERPROC is called.  A value of
;            1 indicates that ITERPROC is called with every iteration,
;            while 2 indicates every other iteration, etc.  Note that
;            several Levenberg-Marquardt attempts can be made in a
;            single iteration.
;            Default value: 1
;
;   PARINFO - Provides a mechanism for more sophisticated constraints
;             to be placed on parameter values.  When PARINFO is not
;             passed, then it is assumed that all parameters are free
;             and unconstrained.  Values in PARINFO are never 
;             modified during a call to MPFIT.
;
;             See description above for the structure of PARINFO.
;
;             Default value:  all parameters are free and unconstrained.
;
;   QUIET - set this keyword when no textual output should be printed
;           by MPFIT
;
;   STATUS - an integer status code is returned.  All values greater
;            than zero can represent success (however STATUS EQ 5 may
;            indicate failure to converge).  It can have one of the
;            following values:
;
;	   0  improper input parameters.
;         
;	   1  both actual and predicted relative reductions
;	      in the sum of squares are at most FTOL.
;         
;	   2  relative error between two consecutive iterates
;	      is at most XTOL
;         
;	   3  conditions for STATUS = 1 and STATUS = 2 both hold.
;         
;	   4  the cosine of the angle between fvec and any
;	      column of the jacobian is at most GTOL in
;	      absolute value.
;         
;	   5  the maximum number of iterations has been reached
;         
;	   6  FTOL is too small. no further reduction in
;	      the sum of squares is possible.
;         
;	   7  XTOL is too small. no further improvement in
;	      the approximate solution x is possible.
;         
;	   8  GTOL is too small. fvec is orthogonal to the
;	      columns of the jacobian to machine precision.
;
;   TOL - synonym for FTOL.  Use FTOL instead.
;
;   XTOL - a nonnegative input variable. Termination occurs when the
;          relative error between two consecutive iterates is at most
;          XTOL (and STATUS is accordingly set to 2 or 3).  Therefore,
;          XTOL measures the relative error desired in the approximate
;          solution.  Default: 1D-10
;
;   YERROR - upon return, the root-mean-square variance of the
;            residuals.
;
;
; EXAMPLE:
;
;   ; First, generate some synthetic data
;   npts = 200
;   x  = dindgen(npts) * 0.1 - 10.                  ; Independent variable 
;   yi = gauss1(x, [2.2D, 1.4, 3000.])              ; "Ideal" Y variable
;   y  = yi + randomn(seed, npts) * sqrt(1000. + yi); Measured, w/ noise
;   sy = sqrt(1000.D + y)                           ; Poisson errors
;
;   ; Now fit a Gaussian to see how well we can recover
;   p0 = [1.D, 1., 1000.]                           ; Initial guess
;   yfit = mpcurvefit(x, y, 1/sy^2, p0, $           ; Fit a function
;                     FUNCTION_NAME='GAUSS1P',/autoderivative)
;   print, p
;
;   Generates a synthetic data set with a Gaussian peak, and Poisson
;   statistical uncertainty.  Then the same function is fitted to the
;   data to see how close we can get.  GAUSS1 and GAUSS1P are
;   available from the same web page.
;
;
; COMMON BLOCKS:
;
;   COMMON MPFIT_ERROR, ERROR_CODE
;
;     User routines may stop the fitting process at any time by
;     setting an error condition.  This condition may be set in either
;     the user's model computation routine (MYFUNCT), or in the
;     iteration procedure (ITERPROC).
;
;     To stop the fitting, the above common block must be declared,
;     and ERROR_CODE must be set to a negative number.  After the user
;     procedure or function returns, MPFIT checks the value of this
;     common block variable and exits immediately if the error
;     condition has been set.  By default the value of ERROR_CODE is
;     zero, indicating a successful function/procedure call.
;
; REFERENCES:
;
;   MINPACK-1, Jorge More', available from netlib (www.netlib.org).
;   "Optimization Software Guide," Jorge More' and Stephen Wright, 
;     SIAM, *Frontiers in Applied Mathematics*, Number 14.
;
; MODIFICATION HISTORY:
;   Translated from MPFITFUN, 25 Sep 1999, CM
;   Alphabetized documented keywords, 02 Oct 1999, CM
;   Added QUERY keyword and query checking of MPFIT, 29 Oct 1999, CM
;   Check to be sure that X and Y are present, 02 Nov 1999, CM
;   Documented SIGMA for unweighted fits, 03 Nov 1999, CM
;   Changed to ERROR_CODE for error condition, 28 Jan 2000, CM
;   Copying permission terms have been liberalized, 26 Mar 2000, CM
;   Propagated improvements from MPFIT, 17 Dec 2000, CM
;   Corrected behavior of NODERIVATIVE, 13 May 2002, CM
;   Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002
;   Make more consistent with comparable IDL routines, 30 Jun 2003, CM
;   Minor documentation adjustment, 03 Feb 2004, CM
;   Fix error in documentation, 26 Aug 2005, CM
;   Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
;   Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
;   Fix bug in handling of explicit derivatives with errors/weights
;     (the weights were not being applied), CM, 2012-07-22
;   Add more documentation on calling interface for user function and
;     parameter derivatives, CM, 2012-07-22
;   Better documentation for STATUS, CM, 2016-04-29
;
;  $Id: mpcurvefit.pro,v 1.12 2016/05/19 16:08:49 cmarkwar Exp $
;-
; Copyright (C) 1997-2000, 2002, 2003, 2004, 2005, 2012, 2016 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-

FORWARD_FUNCTION mpcurvefit_eval, mpcurvefit, mpfit

; This is the call-back function for MPFIT.  It evaluates the
; function, subtracts the data, and returns the residuals.
function mpcurvefit_eval, p, dp, _EXTRA=extra

  COMPILE_OPT strictarr
  common mpcurvefit_common, fcn, x, y, wts, f, fcnargs

  ;; The function is evaluated here.  There are four choices,
  ;; depending on whether (a) FUNCTARGS was passed to MPCURVEFIT, which
  ;; is passed to this function as "hf"; or (b) the derivative
  ;; parameter "dp" is passed, meaning that derivatives should be
  ;; calculated analytically by the function itself.
  if n_elements(fcnargs) GT 0 then begin
      if n_params() GT 1 then call_procedure, fcn, x, p, f, dp,_EXTRA=fcnargs $
      else                    call_procedure, fcn, x, p, f,    _EXTRA=fcnargs
  endif else begin
      if n_params() GT 1 then call_procedure, fcn, x, p, f, dp $
      else                    call_procedure, fcn, x, p, f
  endelse

  ;; Compute the deviates, applying the weights
  result = (y-f)*wts
  
  ;; Apply weights to derivative quantities                                     
  if n_params() GT 1 then begin
      np = n_elements(p)
      nf = n_elements(f)
      for j = 0L, np-1 do dp[j*nf] = dp[j*nf:j*nf+nf-1] * wts
  endif
      
  ;; Make sure the returned result is one-dimensional.
  result = reform(result, n_elements(result), /overwrite)
  return, result
  
end

function mpcurvefit, x, y, wts, p, perror, function_name=fcn, $
                     iter=iter, itmax=maxiter, $
                     chisq=bestnorm, nfree=nfree, dof=dof, $
                     nfev=nfev, covar=covar, nocovar=nocovar, yerror=yerror, $
                     noderivative=noderivative, tol=tol, ftol=ftol, $
                     FUNCTARGS=fa, parinfo=parinfo, $
                     errmsg=errmsg, STATUS=status, QUIET=quiet, $
                     query=query, _EXTRA=extra

  COMPILE_OPT strictarr
  status = 0L
  errmsg = ''

  ;; Detect MPFIT and crash if it was not found
  catch, catcherror
  if catcherror NE 0 then begin
      MPFIT_NOTFOUND:
      catch, /cancel
      message, 'ERROR: the required function MPFIT must be in your IDL path', /info
      return, !values.d_nan
  endif
  if mpfit(/query) NE 1 then goto, MPFIT_NOTFOUND
  catch, /cancel
  if keyword_set(query) then return, 1

  if n_params() EQ 0 then begin
      message, "USAGE: YFIT = MPCURVEFIT(X, Y, WTS, P, DP)", /info
      return, !values.d_nan
  endif
  if n_elements(x) EQ 0 OR n_elements(y) EQ 0 then begin
      message, 'ERROR: X and Y must be defined', /info
      return, !values.d_nan
  endif
  if n_elements(fcn) EQ 0 then fcn = 'funct'
  if n_elements(noderivative) EQ 0 then noderivative = 0

  common mpcurvefit_common, fc, xc, yc, wc, mc, ac
  fc = fcn & xc = x & yc = y & wc = sqrt(abs(wts)) & mc = 0L
  ac = 0 & dummy = size(temporary(ac))
  if n_elements(fa) GT 0 then ac = fa

  if n_elements(tol) GT 0 then ftol = tol

  result = mpfit('mpcurvefit_eval', p, maxiter=maxiter, $
                 autoderivative=noderivative, ftol=ftol, $
                 parinfo=parinfo, STATUS=status, nfev=nfev, BESTNORM=bestnorm,$
                 covar=covar, perror=perror, niter=iter, nfree=nfree, dof=dof,$
                 ERRMSG=errmsg, quiet=quiet, _EXTRA=extra)

  ;; Retrieve the fit value
  yfit = temporary(mc)
  ;; Now do some clean-up
  xc = 0 & yc = 0 & wc = 0 & mc = 0 & ac = 0

  if NOT keyword_set(quiet) AND errmsg NE '' then $
    message, errmsg, /info $
  else $
    p = result

  yerror = p[0]*0
  if n_elements(dof) GT 0 AND dof[0] GT 0 then begin
      yerror[0] = sqrt( total( (y-yfit)^2 ) / dof[0] )
  endif

  return, yfit
end