jplephinterp.pro 27 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
;+
; NAME:
;   JPLEPHINTERP
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Interpolate position and motion of planetary bodies (JPL Ephemeris)
;
; MAJOR TOPICS:
;   Planetary Orbits, Interpolation
;
; CALLING SEQUENCE:
;   JPLEPHINTERP, INFO, RAWDATA, T, X, Y, Z, [VX, VY, VZ, /EARTH, /SUN,
;         OBJECTNAME=, CENTER=, TBASE=, POSUNITS=, VELUNITS= ]
;
; DESCRIPTION:
;
;   JPLEPHINTERP interpolates the JPL DE200 or DE405 planetary
;   ephemeris to find the positions and motions of planetary bodies.
;
;   This routine is the second stage of a two-stage process to
;   interpolate the JPL ephemeris.  In this first stage, the file is
;   opened using JPLEPHREAD, and the relevant portions of the table
;   are read and stored into the two variables INFO and RAWDATA.  In
;   the second stage, the user actually interpolates the ephemeris for
;   the desired bodies and to the desired ephemeris time using
;   JPLEPHINTERP.
;
;   The only independent variable which must be specified is T, the
;   ephemeris time.  For low to moderate accuracy applications, T is
;   simply the conventional calendar date, expressed in Julian days.
;   See below for high precision applications.
;
;   Upon output, the position components of the desired body are
;   returned in parameters X, Y and Z, and if requested velocity
;   components are returned in parameters VX, VY and VZ.  Coordinates
;   are referred to the ephemeris's coordinate system: FK5 for
;   JPL-DE200 and ICRS for JPL-DE405.  By default, the origin of
;   coordinates is the solar system barycenter (SSB), unless another
;   origin is selected using the CENTER keyword.
;
;   Users must set the VELOCITY keyword to generate body velocities.
;   By default they are not generated.
;
;   Users can select the desired body by using either the EARTH or SUN
;   keywords, or the OBJECTNAME keyword.
;
;   By default, positions are returned in units of KM and velocities
;   in units of KM/DAY.  However, the output units are selectable by
;   setting the POSUNITS and VELUNITS keywords.
;
; High Precision Applications
;
;   If the required precision is finer than a few hundred meters, the
;   user must be aware that the formal definition of the ephemeris
;   time is the coordinate time of a clock placed at the solar system
;   barycenter (SSB).  If the user's time is measured by a clock
;   positioned elsewhere, then various corrections must be applied.
;   Usually, the most significant correction is that from the
;   geocenter to the SSB (see Fairhead & Bretagnon 1990; Fukushima
;   1995).  Not applying this correction creates an error with
;   amplitude ~170 nano-light-seconds ( = 50 m) on the earth's
;   position.  (see TDB2TDT)
;
;   For high precision, the user should also specify the TBASE
;   keyword.  TBASE should be considered a fixed epoch with respect to
;   which T is measured; T should be small compared to TBASE.
;   Internally, subtraction of large numbers occurs with TBASE first,
;   so truncation error is minimized by specifying TBASE.
;
; Nutations and Librations
;
;   This routine also provides information about earth nutations and
;   lunar librations, which are stored in the JPL ephemeris tables.
;   The POSUNITS and VELUNITS keywords do not affect these
;   computations.
;
;   Lunar librations in the form of three Euler angles are returned in
;   X, Y, Z, in units of radians, and their time derivatives are
;   returned in VX, VY, and VZ in units of radians per day.
;
;   The earth nutation angles psi (nutation in longitude) and epsilon
;   (nutation in obliquity) are returned in X and Y, in units of
;   radians.  Their time derivatives are returned in VX and VY
;   respectively.  The quantities returned in Z and VZ are undefined.
;
; Verification
;
;   The precision routine has been verified using JPLEPHTEST, which is
;   similar to the original JPL program EPHTEST.  For years 1950 to
;   2050, JPLEPHINTERP reproduces the original JPL ephemeris to within
;   1 centimeter.
;
; Custom Ephemerides
;
;   It is possible to make custom ephemerides using JPLEPHMAKE, or to
;   augmented an existing ephemeris with additional data.  In the
;   former case JPLEPHINTERP should automatically choose the correct
;   object from the table and interpolate it appropriately.
;
;   For augmented ephemerides, the object can be specified by name,
;   which works as expected, or by number, which has a special
;   behavior.  For augmented files only, the new objects begin at
;   number 100.
;
;
; PARAMETERS: 
;
;   INFO - structure returned by JPLEPHREAD.  Users should not modify
;          this structure.
;
;   RAWDATA - raw data array returned by JPLEPHREAD.  Users should not
;             modify this data array.
;
;   T - ephemeris time(s) of interest, relative to TBASE (i.e. the
;       actual interpolation time is (T+TBASE)).  May be a scalar or
;       vector.
;
;   X, Y, Z - upon return, the x-, y- and z-components of the body
;             position are returned in these parameters.  For
;             nutations and librations see above.
;
;   VX, VY, VZ - upon return, the x-, y- and z-components of the body
;                velocity are returned in these parameters, if the
;                VELOCITY keyword is set.  For nutations and
;                librations see above.
;
;
; KEYWORD PARAMETERS:
;
;   EARTH, SUN - set one of these keywords if the desired body is the
;                earth or the sun.  One of EARTH, SUN or OBJECTNAME
;                must be specified.
;
;   OBJECTNAME - a scalar string or integer, specifies the planetary
;                body of interest.  May take any one of the following
;                integer or string values.
;
;                   1 - 'MERCURY'     9 - 'PLUTO'
;                   2 - 'VENUS'      10 - 'MOON'  (earth's moon)
;                   3 - 'EARTH'      11 - 'SUN'
;                   4 - 'MARS'       12 - 'SOLARBARY' or 'SSB' (solar system barycenter)
;                   5 - 'JUPITER'    13 - 'EARTHBARY' or 'EMB' (earth-moon barycenter)
;                   6 - 'SATURN'     14 - 'NUTATIONS' (see above)
;                   7 - 'URANUS'     15 - 'LIBRATIONS' (see above)
;                   8 - 'NEPTUNE' 
;
;                For custom ephemerides, the user should specify the
;                object name or number.
;
;                For augmented ephemerides, the user should specify
;                the name.  If the number is specified, then numbers
;                1-15 have the above meanings, and new objects are
;                numbered starting at 100.
;
;   CENTER - a scalar string or integer, specifies the origin of
;            coordinates.  See OBJECTNAME for allowed values.
;            Default: 12 (Solar system barycenter)
;
;   VELOCITY - if set, body velocities are generated and returned in
;              VX, VY and VZ.
;              Default: unset (no velocities)
;
;   POSUNITS - a scalar string specifying the desired units for X, Y,
;              and Z.  Allowed values:
;                 'KM' - kilometers  (default)
;                 'CM' - centimeters
;                 'AU' - astronomical units
;                 'LT-S' - light seconds
;               If angles are requested, this keyword is ignored and
;               the units are always 'RADIANS'.
;
;   VELUNITS - a scalar string specifying the desired units for VX, VY
;              and VZ.  Allowed values:
;                 'KM/DAY' - kilometers per day  (default)
;                 'KM/S' - kilometers per second
;                 'CM/S' - centimeters per second
;                 'LT-S/S' or 'V/C' - light seconds per second or
;                     unitless ratio with speed of light, V/C
;                 'AU/DAY' - astronomical units per day
;
;   TBASE - a scalar or vector, specifies a fixed epoch against wich T
;           is measured.  The ephemeris time will be (T+TBASE).  Use
;           this keyword for maximum precision.
;
;
; EXAMPLE:
;
;   Find position of earth at ephemeris time 2451544.5 JD.  Units are
;   in Astronomical Units.
;
;   JPLEPHREAD, 'JPLEPH.200', pinfo, pdata, [2451544D, 2451545D]
;
;   JPLEPHINTERP, pinfo, pdata, 2451544.5D, xearth, yearth, zearth, $
;                 /EARTH, posunits='AU'
;     
;
; REFERENCES:
;
;   AXBARY, Arnold Rots.
;      ftp://heasarc.gsfc.nasa.gov/xte/calib_data/clock/bary/
;
;   HORIZONS, JPL Web-based ephermis calculator (Ephemeris DE406)
;      http://ssd.jpl.nasa.gov/horizons.html
;   
;   Fairhead, L. & Bretagnon, P. 1990, A&A, 229, 240
;
;   Fukushima, T. 1995, A&A, 294, 895
;
;   Standish, E.M. 1982, "Orientation of the JPL Ephemerides,
;      DE200/LE200, to the Dynamical Equinox of J2000", Astronomy &
;      Astrophysics, vol. 114, pp. 297-302.
;
;   Standish, E.M.: 1990, "The Observational Basis for JPL's DE200,
;      the planetary ephemeris of the Astronomical Almanac", Astronomy
;      & Astrophysics, vol. 233, pp. 252-271.    
;
; SEE ALSO
;   JPLEPHREAD, JPLEPHINTERP, JPLEPHTEST, TDB2TDT, JPLEPHMAKE
;   
; MODIFICATION HISTORY:
;   Written and Documented, CM, Jun 2001
;   Corrected bug in name conversion of NUTATIONS and LIBRATIONS, 18
;     Oct 2001, CM
;   Added code to handle custom-built ephemerides, 04 Mar 2002, CM
;   Fix bug in evaluation of velocity (only appears in highest order
;     polynomial term); JPLEPHTEST verification tests still pass;
;     change is of order < 0.5 cm in position, 22 Nov 2004, CM
;   Perform more validity checking on inputs; and more informative
;     outputs, 09 Oct 2008, CM
;   Allow SSB and EMB as shortcuts for solar system and earth-moon
;     bary center, 15 Oct 2008, CM
;   TBASE now allowed to be a vector or scalar, 01 Jan 2009, CM
;   VELFAC keyword gives scale factor between POSUNITS and VELUNITS, 
;     12 Jan 2009, CM
;   Add option VELUNITS='V/C' for unitless ratio with speed of light,
;     2012-10-02, CM
;
;  $Id: jplephinterp.pro,v 1.19 2012/10/02 11:32:59 cmarkwar Exp $
;
;-
; Copyright (C) 2001, 2002, 2004, 2008, 2009, 2012, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy and distribute unmodified copies for
; non-commercial purposes, and to modify and use for personal or
; internal use, is granted.  All other rights are reserved.
;-

pro jplephinterp_calc, info, raw, obj, t, x, y, z, vx, vy, vz, $
                       velocity=vel, tbase=tbase

  ; '$Id: jplephinterp.pro,v 1.19 2012/10/02 11:32:59 cmarkwar Exp $'

  if n_elements(tbase) EQ 0 then tbase = 0D
  ;; Number of coefficients (x3), number of subintervals, num of rows
  nc = info.ncoeff(obj)
  ns = info.nsub(obj)
  dt = info.timedel
  nr = info.jdrows
  jd0 = info.jdlimits(0) - tbase
  jd1 = info.jdlimits(1) - tbase

  ;; Extract coefficient data from RAW
  if obj EQ 11 then begin
      ;; Nutations have two components
      ii1 = info.ptr(obj)-1
      ii2 = ii1 + nc*ns*2L - 1
      coeffs = reform(dblarr(nc,3,ns,nr), nc,3,ns,nr, /overwrite)
      coeffs(0,0,0,0) = reform(raw(ii1:ii2,*),nc,2,ns,nr, /overwrite)
  endif else begin
      ;; All other bodies are done with three components
      ii1 = info.ptr(obj)-1
      ii2 = ii1 + nc*ns*3L - 1
      coeffs = reform(raw(ii1:ii2,*),nc,3,ns,nr, /overwrite)
  endelse

  ;; Decide which interval and subinterval we are in
  tint = (t-jd0)/dt        ;; Interval number (real)
  ieph = floor(tint)       ;; Interval number (index = int)
  tint = (tint-ieph)*ns    ;; Subinterval number (real)
  nseg = floor(tint)       ;; Subinterval number (index = int)
  ;; Chebyshev "x" (rescaled to range = [-1,1] over subinterval)
  tseg = 2D*(tint - nseg) - 1  

  ;; Below is an optimization.  If the time interval doesn't span an
  ;; ephemeris subinterval, then we can index the coefficient array by
  ;; a scalar, which is much faster.  Otherwise we maintain the full
  ;; vector-level indexing.
  mini = minmax(ieph) & minn = minmax(nseg)
  if mini(0) EQ mini(1) AND minn(0) EQ minn(1) then begin
      ieph = ieph(0)
      nseg = nseg(0)
  endif

  ;; Initialize the first two Chebyshev polynomials, which are P_0 = 1
  ;; and P_1(x) = x
  p0 = 1D
  p1 = tseg
  ;; Initial polynomials for Chebyshev derivatives, V_0 = 0, V_1(x) =
  ;; 1, V_2(x) = 4*x
  v0 = 0D
  v1 = 1D
  v2 = 4D*tseg
  tt = 2D*temporary(tseg)

  x  = 0D & y  = 0D & z  = 0D
  vx = 0D & vy = 0D & vz = 0D
  i0 = ieph*0 & i1 = i0 + 1 & i2 = i1 + 1

  ;; Compute Chebyshev functions two at a time for efficiency
  for i = 0, nc-1, 2 do begin
      if i EQ nc-1 then begin
          p1 = 0
          v1 = 0
      endif
      ii = i0 + i
      jj = i0 + ((i+1) < (nc-1))
      
      x = x + coeffs(ii,i0,nseg,ieph)*p0 + coeffs(jj,i0,nseg,ieph)*p1
      y = y + coeffs(ii,i1,nseg,ieph)*p0 + coeffs(jj,i1,nseg,ieph)*p1
      z = z + coeffs(ii,i2,nseg,ieph)*p0 + coeffs(jj,i2,nseg,ieph)*p1

      if keyword_set(vel) then begin
          vx = vx + coeffs(ii,i0,nseg,ieph)*v0 + coeffs(jj,i0,nseg,ieph)*v1
          vy = vy + coeffs(ii,i1,nseg,ieph)*v0 + coeffs(jj,i1,nseg,ieph)*v1
          vz = vz + coeffs(ii,i2,nseg,ieph)*v0 + coeffs(jj,i2,nseg,ieph)*v1

          ;; Advance to the next set of Chebyshev polynomials. For
          ;; velocity we need to keep the next orders around
          ;; momentarily.
          p2 = tt*p1 - p0
          p3 = tt*p2 - p1
          v2 = tt*v1 - v0 + 2*p1
          v3 = tt*v2 - v1 + 2*p2
          
          p0 = temporary(p2) & p1 = temporary(p3)
          v0 = temporary(v2) & v1 = temporary(v3)
      endif else begin
          ;; Advance to the next set of Chebyshev polynomials.  For no
          ;; velocity, we can re-use old variables.
          p0 = tt*p1 - temporary(p0)
          p1 = tt*p0 - temporary(p1)
      endelse
  endfor

  if keyword_set(vel) then begin
      vfac = 2D*ns/dt
      vx = vx * vfac
      vy = vy * vfac
      vz = vz * vfac
  endif

  return
end

pro jplephinterp_denew, info, raw, obj, t, x, y, z, vx, vy, vz, $
                        velocity=vel, tbase=tbase

  if n_elements(tbase) EQ 0 then tbase = 0D
  dt = info.timedel
  nr = info.jdrows
  jd0 = info.jdlimits(0)
  jd1 = info.jdlimits(1)
  c = info.c / 1000D
  cday = 86400D*info.c/1000D

  ;; Renormalize to fractional and whole days, so fractional
  ;; component is between -.5 and +.5, as needed by barycentering
  ;; approximation code.
  ti  = round(t)      ;; Delta Time: integer
  tbi = round(tbase)  ;; Base: integer
  
  tc = ti + tbi             ;; Total time: integer
  tt = (t-ti) + (tbase-tbi) ;; Total time: fractional

  tc = tc + round(tt)       ;; Re-round: integer
  tt = tt - round(tt)       ;; Re-round: fractional
  t2 = tt*tt                ;; Quadratic and cubic terms
  t3 = t2*tt

  ieph = tc - round(jd0)
  ;; Below is an optimization.  If the time interval doesn't span an
  ;; ephemeris subinterval, then we can index the coefficient array by
  ;; a scalar, which is much faster.  Otherwise we maintain the full
  ;; vector-level indexing.
  mini = minmax(ieph)
  if mini(0) EQ mini(1) then ieph = ieph(0)

  if obj EQ 3 then begin
      ;; Earth, stored as Taylor series coefficients per day
      x = (raw(0,ieph) + raw(3,ieph)*tt + 0.5D*raw(6,ieph)*t2 + $
           (raw(9,ieph)/6D)*t3)
      y = (raw(1,ieph) + raw(4,ieph)*tt + 0.5D*raw(7,ieph)*t2 + $
           (raw(10,ieph)/6D)*t3)
      z = (raw(2,ieph) + raw(5,ieph)*tt + 0.5D*raw(8,ieph)*t2 + $
           (raw(11,ieph)/6D)*t3)
      if keyword_set(vel) then begin
          vx = raw(3,ieph) + raw(6,ieph)*tt + 0.5D*raw(9 ,ieph)*t2
          vy = raw(4,ieph) + raw(7,ieph)*tt + 0.5D*raw(10,ieph)*t2
          vz = raw(5,ieph) + raw(8,ieph)*tt + 0.5D*raw(11,ieph)*t2
      endif
      x = reform(x, /overwrite)
      y = reform(y, /overwrite)
      z = reform(z, /overwrite)
 
  endif else if obj EQ 11 then begin
      ;; Sun, stored as daily components only
      
      x = reform(raw(12,ieph) + tt*0)
      y = reform(raw(13,ieph) + tt*0)
      z = reform(raw(14,ieph) + tt*0)
      if keyword_set(vel) then $
        message, 'ERROR: DENEW format does not provide solar velocity'

  endif else if obj EQ 1000 then begin

      tt = t - (jd0+jd1)/2D
      x = spl_interp(raw(15,*), raw(16,*), raw(17,*), tt)
      return
      
  endif else begin
      message, 'ERROR: DENEW format does not contain body '+strtrim(obj,2)
  endelse
end

pro jplephinterp, info, raw, t, x, y, z, vx, vy, vz, earth=earth, sun=sun, $
                  objectname=obj0, velocity=vel, center=cent, tbase=tbase, $
                  posunits=outunit0, velunits=velunit0, $
                  pos_vel_factor=velfac, $
                  xobjnum=objnum, decode_obj=decode

  if n_params() EQ 0 then begin
      message, 'USAGE: JPLEPHINTERP, info, rawdata, teph, x, y, z, '+$
        'vx, vy, vz, OBJECTNAME="body", /VELOCITY, CENTER="body", '+$
        'POSUNITS="units", VELUNITS="units", /EARTH, /SUN', /info
      return
  endif
  
  ;; The numbering convention for ntarg and ncent is:
  ;;   1 = Mercury            8 = Neptune
  ;;   2 = Venus              9 = Pluto
  ;;   3 = Earth             10 = Moon
  ;;   4 = Mars              11 = Sun
  ;;   5 = Jupiter           12 = Solar system barycenter
  ;;   6 = Saturn            13 = Earth-Moon barycenter
  ;;   7 = Uranus            14 = Nutations (longitude and obliquity; untested)
  ;;                         15 = Librations 
  ;; This numbering scheme is 1-relative, to be consistent with the
  ;; Fortran version.  (units are seconds; derivative units are seconds/day)
  ;;1000 = TDB to TDT offset (s), returned in X component

  sz = size(info)
  if sz(sz(0)+1) NE 8 then message, 'ERROR: INFO must be a structure'
  if ((info.format NE 'JPLEPHMAKE') AND $
      (info.format NE 'BINEPH2FITS') AND $
      (info.format NE 'DENEW')) then begin
      message, 'ERROR: ephemeris type "'+info.format+'" is not recognized'
  endif

  ;; Handle case of custom ephemerides
  if info.format EQ 'JPLEPHMAKE' then begin
      if n_elements(obj0) GT 0 then begin
          sz = size(obj0)
          if sz(sz(0)+1) EQ 7 then begin
              obj = strupcase(strtrim(obj0(0),2))
              wh = where(info.objname EQ obj, ct)
              if ct EQ 0 then $
                message, 'ERROR: '+obj+' is an unknown object'
              obj = wh(0) + 1
          endif else begin
              obj = floor(obj0(0))
              if obj LT 1 OR obj GT n_elements(info.objname) then $
                message, 'ERROR: Numerical OBJNAME is out of bounds'
          endelse

          ;; Interpolate the ephemeris here
          jplephinterp_calc, info, raw, obj-1, t, velocity=vel, $
            tbase=tbase, x, y, z, vx, vy, vz

          goto, COMPUTE_CENTER
      endif
      message, 'ERROR: Must specify OBJNAME for custom ephemerides'
  endif


  ;; ----------------------------------------------------------
  ;; Determine which body or system we will compute
  if n_elements(obj0) GT 0 then begin
      sz = size(obj0)
      if sz(sz(0)+1) EQ 7 then begin
          obj = strupcase(strtrim(obj0(0),2))
          case obj of 
              'EARTH':      obj = 3
              'SOLARBARY':  obj = 12
              'SSB':        obj = 12
              'EARTHBARY':  obj = 13
              'EMB':        obj = 13
              'NUTATIONS':  obj = 14
              'LIBRATIONS': obj = 15
              'TDB2TDT':    obj = 1000
              ELSE: begin
                  wh = where(info.objname EQ obj, ct)
                  if ct EQ 0 then $
                    message, 'ERROR: '+obj+' is an unknown object'
                  obj = wh(0) + 1
                  if obj GT 11 then obj = obj + 100 - 14
              end
          endcase
      endif else begin
          obj = floor(obj0(0))
      endelse
  endif else begin
      if NOT keyword_set(earth) AND NOT keyword_set(sun) then $
        message, 'ERROR: Must specify OBJNAME, EARTH or SUN'
  endelse
  if keyword_set(earth) then obj = 3
  if keyword_set(sun)   then obj = 11

  ;; If the caller is merely asking us to decode the objectnumber,
  ;; then return it now.
  objnum = obj
  if keyword_set(decode) then return
  
  jdlimits = info.jdlimits

  ;; -------------------------------------------------------
  ;; Handle case of de200_new.fits format
  if info.format EQ 'DENEW' then begin
      if objnum NE 3 AND objnum NE 11 AND objnum NE 1000 then $
        message, 'ERROR: DENEW ephemeris table does not support body #'+$
        strtrim(objnum,2)
      
      jplephinterp_denew, info, raw, objnum, t, x, y, z, vx, vy, vz, $
        velocity=vel, tbase=tbase

      if objnum GE 1000 then return
      goto, DO_UNIT
  endif

  ;; -------------------------------------------------------
  ;; Otherwise, construct the ephemeris using the Chebyshev expansion
  case obj of
      3: begin ;; EARTH (translate from earth-moon barycenter to earth)
          ;; Interpolate the earth-moon and moon ephemerides
          jplephinterp_calc, info, raw, 2, velocity=vel, tbase=tbase, $
            t, xem, yem, zem, vxem, vyem, vzem
          jplephinterp_calc, info, raw, 9, velocity=vel, tbase=tbase, $
            t, xmo, ymo, zmo, vxmo, vymo, vzmo
          emrat = info.emrat
          
          ;; Translate from the earth-moon barycenter to earth
          x = xem - emrat * xmo
          y = yem - emrat * ymo
          z = zem - emrat * zmo
          if keyword_set(vel) then begin
              vx = vxem - emrat * vxmo
              vy = vyem - emrat * vymo
              vz = vzem - emrat * vzmo
          endif
          
      end

      10: begin ;; MOON (translate from earth-moon barycenter to moon)
          jplephinterp_calc, info, raw, 9, t, velocity=vel, tbase=tbase, $
            x, y, z, vx, vy, vz
          ;; Moon ephemeris is geocentered.  If the center is
          ;; explicitly earth then return immediately.  Otherwise
          ;; follow the standard path via the solar barycenter.
          if n_elements(cent) GT 0 then begin
              jplephinterp, info, objectname=cent(0), tbase=tbase, $
                xobjnum=cent1, /decode_obj
              if cent1 EQ 3 then goto, DO_UNIT
          endif

          ;; Use solar barycenter via the earth-moon barycenter
          jplephinterp_calc, info, raw, 2, t, velocity=vel, tbase=tbase, $
            xem, yem, zem, vxem, vyem, vzem
          emrat = 1d - info.emrat
          x = xem + emrat * x
          y = yem + emrat * y
          z = zem + emrat * z
          if keyword_set(vel) then begin
              vx = vxem + emrat * vx
              vy = vyem + emrat * vy
              vz = vzem + emrat * vz
          endif              
      end

      12: begin ;; SOLARBARY
          x = t*0D & y = x & z = x
          vx = x   & vy = x & vz = x
      end

      13: begin ;; EARTHBARY
          jplephinterp_calc, info, raw, 2, velocity=vel, tbase=tbase, $
            t, x, y, z, vx, vy, vz
      end
      
      14: begin ;; NUTATIONS
          ;; X = PSI, Y = EPSILON, VX = PSI DOT, VY = EPSILON DOT 
          jplephinterp_calc, info, raw, 11, velocity=vel, tbase=tbase, $
            t, x, y, z, vx, vy, vz
          goto, CLEAN_RETURN
      end

      15: begin ;; LIBRATIONS
          jplephinterp_calc, info, raw, 12, velocity=vel, tbase=tbase, $
            t, x, y, z, vx, vy, vz
          goto, CLEAN_RETURN
      end

      1000: begin ;; TDT to TDB conversion
          x = tdb2tdt(t, deriv=vx, tbase=tbase)
          if n_elements(velunit0) GT 0 then begin
             ;; Special case of unit conversion when user asks for 
             ;; "per second"
             if strpos(strupcase(velunit0(0)),'/S') GE 0 then $
                vx = vx / 86400d
          endif

          goto, CLEAN_RETURN
      end

      else: begin
          ;; Default objects are derived from the index OBJNUM
          if obj GE 1 AND obj LE 11 then begin
              RESTART_OBJ:
              jplephinterp_calc, info, raw, obj-1, t, velocity=vel, $
                tbase=tbase, $
                x, y, z, vx, vy, vz
          endif else begin
              if info.edited AND obj GT 11 then begin
                  ;; Handle case of edited JPL ephemerides - they
                  ;; start at a value of 100, so shift them to the end
                  ;; of the JPL ephemeris columns
                  obj = obj - 100 + 14
                  if obj LE n_elements(info.objname) then $
                    goto, RESTART_OBJ
              endif
              message, 'ERROR: body '+strtrim(obj,2)+' is not supported'
          endelse
      end
  endcase

  ;; -------------------------------------------------------
  ;; Compute ephemeris of center, and compute displacement vector
  COMPUTE_CENTER:
  if n_elements(cent) GT 0 then begin
      jplephinterp, info, raw, t, x0, y0, z0, vx0, vy0, vz0, tbase=tbase, $
        objectname=cent, velocity=vel, posunits='KM', velunits='KM/DAY'
      x = temporary(x) - temporary(x0)
      y = temporary(y) - temporary(y0)
      z = temporary(z) - temporary(z0)
      if keyword_set(vel) then begin
          vx = temporary(vx) - temporary(vx0)
          vy = temporary(vy) - temporary(vy0)
          vz = temporary(vz) - temporary(vz0)
      endif
  endif

  DO_UNIT:
  
  velfac = 1d

  ;; -------------------------------------------------------
  ;; Convert positional units
  if n_elements(outunit0) GT 0 then begin
      pu = strupcase(strtrim(outunit0(0),2))
      case pu of
          'KM': km = 1 ;; Dummy statement
          'CM': begin
              x = x * 1D5
              y = y * 1D5
              z = z * 1D5
              velfac = velfac * 1D5
          end
          'AU': begin
              au = info.au*info.c/1000d
              x = x / au
              y = y / au
              z = z / au
              velfac = velfac / au
          end
          'LT-S': begin
              c = info.c / 1000d
              x = x / c
              y = y / c
              z = z / c
              velfac = velfac / c
          end
          ELSE: message, 'ERROR: Unrecognized position units "'+pu+'"'
      endcase
  endif

  ;; -------------------------------------------------------
  ;; Convert velocity units
  if n_elements(velunit0) GT 0 AND keyword_set(vel) then begin
      vu = strupcase(strtrim(velunit0(0),2))
      case vu of 
          'CM/S': begin
              vx = vx * (1D5/86400D)
              vy = vy * (1D5/86400D)
              vz = vz * (1D5/86400D)
              velfac = velfac / (1D5/86400D)
          end
          'KM/S': begin
              vx = vx * (1D/86400D)
              vy = vy * (1D/86400D)
              vz = vz * (1D/86400D)
              velfac = velfac / (1D/86400D)
          end
          'LT-S/S': begin ;; Light seconds per second
              c = info.c / 1000D
              vx = vx / (c*86400D)
              vy = vy / (c*86400D)
              vz = vz / (c*86400D)
              velfac = velfac / (c*86400D)
          end
          'V/C': begin ;; Unitless ratio V/C (same as LT-S/S
              c = info.c / 1000D
              vx = vx / (c*86400D)
              vy = vy / (c*86400D)
              vz = vz / (c*86400D)
              velfac = velfac / (c*86400D)
          end
          'KM/DAY': km = 1 ;; Dummy statement
          'AU/DAY': begin
              au = info.au*info.c/1000d
              vx = vx / au
              vy = vy / au
              vz = vz / au
              velfac = velfac * au
          end
          ELSE: message, 'ERROR: Unrecognized velocity units "'+vu+'"'
      endcase
  endif

CLEAN_RETURN:  
  return
end