eopdata.pro
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
;+
; NAME:
; EOPDATA
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Read and interpolate tabulated earth orientation parameters
;
; MAJOR TOPICS:
; Geometry
;
; CALLING SEQUENCE:
; EOPDATA, JDUTC, PMX, PMY, UT1_UTC, DPSI, DEPS, $
; /RESET, FILENAME=, ANGUNITS=, TBASE=
;
; DESCRIPTION:
;
; The procedure EOPDATA reads, interpolates and returns Earth
; orientation parameters used for precision earth-base astronomy
; applications.
;
; ** NOTE: The user is responsible for downloading and maintaining an
; up-to-date file of earth orientation parameters from the
; International Earth Rotation Service. See below. **
;
; This interface is somewhat provisional. See OPEN QUESTIONS below.
;
; The values returned are described below. These descriptions are
; taken from the Explanatory Supplement to IERS Bulletins A and B.
;
; * PMX and PMY, the coordinates of the Celestial Ephemeris Pole
; (CEP) relative to the earth-fixed International Reference Pole
; (IRP). The x-axis is in the direction of the IERS Reference
; Meridian (IRM), the y-axis is in the direction 90 degrees West
; longitude. The time series of PMX and PMY is referred to as
; "polar motion."
;
; These are the coordinates of the earth rotation pole, as seen
; in an *earth-fixed* coordinate system. A station whose
; coordinates are given in earth-fixed coordinates referred to
; the ITRS can be transformed to the earth-fixed coordinates
; referred to the true rotation pole of date using the following
; matrix transformation:
;
; R_TRUE = RX(PMY) ## RY(PMX) ## R_ITRS
;
; where the matrices RX and RY are defined below.
;
; * UT1, the the rotation angle about the pole. It is related to
; the Greenwich mean sidereal time (GMST) by a conventional
; relationship (Aoki et al., 1982). It gives access to the
; direction of the International Reference Meridian IRM in the
; ICRS, reckoned around the CEP axis. It is expressed as the
; difference UT1-UTC. Thus, the value of UT1 is computed as:
;
; UT1 = UT1_UTC + UTC
;
; where UTC is the UTC time, expressed in seconds.
;
; * DPSI and DEPS are the offsets in longitude and obliquity of the
; celestial pole with respect to its direction defined using the
; conventional IAU precession/nutation theory. An a priori
; correction model is available in the IERS Conventions (1996),
; (McCarthy, 1996). The expressions to compute the nutation
; angles are:
;
; DEPS_TRUE = DEPS_1980 + DEPS ;; Nutation in obliquity
; DPSI_TRUE = DPSI_1980 + DPSI ;; Nutation in longitude
;
; where DPSI_1980 and DEPS_1980 are the nutation values
; determined from the IAU 1980 Nutation Theory; and DPSI_TRUE and
; DEPS_TRUE are the nutations to be used as arguments to further
; precession and nutation computations.
;
; For requested times which are between tabular values, a linear
; interpolation is performed. This is not exactly the correct
; procedure, and can result in errors of +/- 0.1 mas in the earth
; polar motion and 1 usec in UT1 (see McCarthy & Gambis 1997).
;
;
; DATA FILES and MAINTENANCE
;
; The user is responsible for downloading and maintaining the earth
; orientation parameters file as supplied by the IERS. The format
; of the files is the "Final" EOP data ASCII format. They can be
; downloaded here:
;
; ftp://maia.usno.navy.mil/ser7/finals.all ;; from May 1976-present
; ftp://maia.usno.navy.mil/ser7/finals.data ;; from Jan 1992-present
;
; The user must place this file in a known location, and in *at
; least the first call*, this filename must be passed using the
; FILENAME keyword.
;
; EOPDATA will load the data once on the first call, and keep a
; cached copy for subsequent calls. On a daily basis the file will
; be reloaded in case the quantities have been updated from the
; server. A reload of data can be forced using the RESET keyword.
;
; ROTATION MATRICES
;
; The rotation matrices RX(T) and RY(T) mentioned above in relation
; to polar motion are:
;
; RX(T) =EQ= [[1,0,0], [0,cos(T),sin(T)], [0,-sin(T),cos(T)]]
; RY(T) =EQ= [[cos(T),0,-sin(T)], [0,1,0], [sin(T),0,cos(T)]]
; RZ(T) =EQ= [[cos(T),sin(T),0], [-sin(T),cos(T),0], [0,0,1]]
;
; and are meant to be applied to a vector R as, RX(T) ## R.
;
;
; OPEN QUESTIONS
;
; How will the transition to a new IERS EOP series be accomplished?
; Using a keyword?
;
; Should there be a quality flag? The EOP file contains a
; "predicted" flag, and also there are rows which contain no value
; at all. These should probably be flagged somehow.
;
;
; INPUTS:
;
; JDUTC - a vector or scalar, the UTC time for which earth
; orientation parameters are requested, expressed in Julian
; Days. The value of the keyword TBASE is added to this
; quantity to arrive at the actual Julian date.
;
; OUTPUTS:
;
; PMX, PMY - the earth-fixed angular coordinates of the celestial
; ephemeris pole, measured in ANGUNITS units.
;
; UT1_UTC - the value of UT1 - UTC, expressed in seconds.
;
; DPSI, DEPS - the corrections to the IAU 1980 theory of Nutation,
; for nutation in longitude and obliquity, expressed in
; ANGUNITS units.
;
; KEYWORD PARAMETERS:
;
; FILENAME - scalar string, on the first call, the name of the file
; from which earth orientation parameters will be read.
; Default value: (none)
;
; TBASE - a fixed epoch time (Julian days) to be added to each value
; of JDUTC. Since subtraction of large numbers occurs with
; TBASE first, the greatest precision is achieved when TBASE
; is expressed as a nearby julian epoch, JDUTC is expressed
; as a small offset from the fixed epoch.
; Default: 0
;
; ANGUNITS - scalar string, output units of angular parameters.
; Possible values are 'ARCSEC' or 'RADIAN'.
; Default value: 'RADIAN'
;
; RESET - if set, forces EOP file to be re-read.
;
;
; EXAMPLE:
;
;
; SEE ALSO:
;
; HPRNUTANG, TAI_UTC (Markwardt Library)
; PRECESS, PREMAT, JPRECESS, BPRECESS (IDL Astronomy Library)
;
;
; REFERENCES:
;
; Aoki, S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D.,
; Seidelmann, P.K., 1982: Astron. Astrophys., 105, 359-361.
;
; McCarthy, D. D. (ed.) 1996: IERS Conventions, IERS T.N. 21.
; http://maia.usno.navy.mil/conventions.html
;
; McCarthy, D. \& Gambis, D. 1997, "Interpolating the IERS Earth
; Orientation Data," IERS Gazette No. 13,
; http://maia.usno.navy.mil/iers-gaz13
; Instructions for high precision EOP data interpolation, not done
; in this procedure.
;
; Ray, J. & Gambis, D. 2001, "Explanatory Supplement to IERS
; Bulletins A and B,"
; http://hpiers.obspm.fr/iers/bul/bulb/explanatory.html
;
; Explains meanings of earth orientation parameters used and
; returned by this procedure.
;
; Definition of Final EOP data format
; ftp://maia.usno.navy.mil/ser7/readme.finals
;
; MODIFICATION HISTORY:
; Written, 30 Jan 2002, CM
; Documented, 14 Feb 2002, CM
; Add default message, 01 Mar 2002, CM
; More robust handling of input file, 10 Mar 2002, CM
; Fix bug in interpolation of nutation and polar motion adjustments,
; thanks to Tim Lister, 2014-10-09, CM
;
; $Id: eopdata.pro,v 1.7 2014/10/20 21:36:16 cmarkwar Exp $
;
;-
; Copyright (C) 2002, 2014, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
pro eopdata_read, file, jd, pmx, pmy, ut1, dpsi, deps, status=status
status = 0
get_lun, unit
openr, unit, file, error=err
if err NE 0 then begin
free_lun, unit
message, 'ERROR: could not open '+file
endif
buffersize = 2048
ngood = 0L
jd = 0d & pmx = 0D & pmy = 0D & ut1 = 0D & dpsi = 0d & deps = 0d
ss = strarr(buffersize)
while NOT eof(unit) do begin
;; Read data from disk
on_ioerror, TRIM
readf, unit, ss
;; On the last pass we may get less than a full buffer's worth
TRIM:
cc = (fstat(unit)).transfer_count
if cc EQ 0 then goto, DONE
if cc LT buffersize then ss = ss(0:cc-1)
;; Parse the parameters
mjd1 = double(strcompress(strmid(ss,7,9),/remove_all))
NEXT0: on_ioerror, NEXT1
pmx1 = double(strcompress(strmid(ss,18,10),/remove_all))
NEXT1: on_ioerror, NEXT2
pmy1 = double(strcompress(strmid(ss,37,10),/remove_all))
NEXT2: on_ioerror, NEXT3
ut11 = double(strcompress(strmid(ss,58,11),/remove_all))
NEXT3: on_ioerror, NEXT4
dps1 = double(strcompress(strmid(ss,97,11),/remove_all))
NEXT4: on_ioerror, NEXT5
dep1 = double(strcompress(strmid(ss,116,11),/remove_all))
NEXT5:
jd = [jd, mjd1]
pmx = [pmx, pmx1] & pmy = [pmy, pmy1]
ut1 = [ut1, ut11]
dpsi = [dpsi, dps1]
deps = [deps, dep1]
ss(*) = ''
endwhile
DONE:
free_lun, unit
if n_elements(jd) EQ 1 then begin
message, 'ERROR: could not read data from '+file
endif
AS2R = !dpi/180d/3600d ;; Arcsec to radians
jd = jd(1:*)
pmx = pmx(1:*) * AS2R ;; Convert to radians
pmy = pmy(1:*) * AS2R ;; Convert to radians
ut1 = ut1(1:*) ;; Already in seconds
dpsi = dpsi(1:*) * (0.001D * AS2R) ;; Convert from mas to radians
deps = deps(1:*) * (0.001D * AS2R) ;; Convert from mas to radians
status = 1
return
end
pro eopdata, jdutc, pmx, pmy, ut1_utc, dpsi, deps, reset=reset, $
filename=filename0, angunits=angunits0, tbase=tbase0
common eopdata_table, mjd0, pmx0, pmy0, ut10, dpsi0, deps0, $
ntable, mjdmin, mjdmax, leap0, $
timestamp, oldfile
if n_params() EQ 0 AND n_elements(filename0) EQ 0 then begin
USAGE:
message, 'USAGE:', /info
message, 'EOPDATA, JDUTC, PMX, PMY, UT1_UTC, DPSI, DEPS, '+$
'[FILENAME=filename, ANGUNITS=angunits, TBASE=tbase', /info
message, " ANGUNITS is one of 'ARCSEC' or 'RADIAN'", /info
return
endif
if n_elements(mjd0) EQ 0 OR keyword_set(reset) OR $
(n_elements(jdutc) EQ 0 AND n_elements(filename0) GT 0) then begin
RELOAD_COMMON:
forward_function get_xtecal
;; Find filename
if n_elements(filename0) EQ 0 then begin
filename = ''
;; First try: the old file
if n_elements(oldfile) NE 0 then $
filename = oldfile
;; Second try: use standard IDL Astronomy Library data directory
if filename EQ '' then $
filename = find_with_def('iers_final_a.dat','ASTRO_DATA')
;; Third try: Markwardt-specific
if filename EQ '' then begin
catch, catcherr
if catcherr EQ 0 then $
filename = get_xtecal() + 'clock/finals.data'
catch, /cancel
endif
;; Could not find it, so trigger a fatal error
if filename EQ '' then $
message, 'ERROR: Could not find EOP data file'
endif else begin
filename = strtrim(filename0(0),2)
endelse
eopdata_read, filename, mjd0, pmx0, pmy0, ut10, dpsi0, deps0, $
status=status
;; Make a series of pseudo leap seconds so that we can
;; interpolate linearly below.
wh = where(abs(ut10(1:*) - ut10) GT 0.8 AND ut10 NE 0, ct)
leap0 = lonarr(n_elements(ut10))
if ct GT 0 then begin
wh = [wh, n_elements(ut10)-1] & ct = ct + 1
for i = 0, ct-2 do $
leap0(wh(i)+1:wh(i+1)) = (leap0(wh(i)) $
- round(ut10(wh(i)+1)-ut10(wh(i))))
endif
if status NE 1 then begin
message, 'ERROR: could not read EOP data from '+filename
endif
timestamp = systime(1)
oldfile = filename
if n_elements(jdutc) EQ 0 then return
endif
if n_params() EQ 0 then goto, USAGE
if systime(1) - timestamp GT 86400d then goto, RELOAD_COMMON
if n_elements(tbase0) EQ 0 then $
tbase = 0d $
else $
tbase = double(tbase0)
if n_elements(angunits0) EQ 0 then $
angunits = 'RADIAN' $
else $
angunits = strtrim(strupcase(strcompress(angunits0(0))),2)
;; Convert from Julian days to MJD
t = (jdutc(*) + (tbase - 2400000.5d))
tmin = min(t, max=tmax)
wh = where(mjd0 GE tmin-5 AND mjd0 LE tmax+5 AND ut10 NE 0, ct)
if ct EQ 0 then begin
OUT_OF_BOUNDS:
message, 'ERROR: input time was out of bounds'
endif
mjd1 = mjd0(wh)
ii = value_locate(mjd1, t)
jj = wh(ii)
;; This is UT1 - UTC(TSTART), so it should be continuous. Thus, we
;; can interpolate it. The normal UT1-UTC series has discontinuities.
ut1 = (ut10+leap0)(jj)
;; Linear interpolation
dt = (t-mjd1(ii))/(mjd1(ii+1)-mjd1(ii))
ut1_utc = ut10(jj) + dt * (ut1(ii+1)-ut1(ii))
;; Interpolate DPSI and DEPS, the adjustments to the nutation angles
dpsi = dpsi0(jj) + dt * (dpsi0(jj+1)-dpsi0(jj))
deps = deps0(jj) + dt * (deps0(jj+1)-deps0(jj))
;; Polar motion parameters
pmx = pmx0(jj) + dt * (pmx0(jj+1)-pmx0(jj))
pmy = pmy0(jj) + dt * (pmy0(jj+1)-pmy0(jj))
;; Units conversions
case angunits of
'ARCSEC': begin
R2AS = 3600d*180d/!dpi ;; Radian to arcsec
dpsi = dpsi * R2AS
deps = deps * R2AS
pmx = pmx * R2AS
pmy = pmy * R2AS
end
'RADIAN': begin
dummy = 1
end
else: begin
message, 'ERROR: angular unit '+angunits+$
' was not recognized'
end
end
return
end