chebgrid.pro 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
;+
; NAME:
;   CHEBGRID
;
; AUTHOR:
;   Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
;   craigm@lheamail.gsfc.nasa.gov
;   UPDATED VERSIONs can be found on my WEB PAGE: 
;      http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
;   Estimate Chebyshev polynomial coefficients of a function on a grid
;
; MAJOR TOPICS:
;   Curve and Surface Fitting
;
; CALLING SEQUENCE:
;   p = CHEBGRID(T, X, [ DXDT, NPOINTS=, NPOLY=, NGRANULE= , $
;                RMS=, DRMS=, RESIDUALS=, DRESIDUALS= , $
;                XMATRIX=, DXMATRIX=, RESET=, 
;                DERIV_WEIGHT= ] )
;
; DESCRIPTION:
;
;   CHEBGRID estimates the coefficients for a finite sum of Chebyshev
;   polynomials approximating a continuous tabulated function over an
;   interval.  The function (and optionally its derivative) must be
;   tabulated on a regularly sampled grid.  The implementation of this
;   function is taken from a method described by X. X. Newhall, used
;   in estimating coefficients for ephemerides in the solar system.
;
;   The tabulated function is assumed to be continuous over the entire
;   interval.  A Chebyshev series is fitted to the function over small
;   segments, called granules.  The size of each granule, the number
;   of points in each granule, and the number of Chebyshev polynomials
;   are all configurable.
;
;   Users may specify either the function alone, or the function and
;   its first derivative.  By also giving the tabulated derivative, a
;   more accurate Chebyshev polynomial can be developed.  Aside from
;   the constraints mentioned in the next paragraph, the polynomial
;   that is returned is the best-fit polynomial in a least-squares
;   sense.
;
;   Here is a definition of terms:
;
;      GRANULE - a single continuous fitted segment.  The length of the
;         granule, NGRANULE, is specified in units of the tabulated
;         grid size.  Because of the continuity requirements developed
;         below, granules will always overlap at their endpoints.
;         Thus, then length of a granule should be a factor of
;         N_ELEMENTS(X)-1.  For simple functions over short intervals,
;         the granule size can be equal to N_ELEMENTS(X)-1
;
;      NUMBER OF POINTS the number of points, NPOINTS, within a
;         granule to be fitted to the polynomial, not necessarily
;         equal to the granule size.  The greater the number of
;         points, the more computation time and storage is required.
;         This number *must* be a factor of NGRANULE.  Typically
;         NPOINTS is a number between 8 and 12.  Because of the
;         single-point overlap between granules (see below), the
;         actual number of points per fit is NPOINTS+1.
;
;      NUMBER OF POLYNOMIALS the number of Chebyshev polynomial terms,
;         NPOLYNOMIAL, to be fitted per granule.  The greater the
;         number of polynomial terms, the more computation time and
;         storage is required, but also the greater the approximating
;         precision of the fit.
;
;   The particular set of Chebyshev polynomial coefficients developed
;   by this function have some special properties.  If both the
;   function and its derivative are specified, then the value and
;   derivative of the interpolating polynomial at the granule
;   endpoints will be exactly equal to the tabulated endpoint values.
;   This feature allows many approximations to be strung together
;   piecewise, and the function value and first derivative will be
;   continuous across granule boundaries.
;
;   If only the function value is specified, then only the function
;   value will be continuous at the granule endpoints, and not the
;   derivative.
;
;   An extensive set of statistics are computed to assess the quality
;   of the Chebyshev polynomial fit.  The keywords RESIDUALS and
;   DRESIDUALS return the residuals of the fit after subtracting the
;   interpolation.  The RMS and DRMS keywords return the root mean
;   squared deviations between data and model.
;
;   If the user does not know how many granules, points, or polynomial
;   coefficients to use, then he or she should try several
;   combinations and see which minimizes the r.m.s. value with the
;   fewest number of coefficients.
;
;   If the XMATRIX and DXMATRIX keywords are passed, then CHEBGRID
;   attempts to avoid recomputing several of the matrices it uses in
;   estimating the coefficients.  If multiple calls to CHEBGRID are to
;   be made, some compution time savings can be made.  In the first
;   call CHEBGRID the required matrices are computed and returned.  In
;   subsequent calls, CHEBGRID detects the XMATRIX and DXMATRIX
;   keyword values and uses those values if it can.
;
;   The user can also estimate their own coefficients.  The matrices
;   returned are (NPOINTS+1)x(NPOLYNOMIAL).  The coefficients from a
;   NPOINTS+1 tabulation, X, are found by:
;
;      PCHEB = XMATRIX ## X  +  DXMATRIX ## DXDT
;
;   if derivative information is known, or
;
;      PCHEB = XMATRIX ## X
;
;   if no derivative information is known.  [ Note: the matrices are
;   different, depending on whether derivative information is known or
;   not. ]
;
;   
; INPUTS:
;
;   T - array of regularly sampled *independent* variables.  The number
;       of elements in T should be a multiple of NGRANULE, plus one.
;
;   X - array of regularly sampled *dependent* variables.  The number
;       of elements in X should be equal to the number of elements in
;       T.
;
;   DXDT - optionally, a tabulated array of first derivatives of X
;          with respect to T, at the same grid points.
;
; KEYWORD PARAMETERS:
;
;   NGRANULE - size of a "granule", in grid intervals.  NGRANULE must
;              be at least 2, and a factor of N_ELEMENTS(T)-1.
;              Default: 8
;
;   NPOINTS - number of points per granule that are fitted.  NPOINTS
;             must be at least 2, and a factor of NGRANULE. 
;             Default: NGRANULE
;
;   NPOLYNOMIAL - number of Chebyshev polynomial terms per fit.
;                 NPOLYNOMIAL must be at least 2 and less than
;                 2*(NPOINTS+1), when derivative information is
;                 specified; or less than NPOINTS+1, when no
;                 derivative information is specified.
;                 Default: 7
;
;  RESIDUALS - upon return, an array of size N_ELEMENTS(T), with
;              residuals of the tabulated function minus the
;              interpolated function.
;
;  DRESIDUALS - same as RESIDUALS, but for the function's first
;               derivative.
;
;  RMS - upon return, the root mean square of the function value
;        residuals.
;
;  DRMS - same as RMS, but for the function's first derivative.
;
;  XMATRIX - upon return, the matrix used to compute Chebyshev
;            polynomial coefficients from the function value.
;
;            Upon input, CHEBGRID determines if XMATRIX will apply to
;            the data, and if so, XMATRIX is reused rather than
;            computed.  If XMATRIX cannot be reused, then it is
;            computed afresh, and the new value is returned in the
;            XMATRIX keyword.
;
;            The user should not modify the contents of this array.
;
;  DXMATRIX - same as XMATRIX, but for the function's first
;             derivative.
;
;  RESET - if set, force a recomputation of XMATRIX and/or DXMATRIX.
;
;  DERIV_WEIGHT - amount of weight to give to function derivative,
;                 relative to the function value.
;                 Default: 0.16d
;
;
; RETURNS:
;
;   An array of coefficient values.  The dimensions of the array are
;   NPOLYNOMIALxNSEGS, where NSEGS is the number of granules in the
;   entire interval.
;
;
; EXAMPLE:
;
;   ;; Estimate Chebyshev coefficients for the function SIN(X), on the
;   ;; interval [-1,+1].  
;   xx = dindgen(9)/4d - 1d   ;; Regular grid from -1 to 1 (9 points)
;   yy = sin(xx)              ;; Function values, sin(x), ...
;   dy = cos(xx)              ;; ... and derivatives
;
;   ;; Estimate coefficients using CHEBGRID (single granule of 8 intervals)
;   p = chebgrid(xx, yy, dy, npoints=8, ngranule=8, npoly=10)
;
;   xxx = dindgen(1001)/500 - 1d   ;; New grid for testing
;   res = sin(xxx) - chebeval(xxx, p)
;   plot, xxx, res
;
;   ;; Same as example above, except extended range to [-1, +15],
;   using eight granules.
;   xx2 = dindgen(65)/4d - 1
;   yy2 = sin(xx2)
;   dy2 = cos(xx2)
;   p = chebgrid(xx2, yy2, dy2, ngranule=8, npoint=8, npoly=10)
;   help, p
;       P               DOUBLE    = Array[10, 8]
;   ;; (i.e., 10 polynomial coefficients over 8 granules)
;
;
; REFERENCES:
;
;   Abramowitz, M. & Stegun, I., 1965, *Handbook of Mathematical
;     Functions*, 1965, U.S. Government Printing Office, Washington,
;     D.C. (Applied Mathematical Series 55)
;   Newhall, X. X. 1989, Celestial Mechanics, 45, p. 305-310
;
; MODIFICATION HISTORY:
;   Written, CM, Feb 2002
;   Documented, CM, 24 Mar 2002
;   Corrected documentation, CM, 28 Apr 2002
;   Typo correction, CM, 10 Oct 2002
;
;  $Id: chebgrid.pro,v 1.5 2002/11/07 00:15:23 craigm Exp $
;
;-
; Copyright (C) 2002, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-

;; Utility function: compute XMATRIX and DXMATRIX using Newhall approach
pro chebpcmat, npts, npoly, xmat, vmat, dweight=weight0

  ;; n0 is the number of intervals in Cheb approx.
  n0 = npts - 1
  if n_elements(weight0) EQ 0 then $
    weight = 0.16d $
  else $
    weight = weight0(0)

  tmat = dblarr(npoly, npts)
  tdot = tmat

  cj = dblarr(npoly)
  xj = 1d - 2d*dindgen(npts)/n0
  for i = 0, npoly-1 do begin
      cj(*) = 0 & cj(i) = 1
      tmat(i,*) = chebeval(xj, cj, deriv=v)
      tdot(i,*) = v
  endfor

  ;; Form matrix T*W
  tw = dblarr(2,npts,npoly)
  tw(0,*,*) = transpose(tmat)
  tw(1,*,*) = transpose(tdot) * weight

  ;; Form matrix T*WT
  twt = reform(tw(0,*,*),npts,npoly) ## tmat + $
    reform(tw(1,*,*),npts,npoly) ## tdot

  tw  = reform(tw, 2*npts, npoly, /overwrite)
  twt = reform(twt, npoly, npoly, /overwrite)

  ;; Augment matrix T*W to get matrix C2
  c2 = dblarr(2*npts,npoly+4)
  c2(*,0:npoly-1) = tw
  c2(0,npoly)          = 1 & c2(1,npoly+1)        = 1
  c2(2*npts-2,npoly+2) = 1 & c2(2*npts-1,npoly+3) = 1

  ;; Augment matrix T*WT to get the matrix C1
  c1 = dblarr(npoly+4,npoly+4)
  c1(0:npoly-1,0:npoly-1) = twt

  c1(0:npoly-1,npoly+0) = tmat(*,0)
  c1(0:npoly-1,npoly+1) = tdot(*,0)
  c1(0:npoly-1,npoly+2) = tmat(*,npts-1)
  c1(0:npoly-1,npoly+3) = tdot(*,npts-1)

  c1(npoly:*,0:npoly-1) = transpose(c1(0:npoly-1,npoly:*))

  ;; Compute matrix C1^(-1)
  c1inv = invert(c1)
  ;; Compute matrix C1^(-1) C2
  c1c2 = c1inv ## c2

  c1c2 = reform(c1c2, 2,npts,npoly+4)
  c1c2 = reverse(c1c2,2)
  c1c2 = reform(c1c2, 2*npts,npoly+4)

  ii = lindgen(npts)*2
  xmat = c1c2(ii,0:npoly-1)   ;; Split into terms multiplying Y and VY
  vmat = c1c2(ii+1,0:npoly-1)

  return
end

;; Utility function: compute XMATRIX only, using only the constraint
;; on the function values at the endpoints.
pro chebpcmat_xonly, npts, npoly, xmat

  ;; n0 is the number of points in Cheb approx.
  n0 = npts - 1
  
  tmat = dblarr(npoly, npts)

  cj = dblarr(npoly)
  xj = 1d - 2d*dindgen(npts)/n0
  for i = 0, npoly-1 do begin
      cj(*) = 0 & cj(i) = 1
      tmat(i,*) = chebeval(xj, cj, deriv=v)
  endfor

  ;; Augment matrix T to get matrix C2
  c2 = dblarr(npts,npoly+2)
  c2(*,0:npoly-1) = transpose(tmat)
  c2(0,npoly)     = 1
  c2(npts-1,npoly+1) = 1

  ;; Augment matrix T*WT to get the matrix C1
  c1 = dblarr(npoly+2,npoly+2)
  c1(0:npoly-1,0:npoly-1) = transpose(tmat) ## tmat

  c1(0:npoly-1,npoly+0) = tmat(*,0)
  c1(0:npoly-1,npoly+1) = tmat(*,npts-1)

  c1(npoly:*,0:npoly-1) = transpose(c1(0:npoly-1,npoly:*))

  ;; Compute matrix C1^(-1)
  c1inv = invert(c1)
  ;; Compute matrix C1^(-1) C2
  c1c2 = c1inv ## c2

  c1c2 = reform(c1c2, npts,npoly+2)
  c1c2 = reverse(c1c2,1)
  xmat = c1c2(*,0:npoly-1)

  return
end

function chebgrid, t, x, dxdt, ngranule=ngran0, npoints=npts0, $
                   npolynomial=npoly0, deriv_weight=dweight0, $
                   rms=rms, drms=drms, residuals=resid, dresiduals=dresid, $
                   xmatrix=xmatrix, dxmatrix=dxmatrix, reset=reset

  ;; Default processing
  if n_elements(ngran0) EQ 0 then ngran = 8 $
  else ngran = round(ngran0(0)) > 2

  if n_elements(npts0) EQ 0 then npts = ngran $
  else npts = round(npts0(0)) > 2

  if n_elements(npoly0) EQ 0 then npoly = 7 $
  else npoly = round(npoly0(0)) > 2

  ;; Error checking
  if ngran LT npts then begin
      message, 'ERROR: Granule size ('+strtrim(ngran,2)+') is too '+ $
        'small for number of samples ('+strtrim(npts,2)+')'
      return, !values.d_nan
  endif
  
  ;; Be sure NGRAN is a multiple of NPTS - or not.  Instead, a warning
  ;; message is printed in the loop.
;  if abs(double(ngran)/npts - round(ngran/npts)) GT 1d-5 then begin
;      message, 'ERROR: NPOINTS must be a multiple of NGRANULE'
;      return, !values.d_nan
;  endif
  
  ;; Be sure we are solving a least-squares problem.  If the number of
  ;; polynomials is too great then it becomes underconstrained, not
  ;; overconstrained.
  if n_elements(dxdt) GT 0 then begin
      if npoly GE 2*(npts+1) then $
        message, 'ERROR: NPOLYNOMIAL must be less than 2*(NPOINTS+1)'
  endif else begin
      if npoly GE npts+1 then $
        message, 'ERROR: NPOLYNOMIAL must be less than NPOINTS+1'
  endelse
  
  ;; Begin size checking of input matrices - we may be able to use the
  ;; previously computed version.
  szx = size(xmatrix)
  szv = size(dxmatrix)

  ;; Cases: recompute because existing X matrix is wrong size;
  ;;        recompute because existing V matrix is wrong size;
  ;;        recompute because a V matrix was passed, but no DXDT was
  redo_x = (szx(0) NE 2 OR szx(1) NE npts+1 OR szx(2) NE npoly)
  redo_v = (n_elements(dxdt) GT 0 AND $
            (szv(0) NE 2 OR szv(1) NE npts+1 OR szv(2) NE npoly))
  no_v = (n_elements(dxdt) EQ 0 AND n_elements(dxmatrix) GT 0)

  ;; Actual recomputation of matrices
  if redo_x OR redo_v OR no_v OR keyword_set(reset) then begin
      COMPUTE_CHEBMAT:
      xmatrix = 0 & dummy = temporary(xmatrix)
      dxmatrix = 0 & dummy = temporary(dxmatrix)

      if n_elements(dxdt) GT 0 then $
        chebpcmat, npts+1, npoly, xmatrix, dxmatrix, dweight=dweight0 $
      else $
        chebpcmat_xonly, npts+1, npoly, xmatrix
  endif

  rms = 0.*x(0)
  drms = rms
  chebm = dblarr(npoly, (n_elements(x)-1)/ngran)
  resid = x*0.
  dresid = resid

  ispan = lindgen(npts+1)*(ngran/npts)
  imax = max(ispan)
  ng = 0L
  for ibase = 0, n_elements(x)-1, ngran do begin
      if ibase EQ n_elements(x)-1 then goto, DONE
      if n_elements(x)-ibase LT ngran+1 then begin
          nlost = n_elements(x)-ibase
          message, 'WARNING: last '+strtrim(nlost,2)+' elements of X '+$
            'were discarded because they formed only a fractional granule.', $
            /info
          goto, DONE
      endif

      tspan  = [t(ibase), t(ibase+imax)]
      tgran = t(ibase:ibase+imax-1)-t(ibase)
      dt     = tspan(1) - tspan(0)
      tspan  = tspan - tspan(0)

      ;; Compute the X portion of the coefficients
      xgran  = x(ibase+ispan)
      chebi  = xmatrix ## xgran

      ;; Compute the DXDT portion if it is available
      if n_elements(dxdt) GT 0 then begin
          dxgran = dxdt(ibase+ispan) * dt/2.
          chebi = chebi + dxmatrix ## dxgran

          ;; Statistics - V first, then X comes later
          xmod = chebeval(tgran, chebi, interval=tspan, derivative=dxmod)

          ;; DXDT portion of statistics
          dresid(ibase:ibase+imax-1) = dxdt(ibase:ibase+imax-1) -  dxmod
          diff_dx = (dxdt(ibase:ibase+imax-1) - dxmod)^2
          drms = drms + total(diff_dx)

      endif else begin
          ;; Statistics - X only

          xmod = chebeval(tgran, chebi, interval=tspan)
      endelse

      ;; Finish statistics with X portion
      resid(ibase:ibase+imax-1) = x(ibase:ibase+imax-1) -  xmod
      diff_x  = (   x(ibase:ibase+imax-1) -  xmod)^2
      rms  =  rms + total(diff_x)

      ;; Append to existing coefficient list
      chebm(*,ng) = chebi(*)
      ng = ng + 1L
  endfor
  
  DONE:
  ;; Final adjustments to statistics
  rms  = sqrt( rms / ngran)
  if n_elements(dxdt) GT 0 then drms = sqrt(drms / ngran)

  return, chebm
end