chebcoef.pro
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
;+
; NAME:
; CHEBCOEF
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Estimate Chebyshev polynomial coefficients of a function on an interval
;
; MAJOR TOPICS:
; Curve and Surface Fitting
;
; CALLING SEQUENCE:
; p = CHEBCOEF(FUNC, PRIVATE, FUNCTARGS=functargs, /DOUBLE, /EXPRESSION, $
; PRECISION=prec, ERROR=err, NMAX=nmax, INTERVAL=interval, $
; REDUCE_ALGORITHM=, STATUS=)
;
; DESCRIPTION:
;
; CHEBCOEF estimates the coefficients for a finite sum of Chebyshev
; polynomials approximating the function FUNC(x) over an interval.
; The user can choose the desired precision and maximum number of
; chebyshev coefficients.
;
; This routine is intended for functions which can be evaluated to
; full machine precision at arbitrary abcissae, and which are smooth
; enough to ensure that the coefficients are a decreasing sequence.
; For already-tabulated or potentially noisy data, the routines
; CHEBGRID or CHEBFIT should be used instead.
;
; The function to be approximated may either be the name of an IDL
; function (the default behavior), or an IDL expression (using the
; /EXPRESSION keyword).
;
; The procedure uses a modified form of the classic algorithm for
; determining the coefficients, which relies the orthogonality
; relation for Chebyshev polynomials. The interval [a,b] is
; subdivided successively into sets of subintervals of length
; 2^(-k)*(b-a),(k = 0,1,2...). After each subdivision the
; orthogonality properties of the Chebyshev polynomials with respect
; to summation over equally-spaced points are used to compute two
; sets of approximate values of the coefficients cj, one set
; computed using the end-points of the subintervals, and one set
; using the mid-points. Certain convergence requirements must be
; met before terminating. If the routine fails to converge with 64
; coefficents, then the current best-fitting coefficients are
; returned, along with an error estimate in the ERROR keyword.
; CHEBCOEF never returns more than 64 coefficients.
;
; The coefficients may be further refined. If the keyword
; REDUCE_ALGORITHM is set to a value of 1, then any high order
; coefficients below a certain threshold are discarded. If
; REDUCE_ALGORITHM is set to 2 (the default), then all coefficients
; below the threshold are discarded rather than just the high order
; ones. The threshold is determined by the PRECISION keyword.
;
; INPUTS:
;
; FUNC - a scalar string, the name of the function to be
; approximated, or an IDL string containing an expression to
; be approximated (if /EXPRESSION is set).
;
; PRIVATE - any optional variable to be passed on to the function to
; be integrated. For functions, PRIVATE is passed as the
; second positional parameter; for expressions, PRIVATE can
; be referenced by the variable 'P'. CHEBCOEF does not
; examine or alter PRIVATE.
;
; RETURNS:
;
; An array of Chebyshev coefficients which can be passed to
; CHEBEVAL. NOTE: the convention employed here is such that the
; constant term in the expansion is P(0)*T0(x) (i.e., the convention
; of Luke), and not P(0)/2 * T0(x).
;
; KEYWORD PARAMETERS:
;
; DOUBLE - if set, then computations are done in double precision
; rather than single precision.
;
; ERROR - upon return, this keyword contains an estimate of the
; maximum absolute error in the approximation.
;
; EXPRESSION - if set, then FUNC is an IDL expression to be
; approximated, rather than the name of a function.
;
; FUNCTARGS - A structure which contains the parameters to be passed
; to the user-supplied function specified by FUNCT via
; the _EXTRA mechanism. This is the way you can pass
; additional data to your user-supplied function without
; using common blocks. By default, no extra parameters
; are passed to the user-supplied function.
;
; INTERVAL - a 2-element vector describing the interval over which
; the polynomial is to be evaluated.
; Default: [-1, 1]
;
; NMAX - a scalar, the maximum number of coefficients to be
; estimated. This number may not exceed 64.
; Default: 64
;
; PRECISION - a scalar, the requested precision in the
; approximation. Any terms which do not contribute
; significantly, as defined by this threshold, are
; discarded. If the function to be estimated is not
; well-behaved, then the precision is not guaranteed to
; reach the desired level. Default: 1E-7
;
; REDUCE_ALGORITHM - a scalar integer, describes how insignificant
; terms are removed from the fit. If 0, then all terms
; are kept, and none are dicarded. If 1, then only
; trailing terms less than PRECISION are discarded. If
; 2, then both trailing and intermediate terms less than
; PRECISION are discarded.
; Default: 2
;
; STATUS - upon return, this keyword contains information about the
; status of the approximation. A value of -1 indicates bad
; input values; a value of 0 indicates the required
; accuracy was not obtained; a value of 1 indicates
; success.
;
; EXAMPLE:
;
; x = dindgen(1000)/100 ; Range of 0 to 10
; p = chebcoef('COS(x)', /expr, interval=[0d, 10d]) ;; Compute coefs
; y = chebeval(x, p, interval=[0d,10d]) ;; Eval Cheby poly
; plot, x, y - cos(x) ; Plot residuals
;
; REFERENCES:
;
; Abramowitz, M. & Stegun, I., 1965, *Handbook of Mathematical
; Functions*, 1965, U.S. Government Printing Office, Washington,
; D.C. (Applied Mathematical Series 55)
; CERN, 1995, CERN Program Library, Function E406
; Luke, Y. L., *The Special Functions and Their Approximations*,
; 1969, Academic Press, New York
;
; MODIFICATION HISTORY:
; Written and documented, CM, June 2001
; Copyright license terms changed, CM, 30 Dec 2001
; Added usage message, CM, 20 Mar 2002
; Changed docs slightly, CM, 25 Mar 2002
;
; $Id: chebcoef.pro,v 1.6 2002/05/03 18:40:27 craigm Exp $
;
;-
; Copyright (C) 2001, 2002, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
;; Evaluate a user-supplied expression
function chebcoef_eval, x, p, expression=expr, _EXTRA=extra
y = 0
cmd = 'Y = '+expr
dummy = execute(cmd)
return, y
end
function chebcoef, f0, priv, functargs=fa, double=double, error=err, $
nmax=nmax, interval=interval, precision=prec0, $
expression=expr, reduce_algorithm=redalg0, $
status=status, indices=igood
if n_params() EQ 0 then begin
message, 'USAGE:', /info
message, 'P = CHEBCOEF(FUNCT, [PRIV,] INTERVAL=[a,b], NMAX=...)', /info
return, !values.d_nan
endif
sz = size(f0)
err = -1
if sz(sz(0)+1) NE 7 OR n_elements(f0) NE 1 then begin
NO_FUNCT:
message, 'ERROR: FUNCT must be a scalar string', /info
return, 0
endif
;; Check for empty string
f = strtrim(f0(0),2)
if f EQ '' then goto, NO_FUNCT
;; Prepare for EXPRESSION if requested
if keyword_set(expr) then begin
f = 'CHEBCOEF_EVAL'
fa = {expression: strtrim(f0(0),2)}
endif else begin
f = strtrim(f0(0),2)
endelse
;; Handle error conditions gracefully
if NOT keyword_set(nocatch) then begin
catch, catcherror
if catcherror NE 0 then begin
catch, /cancel
message, 'Error detected while approximating '+f, /info
message, !err_string, /info
errmsg = 0
if NOT keyword_set(expr) then begin
f1 = byte(strupcase(strtrim(f0(0),2)))
ca = (byte('A'))(0)
cz = (byte('Z'))(0)
c0 = (byte('0'))(0)
c9 = (byte('9'))(0)
c_ = (byte('_'))(0)
wh = where((f1 GE ca AND f1 LE cz) EQ 0 AND f1 NE c_ $
AND (f1 GE c0 AND f1 LE c9) EQ 0, ct)
if ct GT 0 OR (f1(0) GE c0 AND f1(0) LE c9) then begin
message, ('FUNCT appears to be an expression. Did you '+$
'intend to pass the /EXPRESSION keyword?'), /info
errmsg = 1
endif
endif
if errmsg EQ 0 then $
message, ('Please verify that function works and conforms to '+$
'the documentation'), /info
ier = -1L
return, 0L
endif
endif
if n_elements(prec0) EQ 0 then prec = 1e-7 else prec = prec0(0)
zero = prec*0.
if keyword_set(double) then zero = 0D
if n_elements(interval) LT 2 then interval = zero + [-1., 1.]
if n_elements(redalg0) EQ 0 then redalg = 2 else redalg = floor(redalg0(0))
status = -1
a = interval(0)
b = interval(1)
hf = zero + 0.5
eps = prec
z1 = zero + 1
z2 = zero + 2
sz = size(zero)
if sz(sz(0)+1) EQ 5 then pi = !dpi else pi = !pi
x0 = [a, b]
if n_elements(priv) GT 0 then begin
if n_elements(fa) GT 0 then fv = call_function(f, x0, priv, _EXTRA=fa) $
else fv = call_function(f, x0, priv)
endif else begin
if n_elements(fa) GT 0 then fv = call_function(f, x0, _EXTRA=fa) $
else fv = call_function(f, x0)
endelse
ALFA=HF*(B-A)
BETA=HF*(B+A)
C1=fv(0)
C2=fv(1)
AC = [C2+C1, C2-C1]
BC = AC*0
for i = 1, 7 do begin
I1=2^(I-1)
I2=I1-1
I3=2*I1
C1=Z2/I1
C2=PI/I1
jj = dindgen(i2+1)
x = alfa*cos((jj+hf)*c2)+beta
if n_elements(priv) GT 0 then begin
if n_elements(fa) GT 0 then fv = call_function(f, x, priv, $
_EXTRA=fa) $
else fv = call_function(f, x, priv)
endif else begin
if n_elements(fa) GT 0 then fv = call_function(f, x, _EXTRA=fa) $
else fv = call_function(f, x)
endelse
c = fv
;; Compute B-coefficients
for j = 0L, i2 do begin
F1=J*C2
F2=-HF*F1
C3=2*COS(F1)
A2=zero
A1=zero
A0=C(I2)
for K = I2-1,0L,-1 do begin
A2=A1
A1=A0
A0=C(K)+C3*A1-A2
endfor
BC(J)=C1*(A0*COS(F1+F2)-A1*COS(F2))
BC(I1)=zero
endfor
c = hf*[ac(0:i1-1)+bc(0:i1-1), rotate(ac(0:i1)-bc(0:i1),2)]
cc = abs(c)
cmx = max(cc)
if (CMX GT 0) THEN begin
CMX=1/CMX
CC(I3)=HF*CC(I3)
A0=CC(I2)*CMX
A1=CC(I1)*CMX
for J = I1+2,I3 do begin
A2=CC(J)*CMX
IF(A0 LE EPS AND A1 LE EPS AND A2 LE EPS) THEN $
goto, CHEB9
A0=A1
A1=A2
endfor
ENDIF
;; DOUBLE THE NUMBER OF COEFFICIENTS.
if i LT 7 then begin
ac = c(0:i3)
bc = ac*0
endif
endfor
;; REQUIRED ACCURACY NOT OBTAINED
NC=64
DELTA=total(abs(c(60:nc)))
message, 'WARNING: Required accuracy not obtained', /info
status = 0
goto, CLEANUP
CHEB9:
;; REQUIRED ACCURACY OBTAINED
;; SUM NEGLECTED TERMS IN EXPANSION
status = 1
DELTA=total(cc(j:i3))
;; CHECK IF FURTHER REDUCTION OF COEFFICIENTS IS POSSIBLE.
NC=J-1
REST=EPS-DELTA
IF (REST GT 0) AND redalg GT 0 THEN begin
while (CC(NC) LT REST) do begin
DELTA=DELTA+CC(NC)
REST=REST-CC(NC)
NC=NC-1
endwhile
ENDIF
CLEANUP:
C(0)=HF*C(0)
p = c(0:nc)
rest = eps - delta
if redalg EQ 2 then begin
wh = where(cc(0:nc) LT prec, ct)
i = ct-1
while (i GE 0) AND ((rest GT 0) OR (status EQ 1)) do begin
delta = delta + cc(wh(i))
rest = rest - cc(wh(i))
p(wh(i)) = 0
i = i - 1
endwhile
endif
DONE:
igood = where(p NE 0)
err = delta
RETURN, p
end