fit_phangs_ngc0628_nir_continuum.pro 42.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
PRO fit_phangs_ngc0628_nir_continuum,from_restore=from_restore,brute_force=brute_force, $
									extract_seds=extract_seds,nostop=nostop,muse_stuff=muse_stuff,muse_data=muse_data,astrosat_data=astrosat_data, $
									show_plots=show_plots,grid_brute_force=grid_brute_force

;fit_phangs_ngc0628_nir_continuum,/nostop
;fit_phangs_ngc0628_nir_continuum,/muse_stuff
;fit_phangs_ngc0628_nir_continuum,/muse_data         ;do the Muse data "filter" save file
;fit_phangs_ngc0628_nir_continuum,/astrosat_data         ;do the Astrosat data save file
;fit_phangs_ngc0628_nir_continuum,/extract_seds
;fit_phangs_ngc0628_nir_continuum,/from_restore,/show_plots     ;fit seds of some voronoi bins
;fit_phangs_ngc0628_nir_continuum,/from_restore,/brute_force
;fit_phangs_ngc0628_nir_continuum,/from_restore,/grid_brute_force

;fit_phangs_ngc0628_nir_continuum,/muse_data

pdp_define_la_common
;window,0
obp=[1.1,0,1.15,1]
source_name='ngc0628'
;data_dir='/Volumes/PILOT_FLIGHT1/PHANGS-JWST/DR1/'
data_dir=!phangs_data_dir+'/ISRF/WORK/'
grids_data_dir=!phangs_data_dir+'/ISRF/GRIDS/'
;stop

IF keyword_set(from_restore) THEN goto,from_restore
IF keyword_set(extract_seds) THEN goto,extract_seds
IF keyword_set(muse_stuff) THEN goto,muse_stuff
;IF keyword_set(extract_muse) THEN goto,NH_map
IF keyword_set(muse_data) THEN goto,muse_data
IF keyword_set(astrosat_data) THEN goto,astrosat_data

jwst_stuff:

;========== get JWST reference header
file=data_dir+source_name+'_nircam_lv3_f300m_i2d_anchor_atgauss1.fits' 
d=mrdfits(file,1,h)
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
print,sxpar(h,'CDELT1')
href=cd2astro_header(h)
sxaddpar,href,'EQUINOX',2000.
image_cont20,d,href,/square,imrange=[-0.1,5],image_color_table='jpbloadct',/silent,tit=tit
;stop
Nx=sxpar(href,'NAXIS1')
Ny=sxpar(href,'NAXIS2')

filters_names=['F200W','F300M','F335M','F360M','F0770W','F1000W','F1130W','F2100W']
filters=dustem_filter_names2filters(filters_names)
Nfilters=n_elements(filters)
jwst_images=fltarr(Nx,Ny,2,Nfilters)

IF not keyword_set(nostop) THEN stop

;========== JWST stuff
i=0L
file=data_dir+source_name+'_nircam_lv3_f200w_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
help,d
;D               DOUBLE    = Array[7289, 9476]
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name

image_cont20,d,href,/square,imrange=[-0.1,5],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

;stop

file=data_dir+source_name+'_nircam_lv3_f300m_i2d_anchor_atgauss1.fits' 
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
help,d
;D               DOUBLE    = Array[3515, 4576]
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.1,5],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_nircam_lv3_f335m_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.1,5],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_nircam_lv3_f360m_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.2,5],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_miri_lv3_f770w_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.2,10],image_color_table='jpbloadct',/silent,tit=tit,off_bar=obp
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_miri_lv3_f1000w_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.2,5],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_miri_lv3_f1130w_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.3,20],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

file=data_dir+source_name+'_miri_lv3_f2100w_i2d_anchor_atgauss1.fits'
d=mrdfits(file,0,h0)
d=mrdfits(file,1,h)
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN d=project2(h,d,href,/silent)
jwst_images[*,*,0,i]=d & i=i+1
print,sxpar(h,'EXTNAME')
filter_name=sxpar(h0,'FILTER')
print,filter_name
tit=source_name+' '+filter_name
image_cont20,d,href,/square,imrange=[-0.5,10],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop

;WCO map:
file='/Volumes/PILOT_FLIGHT1/PHANGS-JWST/ngc0628_12m+7m+tp_co21_broad_mom0.fits'
d=readfits(file,h)
;sxaddpar,h,'CTYPE1','RA---TAN'
;sxaddpar,h,'CTYPE2','RA---TAN'
sxaddpar,h,'EQUINOX',2000.
ind=where(finite(d) NE 1,count)
IF count NE 0 THEN d[ind]=la_undef()
IF sxpar(h,'NAXIS1') NE Nx OR sxpar(h,'NAXIS2') NE Ny THEN WCO=project2(h,d,href,/silent) ELSE WCO=d
fact=4.e20/1.e21
NHCO=la_mul(WCO,fact)   ;NH from CO in 1e21 H/cm2
tit=source_name+' '+'NHCO [1e21 H/cm2]'
image_cont20,NHCO,href,/square,imrange=[-0.5,10],image_color_table='jpbloadct',/silent,tit=tit
IF not keyword_set(nostop) THEN stop


;Invent variances (will have to do better)
;jwst_images[*,*,1,*]=(jwst_images[*,*,0,*]*5./100.)^2   ;assumed intensity variance
perc_error=5./100.
jwst_images[*,*,1,*]=la_power(la_mul(jwst_images[*,*,0,*],perc_error),2)   ;assumed intensity variance
;=== check for null variances
ind=where(jwst_images[*,*,1,*] EQ 0.,count)
IF count NE 0 THEN BEGIN
	message,'There are null variances ...',/continue
	stop
ENDIF

save,jwst_images,filters,href,NHCO,file=data_dir+'ngc0628_jwst_images.sav'

MUSE_data:

;=== this is just to get href
restore,data_dir+'ngc0628_jwst_images.sav',/verb

muse_data_dir='/Volumes/PILOT_FLIGHT1/PHANGS_MUSE/DR2p2/coopt/filterimages/NGC0628/'
;muse_filters=['COUSIN','DUPONT']
;muse_filters=['SDSS2','SDSS3','SDSS4']
muse_filters=dustem_filter_names2filters(['sdss_g','sdss_r','sdss_i'])
Nmuse_filter=n_elements(muse_filters)
muse_images=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),2,Nmuse_filter)
files=muse_data_dir+'NGC0628_'+['SDSS_gcopt','SDSS_rcopt','SDSS_icopt']+'.fits'

;imrange=[-0.5,200]/2000.
imrange=[-1.e-4,0.001]
imrange=[-1.e-2,1.]
muse_undefined=0.
FOR i=0L,Nmuse_filter-1 DO BEGIN
	file=files[i]
	;toto=mrdfits(file,0,hh)
	d=mrdfits(file,1,h)        ;here undefined values are at 0.
	hh=cd2astro_header(h)
	dv=mrdfits(file,2,hv)     ;is this looks like it's a variance
	mask=mrdfits(file,3,hm)
	ind=where(mask EQ 1,count)     ;this looks like a mask
	IF count NE 0 THEN BEGIN
		d[ind]=la_undef()
		dv[ind]=la_undef()
	ENDIF
	print,la_min(d),la_max(d)
	;     -7.37902      17186.9
	factor=dustem_muse_filter_conversion_factor(muse_filters[i],pivot_wav=pivot_wav)  ;goes from Muse filter units to muJy/pix
	omega_pix=(sxpar(hh,'CDELT2')/!radeg)^2    ;simeq 9e-13 sr
	;use_factor=factor/omega_pix*1.e-12         ;simeq 500
	;use_factor=factor/omega_pix*1.e-20         ;simeq 500
	use_factor=(1./factor)/omega_pix*1.e-12         ;simeq 500
	;jpb's estimate:
	cmic=2.99792458e14
	use_factor_jp=1.e-7*1.e4*pivot_wav*(pivot_wav/1.e4)/cmic/omega_pix
	print,factor,omega_pix,use_factor,use_factor_jp
	use_factor=use_factor_jp
	;stop
	;      492.255   9.4017732e-13   5.2357685e-06
    d=la_mul(d,use_factor)  ;Now supposidely in MJy/sr (but in what unit convention ??)
    dv=la_mul(dv,use_factor^2)  ;Now supposidely in (MJy/sr)^2
	print,la_min(d),la_max(d)
    ;-3.8634841e-05     0.089986754
    tit=source_name+' '+muse_filters[i]
	image_cont20,d,h,/square,imrange=imrange,image_color_table='jpbloadct',/silent,tit=tit,off_bar_pos=obp,axis_color_table=1
    ;stop
	IF sxpar(h,'NAXIS1') NE sxpar(href,'NAXIS1') OR sxpar(h,'NAXIS2') NE sxpar(href,'NAXIS2') THEN BEGIN
		d=project2(h,d,href,/silent,save_it='/tmp/save_project2.sav')
		dv=project2(h,dv,href,/silent,restore_it='/tmp/save_project2.sav')
	ENDIF
	muse_images[*,*,0,i]=d
	muse_images[*,*,1,i]=dv
	;print,filter_name
	image_cont20,d,href,/square,imrange=imrange,image_color_table='jpbloadct',/silent,tit=tit,off_bar_pos=obp,axis_color_table=1
ENDFOR

;Invent variances (will have to do better)
;CAUTION: some variances were 0 because some fluxes are 0, had to add abs_variance
;perc_error=5./100.
;abs_variance=(1.e-12)^2
;muse_images[*,*,1,*]=la_add(la_power(la_mul(muse_images[*,*,0,*],perc_error),2),abs_variance)   ;assumed intensity variance
;=== check for null variances
ind=where(muse_images[*,*,1,*] EQ 0.,count)
IF count NE 0 THEN BEGIN
	message,'There are null variances ...',/continue
	stop
	toto=muse_images[*,*,1,*]
	toto[ind]=la_undef()
	muse_images[*,*,1,*]=toto
ENDIF

save,muse_images,muse_filters,href,file=data_dir+'ngc0628_muse_filters_data.sav'
message,'Saved '+data_dir+'ngc0628_muse_filters_data.sav',/info

stop

astrosat_data:
;BUNIT   = 'Angstrom-1 cm-2 erg s-1'
;in fact Angstrom-1 cm-2 erg s-1 PER PIXEL ?!

restore,data_dir+'ngc0628_jwst_images.sav',/verb

astrosat_data_dir='/Volumes/PILOT_FLIGHT1/PHANGS_ASTROSAT/v1p0/release/'
;muse_filters=['COUSIN','DUPONT']
astrosat_filters=dustem_filter_names2filters(['F148W','F154W','F169M','F172M','N219M'])
Nastrosat_filter=n_elements(astrosat_filters)
astrosat_images=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),2,Nastrosat_filter)
files=astrosat_data_dir+'NGC0628_'+['F148','F154','F169','F172','N219']+'_bkg_subtracted_mw_corrected.fits'
;NGC0628_F148_bkg_subtracted_mw_corrected.fits	NGC0628_F169_bkg_subtracted_mw_corrected.fits	NGC0628_N219_bkg_subtracted_mw_corrected.fits
;NGC0628_F154_bkg_subtracted_mw_corrected.fits	NGC0628_F172_bkg_subtracted_mw_corrected.fits
file_save_astrosat=data_dir+'ngc0628_astrosat_data.sav'
wavs_mic=dustem_filter2wav(astrosat_filters)
cmic=3.e14   ;mic/sec
facts=wavs_mic/cmic*(wavs_mic*1.e4)/4./!pi*1.e-7*1.e4*1.e20    ;from Flambda in ergs/cm2/s/AA to MJy/sr
imrange=[-0.5,2]*1e-17    ;erg/s/cm2/AA
imrange=[-0.5,1]   ;MJy/sr

FOR i=0L,Nastrosat_filter-1 DO BEGIN
	file=files[i]
	d=mrdfits(file,0,h)
	steradians=(sxpar(h,'CDELT2')/!radeg)^2   ;pixel in sr
	fact=facts[i]*4.*!pi/steradians
	ind=where(finite(d) NE 1,count)
	IF count NE 0 THEN d[ind]=la_undef()
	d=la_mul(d,fact)
	image_cont20,d,h,/square,imrange=imrange,image_color_table='jpbloadct',/silent,tit=tit
	IF sxpar(h,'NAXIS1') NE sxpar(href,'NAXIS1') OR sxpar(h,'NAXIS2') NE sxpar(href,'NAXIS2') THEN d=project2(h,d,href,/silent)
	tit=source_name+' '+astrosat_filters[i]
	image_cont20,d,href,/square,imrange=imrange,image_color_table='jpbloadct',/silent,tit=tit
	astrosat_images[*,*,0,i]=d
	stop
ENDFOR

;Invent variances (will have to do better)
perc_error=5./100.
astrosat_images[*,*,1,*]=la_power(la_mul(astrosat_images[*,*,0,*],perc_error),2)   ;assumed intensity variance
;=== check for null variances
ind=where(astrosat_images[*,*,1,*] EQ 0.,count)
IF count NE 0 THEN BEGIN
	message,'There are null variances ...',/continue
	stop
ENDIF

save,astrosat_images,astrosat_filters,href,file=file_save_astrosat
message,'Saved '+file_save_astrosat,/info

stop


muse_stuff:

restore,data_dir+'ngc0628_jwst_images.sav',/verb

;========== MUSE stuff
;Muse stellar bins definition
;st_templates=read_muse_templates_info(age_values=age_values,metalicity_values=metalicity_values,Nbins=Nbins,Nage=Nage,NZ=NZ)
;print,Nage,NZ,Nbins
;          13           6          78
;st_templates=read_muse_templates_info(age_values=age_values,metalicity_values=metalicity_values,/young,Nbins=Nbins,Nage=Nage,NZ=NZ,bins=bins)
;print,Nage,NZ,Nbins
;          17           7         119
;print,la_min(bins),la_max(bins)
;            0          67
st_templates=read_muse_templates_info(age_values=age_values,metalicity_values=metalicity_values,Nbins=Nbins,Nage=Nage,NZ=NZ,bins=bins)
print,Nage,NZ,Nbins
;                    13           6          78
print,la_min(bins),la_max(bins)
;           0          77

;Muse weights
;st_muse_weights=read_muse_phangs_weights(object='NGC0628',/young,bin_numbers=bin_numbers)
;print,n_elements(bin_numbers)
;          68
st_muse_weights=read_muse_phangs_weights(object='NGC0628',bin_numbers=bin_numbers)
print,n_elements(bin_numbers)
;          78

voronoi_id=read_muse_phangs_voronoi_bins('NGC0628',header_in=href,snr_bin=snr_bin,snr_flux=snr_flux,flux=muse_flux)   ;This is the voronoi bin map

image_cont20,voronoi_id,href,/square,/silent,image_color_table='jpbloadct',title='Voronoi Bins'

save,st_templates,st_muse_weights,voronoi_id,age_values,metalicity_values,bins,href,file=data_dir+'ngc0628_muse_images.sav'
message,'saved '+data_dir+'ngc0628_muse_images.sav',/info

stop

extract_seds:

restore,data_dir+'ngc0628_jwst_images.sav',/verb
restore,data_dir+'ngc0628_muse_images.sav',/verb
restore,data_dir+'ngc0628_astrosat_data.sav',/verb
restore,data_dir+'ngc0628_muse_filters_data.sav',/verb

stop

;=== extract and save observed seds in Muse Voronoi bins
extract_all_muse_phangs_seds,source_name,voronoi_id,jwst_images,filters,indices=all_seds_indices,file=data_dir+'ngc0628_jwst_seds_muse_pixels.sav',counts=counts
restore,data_dir+'ngc0628_jwst_seds_muse_pixels.sav',/verb  ;just to get all_seds_indices
extract_all_muse_phangs_seds,source_name,voronoi_id,muse_images,muse_filters,use_these_indices=all_seds_indices,file=data_dir+'ngc0628_muse_seds_muse_pixels.sav',counts=counts
extract_all_muse_phangs_seds,source_name,voronoi_id,astrosat_images,astrosat_filters,use_these_indices=all_seds_indices,file=data_dir+'ngc0628_astrosat_seds_muse_pixels.sav',counts=counts

;==== The following is not really useful, can be done through SED aggregation later
;==== However, not equivalent to the above, because of undefined pixels in some of the images, and the way this is handled by sed extractor
stop
use_filters=[astrosat_filters,muse_filters,filters]
use_Nfilters=n_elements(use_filters)
use_images=fltarr([sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),2,use_Nfilters])
use_images[*,*,*,0:n_elements(filters)-1]=jwst_images
use_images[*,*,*,n_elements(filters):n_elements(filters)+n_elements(muse_filters)-1]=muse_images
use_images[*,*,*,n_elements(filters)+n_elements(muse_filters):n_elements(filters)+n_elements(muse_filters)+n_elements(astrosat_filters)-1]=astrosat_images

extract_all_muse_phangs_seds,source_name,voronoi_id,use_images,use_filters,indices=all_seds_indices,file=data_dir+'ngc0628_all_seds_muse_pixels.sav',counts=counts

stop

NH_map:
restore,data_dir+'ngc0628_jwst_images.sav',/verb
restore,data_dir+'ngc0628_muse_images.sav',/verb
restore,data_dir+'ngc0628_jwst_seds_muse_pixels.sav',/verb

Nvor=max(voronoi_id)

ebv=st_muse_weights.reddening
Rv=3.1
Av_o_NH=1./2.  ;2 mag per 1e21 H/cm2
;Do an Av map
NH_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))  ;in 1e21 H/cm2
FOR vid=0LL,Nvor-1 DO BEGIN
	IF vid mod 100 EQ 0 THEN print,strtrim(vid/Nvor*100.,2)+' %'
	;ind=where(voronoi_id EQ vid)
    Nh_map[*all_seds_indices[vid]]=Rv*ebv[vid]/Av_o_NH
ENDFOR

save,NH_map,file=data_dir+'ngc0628_muse_NH.sav'

from_restore:

dustem_init,show_plots=show_plots
restore,data_dir+'ngc0628_jwst_images.sav',/verb
;% RESTORE: Restored variable: JWST_IMAGES.
;% RESTORE: Restored variable: FILTERS.
;% RESTORE: Restored variable: HREF.
;% RESTORE: Restored variable: NHCO.
restore,data_dir+'ngc0628_muse_images.sav',/verb
;% RESTORE: Restored variable: ST_TEMPLATES.
;% RESTORE: Restored variable: ST_MUSE_WEIGHTS.
;% RESTORE: Restored variable: VORONOI_ID.
;% RESTORE: Restored variable: AGE_VALUES.
;% RESTORE: Restored variable: METALICITY_VALUES.
;% RESTORE: Restored variable: BINS.
;% RESTORE: Restored variable: HREF.
restore,data_dir+'ngc0628_muse_NH.sav',/verb
;% RESTORE: Restored variable: NH_MAP.
restore,data_dir+'ngc0628_astrosat_data.sav',/verb
;% RESTORE: Restored variable: ASTROSAT_IMAGES.
;% RESTORE: Restored variable: ASTROSAT_FILTERS.
;% RESTORE: Restored variable: HREF.
restore,data_dir+'ngc0628_jwst_seds_muse_pixels.sav',/verb
;% RESTORE: Restored variable: ALL_SEDS.
;% RESTORE: Restored variable: ALL_SEDS_INDICES.
jwst_seds=all_seds
jwst_filters=(*jwst_seds[0]).filter
restore,data_dir+'ngc0628_muse_seds_muse_pixels.sav',/verb   ;contains the Muse SEDs in voronoi bins
;% RESTORE: Restored variable: ALL_SEDS.
;% RESTORE: Restored variable: ALL_SEDS_INDICES.
muse_seds=all_seds
muse_filters=(*muse_seds[0]).filter
restore,data_dir+'ngc0628_astrosat_seds_muse_pixels.sav',/verb
;% RESTORE: Restored variable: ALL_SEDS.
;% RESTORE: Restored variable: ALL_SEDS_INDICES.
astrosat_seds=all_seds
astrosat_filters=(*astrosat_seds[0]).filter

Nvor=max(voronoi_id)
all_filters=[jwst_filters,astrosat_filters,muse_filters]
Nfilters=n_elements(all_filters)
all_seds=fltarr(Nfilters,Nvor)

;===== Compute seds (pointer)
one_sed=(*jwst_seds[0])
all_filters=[jwst_filters,astrosat_filters,muse_filters]
Nfilters=n_elements(all_filters)
seds_ptr=ptrarr(Nvor)
nperc=5./100.
FOR ii=0L,Nvor-1 DO BEGIN
	seds_ptr[ii]=ptr_new([*astrosat_seds[ii],*muse_seds[ii],*jwst_seds[ii]])
    ;=== check for 0 variances
	ind=where((*seds_ptr[ii]).sigmaII EQ 0,count)
    IF count NE 0 THEN BEGIN
    	this_sed=*seds_ptr[ii]
    	Ivalues=((*seds_ptr[ii]).stokesI)[ind]
    	sigmaii_values=(Ivalues*nperc)^2
    	this_sed[ind].sigmaii=sigmaii_values
    	seds_ptr[ii]=ptr_new(this_sed)
    ENDIF
ENDFOR

;stop
;FOR i=0L,Nvor-1 DO BEGIN
;	(*muse_seds[i]).stokesI=((*muse_seds[i]).stokesI)/242315.*1.e8
;ENDFOR
FOR i=0L,Nvor-1 DO all_seds[*,i]=[(*astrosat_seds[i]).stokesI,((*muse_seds[i]).stokesI),(*jwst_seds[i]).stokesI]
;look for maximum astrosat value
ind=where(all_seds[2,*] EQ max(all_seds[2,*]))
print,ind
;       39665
print,all_seds[*,ind]
;      2.35202      2.75261      3.46727      3.68084      1.62485      1054.94      927.261      404.267      10.5454     -32768.0     -32768.0     -32768.0     -32768.0     -32768.0     -32768.0     -32768.0
ind=where(all_seds[2,*] GT 3.*la_mean(all_seds[2,*]))
print,ind[100]
;4699
print,all_seds[*,ind[100]]
;    0.0954950     0.126592     0.144323     0.120900     0.114967      68.6855      52.6373      38.7998      1.15606     0.638490     0.606459     0.529654      2.30200     0.782402      2.51761      1.86948
ind=where(all_seds[2,*]/all_seds[10,*] GT 1.)
print,ind[0]
;12306
print,all_seds[*,ind[0]]
;     0.323970     0.441198     0.591049     0.494629     0.182164      67.2941      50.9925      33.8923     0.967236     0.531406     0.498163     0.374723      1.39314     0.683776      1.90688      1.85371
print,ind[3]
print,all_seds[*,ind[3]]
;       12631
;     0.532320     0.654246     0.788243     0.643166     0.604815      85.0280      61.7483      41.8740      1.29023     0.754277     0.714327     0.569998      1.49024      1.07281      2.24375      1.84148
print,ind[4]
print,all_seds[*,ind[4]]
;       12640
;     0.421350     0.600934     0.639170     0.736419     0.392632      102.730      74.2435      50.7555      1.26155     0.704108     0.633040     0.518208      1.23460     0.844332      1.82023      2.09209
ind=where(all_seds[2,*]/all_seds[10,*] GT 0.6 and all_seds[2,*]/all_seds[10,*] LT 1.)
print,ind[0]
print,all_seds[*,ind[0]]
;        5960
;    0.0603282     0.103469     0.260063     0.171956    0.0811385      53.2903      43.1425      29.1814     0.689211     0.402946     0.368217     0.300235      1.35131     0.478370      1.73637      1.34104
print,ind[20]
print,all_seds[*,ind[20]]
;       13439
;     0.625768     0.544996     0.378714     0.838214     0.591592      92.5699      65.3618      41.9704      1.00230     0.566440     0.614708     0.448454      2.74491      1.15966      3.66431      2.25899

;stop

IF keyword_set(brute_force) THEN goto,brute_force
IF keyword_set(grid_brute_force) THEN goto,grid_brute_force

;toto=dustem_read_emiles_stellar_templates(age_values,metalicity_values,template_wav=template_wav,Mstars=Mstars,info_only=info_only,info_st=info_st)
;stop

;==== SFH ?? (Not sure what this is)
;file='/Volumes/PILOT_FLIGHT1/PHANGS_MUSE/DR2p2/coopt/MUSEDAP/fiducial/NGC0628-0.92asec_table_SFH.fits'
;toto=mrdfits(file,0,h) ;This is ?
;st_sfh=mrdfits(file,1,h) ;This is ?
;help,st_sfh,/str
;** Structure <478ef448>, 10 tags, length=72, data length=68, refs=1:
;   ID              LONG                 0
;   BIN_ID          LONG             47068
;   X               DOUBLE           121.80000
;   Y               DOUBLE          0.60000000
;   FLUX            DOUBLE           24.835750
;   SNR             DOUBLE           6.8757743
;   XBIN            DOUBLE           121.99930
;   YBIN            DOUBLE           2.9014085
;   SNRBIN          DOUBLE           103.86098
;   NSPAX           LONG               284
;print,minmax(st_sfh.id)
;           0        1425
;print,minmax(st_sfh.bin_id)
;       47028       47068


;vid=2000L ;selected voronoi ID
;vid=3000L ;selected voronoi ID
;vid=10000L
;vid=15000L ;selected voronoi ID
;vid=20000L ;selected voronoi ID
;vid=25000L
;vid=30000L ;selected voronoi ID
vid=35000L ;selected voronoi ID
use_NHmap=NHCO       ;used NH map in 1.e21 (from CO)

;galaxy_distance=10.  ;MPc

;use_model='DBP90'    ;Example with default keywords uses the DBP90 model
;use_model='MC10'    ;Example with default keywords uses the DBP90 model
use_model='DL07'    ;Example with default keywords uses the DBP90 model
use_polarization=0   ; initialize Dustemwrap in no polarization mode 
use_window=2          ; default graphics window number to use for plotting the results
use_verbose=0
use_Nitermax=5        ; maximum number of iterations for the fit
dustem_define_la_common
;parameters to fit
pd = [ $
     '(*!dustem_params).G0', $                           ;G0
     '(*!dustem_params).grains(0).mdust_o_mh',$          ;PAH0 mass fraction
     '(*!dustem_params).grains(1).mdust_o_mh',$          ;PAH1 mass fraction
     'dustem_plugin_phangs_stellar_continuum_1']         ;stellar continuum amplitude
iv =   [1.6, [2.2e-3, 2.2e-3],5.e-5]
llims=[1.e-2,[1.e-4,1.e-4],1.e-10]
;This allows fitting E(B-V)
pd = [ $
     '(*!dustem_params).G0', $                           ;G0
     '(*!dustem_params).grains(0).mdust_o_mh',$          ;PAH0 mass fraction
     '(*!dustem_params).grains(1).mdust_o_mh',$          ;PAH1 mass fraction
     'dustem_plugin_phangs_stellar_continuum_1', $         ;stellar continuum amplitude
     'dustem_plugin_phangs_stellar_continuum_2']         ;E(B-V)
iv =   [1.6, [2.2e-3, 2.2e-3],5.e-5,0.01]
llims=[1.e-2,[1.e-4,1.e-4],1.e-10,0.]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)

pd_to_update=['dustem_plugin_phangs_stellar_continuum_1','(*!dustem_params).grains(0).mdust_o_mh']
;pd_filter_names=['NIRCAM11','MIRI2']
pd_filter_names=['SDSS4','MIRI2']

;== INITIALISE DUSTEM
dustem_init,model=use_model,polarization=use_polarization,show_plots=show_plots
;stop
!dustem_nocatch=1
!dustem_verbose=use_verbose
IF keyword_set(noobj) THEN !dustem_noobj=1
!EXCEPT=2 ; for debugging
;=== INFORMATION TO MAKE THE PLOT
;yr=[1.00e-2,10.0] ; y-axis limits
yr=[1.00e-3,100.0] ; y-axis limits
;xr=[0.5,1.00e2] ; x-axis limits
xr=[0.1,1.00e2] ; x-axis limits
tit='FIT INTENSITY EXAMPLE' ; plot title
ytit=textoidl('I_\nu (MJy/sr) for N_H=10^{20} H/cm^2') ; y-axis title
xtit=textoidl('\lambda (\mum)') ; x-axis title

;voronoi bins for test. Last series are randomly picked
vids=[12640,5960,13439,12631,12306,4699,[2000,3000,10000,15000,20000,25000,30000L,35000,400000,450000]]
Nvids=n_elements(vids)
one_sed=(*jwst_seds[0])[0]
Nfilters=n_elements(astrosat_filters)+n_elements(muse_filters)+n_elements(filters)
seds=replicate(one_sed,Nfilters)
FOR ii=0L,Nvids-1 DO BEGIN
	vid=vids[ii]
	;===== get weights for the given voronoi bins
	weights=phangs_binid2weights(st_muse_weights,vid,st_templates,age_values,metalicity_values,reddening=reddening)
	sed=*seds_ptr[vid]
	;===== fixed parameters
	;fpd=phangs_stellar_continuum_plugin_weight2params(weights,parameter_values=fiv,redenning=reddening,/force_include_reddening)
	fpd=phangs_stellar_continuum_plugin_weight2params(weights,parameter_values=fiv)
	NH_value=la_mul(la_mean(use_NHmap[*all_seds_indices[vid]]),10.) ;NH value in 1.e20 H/cm2
	sed.stokesI=sed.stokesI/NH_value   ;normalize SED to 1.e20 H/cm2
	sed.sigmaII=sed.sigmaII/NH_value^2   ;normalize SED to 1.e20 H/cm2
	;== SET THE OBSERVATIONAL STRUCTURE
	dustem_set_data,m_fit=sed,m_show=sed
    ;get a first guess at parameters (must be done after dustem_set_data)
	new_iv=dustem_first_guess(pd,iv,sed,pd_to_update,pd_filter_names,fpd=fpd,fiv=fiv,pol=pol)
	;== SET INITIAL VALUES AND LIMITS OF THE PARAMETERS THAT WILL BE
	;== ADJUSTED DURING THE FIT
	dustem_init_params,use_model,pd,new_iv,fpd=fpd,fiv=fiv,ulimed=ulimed,llimed=llimed,ulims=ulims,llims=llims
    tit='Voronoi '+strtrim(vid,2)
	;===  RUN THE FIT
	;stop
	t1=systime(0,/sec)
	res=dustem_mpfit_data(tol=tol,Nitermax=use_Nitermax,gtol=gtol $
                      ,/xlog,/ylog,xr=xr,yr=yr,xtit=xtit,ytit=ytit,title=tit $
                      ,legend_xpos=legend_xpos,legend_ypos=legend_ypos $
                      ,errors=errors,chi2=chi2,rchi2=rchi2,show_plot=show_plots)
	t2=systime(0,/sec)
    IF not keyword_set(nostop) THEN stop
ENDFOR

message,'========== Finished individual fitting',/continue
stop

;==== Brute force
brute_force:

;stop

;==== This is a test to brute-force fit PAH abudance and G0 Using the Mathis ISRF

Nvor=max(voronoi_id)

;ebv=st_muse_weights.reddening
;Rv=3.1
;Av_o_NH=1./2.  ;2 mag per 1e21 H/cm2
;;Do an Av map
;NH_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))  ;in 1e21 H/cm2
;FOR vid=0LL,Nvor-1 DO BEGIN
;	IF vid mod 100 EQ 0 THEN print,strtrim(vid/Nvor*100.,2)+' %'
;	ind=where(voronoi_id EQ vid)
;    Nh_map[ind]=Rv*ebv[vid]/Av_o_NH
;ENDFOR

;stop

;dir=!dustem_wrap_soft_dir+'/Grids/'
;==== This is to use the Mathis Field
table_name=grids_data_dir+'DBP90_JWST_G0_YPAH_YVSG_4Phangs.fits'
;table_name=dir+'TEST_DBP90_JWST_G0_YPAH_YVSG_4Phangs.fits'
;Nvor=20000 ;for test

GOs=fltarr(Nvor)
Ypahs=fltarr(Nvor)
YVSGs=fltarr(Nvor) 
facts=fltarr(Nvor)
chi2s=fltarr(Nvor)
rchi2s=fltarr(Nvor)
dGOs=fltarr(Nvor)
dYpahs=fltarr(Nvor)
dYVSGs=fltarr(Nvor) 

use_NHmap=NHCO       ;used NH map in 1.e21 (from CO)
;use_NHmap=NH_map       ;used NH map in 1.e21 (from MUSE)

;==== This is all the filters in a given SED
all_filters=(*seds_ptr[0]).filter
;==== filters used for brute force fit
use_filters_names=['F360M','F0770W','F1000W','F1130W','F2100W']
use_filters=dustem_filter_names2filters(use_filters_names)
use_Nfilters=n_elements(use_filters)
ind_filters=[-1]
FOR i=0L,use_Nfilters-1 DO BEGIN
	indd=where(all_filters EQ use_filters[i],count)
	IF count NE 0 THEN ind_filters=[ind_filters,indd]
ENDFOR
ind_filters=ind_filters[1:*]

;show_sed=1
show_sed=0
FOR vid=0LL,Nvor-1 DO BEGIN
   IF vid mod 10 EQ 0 THEN BEGIN
   	 message,'Doing sed '+strtrim(vid,2)+' '+strtrim(1.*vid/Nvor*100.,2)+' %',/continue
   ENDIF
   ;sed=all_seds[ind_filters,vid]
   sed=*seds_ptr[vid]
   ;=== restrict sed to requested filters
   sed=sed[ind_filters]
   ;=== normalize to NH=1.e20 H/cm2
   NH_value=la_mul(la_mean(use_NHmap[*all_seds_indices[vid]]),10.) ;NH value in 1.e20 H/cm2
   sed.stokesI=la_div(sed.stokesI,NH_value)
   sed.sigmaII=la_div(sed.sigmaII,NH_value^2)
   ;index=where(voronoi_id EQ vid,count)
   ;sed=dustem_sed_extractor(jwst_images,index,filters,/total_intensity_only)
   ;stop
   params=dustem_brute_force_fit(sed,table_name,use_filters,fact=fact,chi2=chi2,/normalize,rchi2=rchi2,show_sed=show_sed $
   								,params_hit=params_hit,params_uncertainties=params_uncertainties,params_min=params_min,params_max=params_max)
   GOs[vid]=params[0]
   Ypahs[vid]=params[1]/fact ;extenssive quantities must be devided by normalization factor
   Yvsgs[vid]=params[2]/fact
   facts[vid]=fact
   chi2s[vid]=chi2
   rchi2s[vid]=rchi2
   dGOs[vid]=params_uncertainties[0]
   dYpahs[vid]=params_uncertainties[1]/fact ;extenssive quantities must be devided by normalization factor
   dYvsgs[vid]=params_uncertainties[2]/fact
   print,params[0],params[1],params[2],fact,chi2
ENDFOR

stop

;save,GOs,Ypahs,Yvsgs,file=dir+source_name+'DBP90_JWST_G0_YPAH_YVSG.fits'
save,GOs,Ypahs,Yvsgs,file=dir+source_name+'TEST_DBP90_JWST_G0_YPAH_YVSG.fits'

;stop
;=== make maps of parameters
chi2_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
rchi2_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
GO_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
Ypah_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
YVSG_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
dGO_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
dYpah_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
dYVSG_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
fact_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))
FOR vid=0LL,Nvor-1 DO BEGIN
	IF vid mod 100 EQ 0 THEN print,(1.*vid)/Nvor*100.
	;ind=where(voronoi_id EQ vid)
    GO_map[*all_seds_indices[vid]]=GOs[vid]
    Ypah_map[*all_seds_indices[vid]]=Ypahs[vid]
    YVSG_map[*all_seds_indices[vid]]=Yvsgs[vid]
    dGO_map[*all_seds_indices[vid]]=dGOs[vid]
    dYpah_map[*all_seds_indices[vid]]=dYpahs[vid]
    dYVSG_map[*all_seds_indices[vid]]=dYvsgs[vid]
    chi2_map[*all_seds_indices[vid]]=chi2s[vid]
    rchi2_map[*all_seds_indices[vid]]=rchi2s[vid]
    fact_map[*all_seds_indices[vid]]=facts[vid]
ENDFOR

;stop
jwst_4_coutours=fltarr((size(jwst_images))[1],(size(jwst_images))[2],2)
jwst_4_coutours[*,*,0]=jwst_images[*,*,0,5]
jwst_4_coutours[*,*,1]=jwst_images[*,*,0,5]
levs=create_contour_st(jwst_4_coutours,lev1=[1,5])
levs.(0).color=100
levs.(1).color=200
levs.(1).thick=2

obp=[1.1,0.,1.15,1]
image_cont20,jwst_4_coutours[*,*,0],href,/square,imrange=[-1.,10],image_color_table='jpbloadct',/silent,title='',off_bar=obp,axis_color_table=1,levels=levs

window,0,xsize=800,ysize=1000
aa=alog10(GO_map)
wset,0 & image_cont20,GO_map,href,/square,imrange=[-1.,100],image_color_table='jpbloadct',/silent,title='G0',off_bar=obp,axis_color_table=1
wset,0 & image_cont20,aa,href,/square,imrange=[0.5,2.5],image_color_table='jpbloadct',/silent,title='G0',off_bar=obp,axis_color_table=1,levels=levs
window,1,xsize=800,ysize=1000
wset,1 & image_cont20,Ypah_map,href,/square,imrange=[-0.005,0.5],image_color_table='jpbloadct',/silent,title='Ypah',off_bar=obp,axis_color_table=1,levels=levs
window,2,xsize=800,ysize=1000
wset,2 & image_cont20,Yvsg_map,href,/square,imrange=[-0.005,0.5],image_color_table='jpbloadct',/silent,title='Yvsg',off_bar=obp,axis_color_table=1,levels=levs
window,3,xsize=800,ysize=1000
wset,3 & image_cont20,alog10(chi2_map),href,/square,imrange=[2,6],image_color_table='jpbloadct',/silent,title='chi2',off_bar=obp,axis_color_table=1,levels=levs
window,4,xsize=800,ysize=1000
image_cont20,alog10(fact_map),href,/square,imrange=[-1,5],image_color_table='jpbloadct',/silent,title='fact',off_bar=obp,axis_color_table=1,levels=levs

stop

wset,1 & image_cont20,Ypah_map,href,/square,imrange=[-0.0001,0.005],image_color_table='jpbloadct',/silent,title='Ypah',off_bar=obp,axis_color_table=1
wset,1 & image_cont20,Ypah_map,href,/square,imrange=[-0.0001,0.1],image_color_table='jpbloadct',/silent,title='Ypah',off_bar=obp,axis_color_table=1

wset,2 & image_cont20,Yvsg_map,href,/square,imrange=[-0.001,0.015],image_color_table='jpbloadct',/silent,title='Yvsg',off_bar=obp,axis_color_table=1

window,5
!p.multi=[0,3,2]
histGO=histogram(GOs,locations=GOv,Nbins=30)
cgplot,GOv,histGO,psym=10,/ylog,xtit='G0',yrange=[1,1.e5]
histYpah=histogram(Ypahs,locations=Ypahsv,Nbins=10)
cgplot,Ypahsv,histYpah,psym=10,/ylog,xtit='Ypah'
histYvsg=histogram(Yvsgs,locations=Yvsgsv,Nbins=10)
cgplot,Yvsgsv,histYvsg,psym=10,/ylog,xtit='Yvsg'
histchi2=histogram(chi2s,locations=chisv,Nbins=10)
cgplot,chisv,histchi2,psym=10,/ylog,xtit='Chi2'
histfacts=histogram(facts,locations=factsv,Nbins=10)
cgplot,factsv,histfacts,psym=10,/ylog,xtit='facts'


save,GO_map,Ypah_map,Yvsg_map,href,chi2_map,fact_map,GOs,Ypahs,Yvsgs,chi2s,facts,file=data_dir+'ngc0628_brute_force_fit_results.sav'

restore,data_dir+'ngc0628_brute_force_fit_results.sav',/verb


Nid=la_max(voronoi_id)
ids=fltarr(Nid)
snrs=fltarr(Nid)
counts=fltarr(Nid)
FOR i=0L,Nid-1 DO BEGIN
	ind=where(voronoi_id EQ i,count)
	ids[i]=i
	snrs[i]=snr[ind[0]]
	counts[i]=count
ENDFOR

cgplot,ids,snrs
cgplot,ids,counts
cgplot,counts,snrs

ind1=where(snr EQ max(snr))
ind=where(voronoi_id EQ voronoi_id[ind1],count)
print,count

ind=where(voronoi_id EQ 0,count)


file='/Volumes/PILOT_FLIGHT1/PHANGS_MUSE/DR2p2/coopt/MUSEDAP/fiducial/NGC0628-0.92asec_ppxf_SFH.fits'
st=mrdfits(file,1,h)
help,st,/str

stop

;==== Brute force fit using ISRF classes
grid_brute_force:

;stop

Nvor=max(voronoi_id)
G0s=fltarr(Nvor)+la_undef()
Ypahs=fltarr(Nvor)+la_undef()
YVSGs=fltarr(Nvor)+la_undef()
facts=fltarr(Nvor)+la_undef()
chi2s=fltarr(Nvor)+la_undef()
rchi2s=fltarr(Nvor)+la_undef()
dG0s=fltarr(Nvor)+la_undef()
dYpahs=fltarr(Nvor)+la_undef()
dYVSGs=fltarr(Nvor)+la_undef() 
use_NHmap=NHCO       ;used NH map in 1.e21 (from CO)
;use_NHmap=NH_map       ;used NH map in 1.e21 (from MUSE)

;==== This is all the filters in a given SED
all_filters=(*seds_ptr[0]).filter
;==== filters used for brute force fit
use_filters_names=['F360M','F0770W','F1000W','F1130W','F2100W']
use_filters=dustem_filter_names2filters(use_filters_names)
use_Nfilters=n_elements(use_filters)
ind_filters=[-1]
FOR i=0L,use_Nfilters-1 DO BEGIN
	indd=where(all_filters EQ use_filters[i],count)
	IF count NE 0 THEN ind_filters=[ind_filters,indd]
ENDFOR
ind_filters=ind_filters[1:*]
;show_sed=1
show_sed=0
model='DBP90'

;dir_grids=!dustem_wrap_soft_dir+'/Grids/'

file=data_dir+'/ngc0682_isrf_classes_one_ratio.sav'
restore,file,/verb
;% RESTORE: Restored variable: CLASSES.
;% RESTORE: Restored variable: VOR_CLASS.
;% RESTORE: Restored variable: MAP_CLASSES.
ind=where(vor_class NE 0)
class_min=min(vor_class[ind])
class_max=max(vor_class[ind])
restore,data_dir+'ngc0628_isrf_min_prediction.sav',/verb
;% RESTORE: Restored variable: ISRFS.
;% RESTORE: Restored variable: OBJECT_DISTANCE.
;% RESTORE: Restored variable: OBJECT_THICKNESS.
;% RESTORE: Restored variable: SOURCE_NAME.

;For test
class_min=10
class_max=15

bidon=dustem_get_wavelengths(isrf_wavelengths=isrf_wavelengths)

fixed_parameters_description=['dustem_plugin_phangs_class_isrf_2']   ;This is the ISRF G0 factor

file=!dustem_soft_dir+'/data/ISRF_MATHIS.DAT'
;file='/Users/jpb/Soft_Libraries/dustem_fortran/data/ISRF.DAT'
readcol,file,Mathis_wavs,Mathis_ISRF
Mathis_ISRF=interpol(Mathis_ISRF,Mathis_wavs,isrf_wavelengths)
Mathis_1mic=interpol(Mathis_ISRF,isrf_wavelengths,1.0)

FOR isrf_class=class_min,class_max DO BEGIN
	;==== This is to use the grid for this ISRF class
    isrf_class_str='_isrfclass'+strtrim(isrf_class,2)
    table_name=grids_data_dir+model+'_MuseISRF_JWST_G0_YPAH_YVSG_4Phangs'+isrf_class_str+'.fits'
    ;select Voronoi bins with that ISRF class
	ind_class=where(vor_class EQ isrf_class,Nvor_class)
	IF Nvor_class NE 0 THEN BEGIN
		FOR vvid=0LL,Nvor_class-1 DO BEGIN
			IF vvid mod 100 EQ 0 THEN BEGIN
		   		message,'isrf#'+strtrim(isrf_class,2)+' Doing sed '+strtrim(vvid,2)+' '+strtrim(1.*vvid/Nvor_class*100.,2)+' %',/continue
			ENDIF
			;=== Get the G0 value for that vid
			vid=ind_class[vvid]
			G0=interpol(ISRFs[*,vid],isrf_wavelengths,1.0)/Mathis_1mic
			fixed_parameters_values=[G0]
	   		sed=*seds_ptr[vid]
	   		;=== restrict sed to requested filters
			sed=sed[ind_filters]
	   		;=== normalize to NH=1.e20 H/cm2
	   		NH_value=la_mul(la_mean(use_NHmap[*all_seds_indices[vid]]),10.) ;NH value in 1.e20 H/cm2
	   		sed.stokesI=la_div(sed.stokesI,NH_value)
	   		sed.sigmaII=la_div(sed.sigmaII,NH_value^2)
	   		ind=where(sed.stokesI EQ la_undef(),count)
	   		IF count EQ 0 THEN BEGIN
			   	params=dustem_brute_force_fit(sed,table_name,use_filters,fact=fact,chi2=chi2,/normalize,rchi2=rchi2,show_sed=show_sed $
		   								,params_hit=params_hit,params_uncertainties=params_uncertainties,params_min=params_min,params_max=params_max $
		   								,fixed_parameters_description=fixed_parameters_description,fixed_parameters_values=fixed_parameters_values)
			   	;This would be if there was no fixed_parameters
		   		;G0s[vid]=params[0]
		   		;Ypahs[vid]=params[1]/fact ;extenssive quantities must be divided by normalization factor
				;Yvsgs[vid]=params[2]/fact
		   		G0s[vid]=G0
		   		Ypahs[vid]=params[0]/fact ;extenssive quantities must be divided by normalization factor
				Yvsgs[vid]=params[1]/fact
			   	facts[vid]=fact
			   	chi2s[vid]=chi2
			   	rchi2s[vid]=rchi2
			   	;This would be if there was no fixed_parameters
			   	;dG0s[vid]=params_uncertainties[0]
			   	;dYpahs[vid]=params_uncertainties[1]/fact ;extenssive quantities must be devided by normalization factor
			   	;dYvsgs[vid]=params_uncertainties[2]/fact
			   	dG0s[vid]=0.   ;should use difference between fixed param and nearest table neighbor
			   	dYpahs[vid]=params_uncertainties[0]/fact ;extenssive quantities must be devided by normalization factor
			   	dYvsgs[vid]=params_uncertainties[1]/fact
			   	;print,params[0],params[1],params[2],fact,chi2
		   ENDIF
		ENDFOR
	ENDIF ELSE BEGIN
		message,'No Voronoi bins found with ISRF class '+strtrim(isrf_class,2),/continue
	ENDELSE
ENDFOR

;stop

;save,GOs,Ypahs,Yvsgs,file=dir+source_name+'DBP90_JWST_G0_YPAH_YVSG.fits'
save,G0s,Ypahs,Yvsgs,facts,chi2s,rchi2s,file=data_dir+source_name+'_DBP90_JWST_G0_YPAH_YVSG_ISRFclasses.fits'

;Nvor=max(voronoi_id)

;stop
;=== make maps of parameters
chi2_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
rchi2_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
G0_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
Ypah_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
YVSG_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
dG0_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
dYpah_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
dYVSG_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
fact_map=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'))+la_undef()
FOR vid=0LL,Nvor-1 DO BEGIN
	IF vid mod 100 EQ 0 THEN print,(1.*vid)/Nvor*100.
	;ind=where(voronoi_id EQ vid)
    G0_map[*all_seds_indices[vid]]=G0s[vid]
    Ypah_map[*all_seds_indices[vid]]=Ypahs[vid]
    YVSG_map[*all_seds_indices[vid]]=Yvsgs[vid]
    dG0_map[*all_seds_indices[vid]]=dG0s[vid]
    dYpah_map[*all_seds_indices[vid]]=dYpahs[vid]
    dYVSG_map[*all_seds_indices[vid]]=dYvsgs[vid]
    chi2_map[*all_seds_indices[vid]]=chi2s[vid]
    rchi2_map[*all_seds_indices[vid]]=rchi2s[vid]
    fact_map[*all_seds_indices[vid]]=facts[vid]
ENDFOR

;FOR vid=0LL,Nvor-1 DO GO_map[*all_seds_indices[vid]]=GOs[vid]
;FOR vid=0LL,Nvor-1 DO Ypah_map[*all_seds_indices[vid]]=Ypahs[vid]
;FOR vid=0LL,Nvor-1 DO YVSG_map[*all_seds_indices[vid]]=Yvsgs[vid]
;FOR vid=0LL,Nvor-1 DO chi2_map[*all_seds_indices[vid]]=chi2s[vid]
stop

;G0 histogram
win=0L
window,win,xsize=800,ysize=800 & win=win+1

ind=where(G0s NE la_undef())
res=histogram(G0s[ind],locations=xv)
cgplot,xv,res,psym=10,title='G0s histogram',xtit='G0',ytit='Number',/ylog,yrange=[1,max(res)],/ysty

ind=where(Ypahs NE la_undef())
res=histogram(Ypahs[ind],locations=xv)
cgplot,xv,res,psym=10,title='Ypahs histogram',xtit='Ypah',ytit='Number',/ylog,yrange=[1,max(res)],/ysty

window,win,xsize=800,ysize=900 & win=win+1

obp=[1.1,0.,1.15,1]
image_cont20,G0_map,Href,/square,imrange=[-2,40],axis_color_table=1,image_color_table='jpbloadct',/silent,off_bar=obp,title='G0'
image_cont20,la_log10(G0_map),,Href,/square,imrange=[-0.2,2],axis_color_table=1,image_color_table='jpbloadct',/silent,off_bar=obp,title='G0'

image_cont20,la_log10(Ypah_map),Href,/square,imrange=[-2.,6],axis_color_table=1,image_color_table='jpbloadct',/silent,off_bar=obp,title='log10(Ypah)'

image_cont20,la_log10(YVSG_map),Href,/square,imrange=[-2.,6],axis_color_table=1,image_color_table='jpbloadct',/silent,off_bar=obp,title='log10(Yvsg)'

image_cont20,chi2_map,Href,/square,imrange=[0.01,100]*1.e4,image_color_table='jpbloadct',/silent

;stop
jwst_4_coutours=fltarr((size(jwst_images))[1],(size(jwst_images))[2],2)
jwst_4_coutours[*,*,0]=jwst_images[*,*,0,5]
jwst_4_coutours[*,*,1]=jwst_images[*,*,0,5]
levs=create_contour_st(jwst_4_coutours,lev1=[1,5])
levs.(0).color=100
levs.(1).color=200
levs.(1).thick=2

obp=[1.1,0.,1.15,1]
image_cont20,jwst_4_coutours[*,*,0],href,/square,imrange=[-1.,10],image_color_table='jpbloadct',/silent,title='',off_bar=obp,axis_color_table=1,levels=levs

window,0,xsize=800,ysize=1000
aa=alog10(GO_map)
wset,0 & image_cont20,GO_map,href,/square,imrange=[-2.,100],image_color_table='jpbloadct',/silent,title='G0',off_bar=obp,axis_color_table=1
wset,0 & image_cont20,aa,href,/square,imrange=[0.5,2.5],image_color_table='jpbloadct',/silent,title='G0',off_bar=obp,axis_color_table=1,levels=levs
window,1,xsize=800,ysize=1000
wset,1 & image_cont20,Ypah_map,href,/square,imrange=[-0.005,0.5],image_color_table='jpbloadct',/silent,title='Ypah',off_bar=obp,axis_color_table=1,levels=levs
window,2,xsize=800,ysize=1000
wset,2 & image_cont20,Yvsg_map,href,/square,imrange=[-0.005,0.5],image_color_table='jpbloadct',/silent,title='Yvsg',off_bar=obp,axis_color_table=1,levels=levs
window,3,xsize=800,ysize=1000
wset,3 & image_cont20,alog10(chi2_map),href,/square,imrange=[2,6],image_color_table='jpbloadct',/silent,title='chi2',off_bar=obp,axis_color_table=1,levels=levs
window,4,xsize=800,ysize=1000
image_cont20,alog10(fact_map),href,/square,imrange=[-1,5],image_color_table='jpbloadct',/silent,title='fact',off_bar=obp,axis_color_table=1,levels=levs

stop






END