check_phangs_ssps_against_uv_fast.pro
12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
PRO check_phangs_ssps_against_uv_fast,show_map=show_map,from_restore=from_restore
;check_phangs_ssps_against_uv_fast
;===== This computes a map of prediction by dustem_plugin_phangs_stellar_continuum
;===== constrained on JWST NIR data to astrosat data in the UV for NGC0628.
;===== uses the plugin in a mode where the fortran is not run, but yet, the output files of the fortran are read at each pixel,
;===== which is not efficient (supposed to run in 46hrs .... See check_phangs_ssps_against_uv_fast for an alternative use.
window,0,xsize=900,ysize=1000
window,1,xsize=700,ysize=700
dustem_define_la_common
obp=[1.1,0,1.15,1]
source_name='ngc0628'
data_dir='/Volumes/PILOT_FLIGHT1/PHANGS-JWST/DR1/'
IF keyword_set(from_restore) THEN goto,from_restore
;dustem_init,show_plots=show_plots
;needed only for NHCO
restore,data_dir+'ngc0628_jwst_images.sav',/verb
;needed for stellar parameters and voronoi bin info
restore,data_dir+'ngc0628_muse_images.sav',/verb
;restore,data_dir+'ngc0628_muse_NH.sav',/verb
;restore,data_dir+'ngc0628_astrosat_data.sav',/verb
;stop
;=== restore SEDs in voronoi bins
restore,data_dir+'ngc0628_jwst_seds_muse_pixels.sav',/verb
jwst_seds=all_seds
jwst_filters=(*jwst_seds[0]).filter
restore,data_dir+'ngc0628_muse_seds_muse_pixels.sav',/verb
muse_seds=all_seds
muse_filters=(*muse_seds[0]).filter
restore,data_dir+'ngc0628_astrosat_seds_muse_pixels.sav',/verb
astrosat_seds=all_seds
astrosat_filters=(*astrosat_seds[0]).filter
all_filters=[astrosat_filters,muse_filters,jwst_filters]
Nvor=max(voronoi_id)
Nfilters=n_elements(jwst_filters)+n_elements(astrosat_filters)+n_elements(muse_filters)
use_NHmap=NHCO ;used NH map in 1.e21 (from CO)
use_model='DBP90' ;Example with default keywords uses the DBP90 model
;use_model='MC10' ;Example with default keywords uses the DBP90 model
;use_model='DL07' ;Example with default keywords uses the DBP90 model
use_polarization=0 ; initialize Dustemwrap in no polarization mode
;use_window=2 ; default graphics window number to use for plotting the results
;use_verbose=0
;use_Nitermax=5 ; maximum number of iterations for the fit
;parameters to fit
;pd = [ $
; '(*!dustem_params).G0', $ ;G0
; '(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
; '(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
; 'dustem_plugin_phangs_stellar_continuum_1'] ;stellar continuum amplitude
;iv = [1.6, [2.2e-3, 2.2e-3],5.e-5]
;Npar=n_elements(pd)
pd_to_update=['dustem_plugin_phangs_stellar_continuum_1','(*!dustem_params).grains(0).mdust_o_mh']
;pd_filter_names=['NIRCAM11','MIRI2']
;pd_filter_names=['SDSS4','MIRI2'] ;This normalizes SSPs to Muse filter SDSS4 at ~0.8 mic
pd_filter_names=['NIRCAM11','MIRI2'] ;This normalizes SSPs to NIRCAM12 filter at ~2 mic
pd_filter_wav=dustem_filter2wav(pd_filter_names)
pd_filter_index=lonarr(n_elements(pd_filter_names))
FOR i=0L,n_elements(pd_filter_names)-1 DO pd_filter_index[i]=where(all_filters EQ pd_filter_names[i])
;== INITIALISE DUSTEM
dustem_init,model=use_model,polarization=use_polarization,show_plots=show_plots
;stop
!quiet=1
;voronoi bins for test. Last series are randomly picked
one_sed=(*jwst_seds[0])[0]
Nfilters=n_elements(astrosat_filters)+n_elements(muse_filters)+n_elements(filters)
seds=replicate(one_sed,Nfilters)
;diff_seds=fltarr(Nvor,Nfilters)
actual_seds=fltarr(Nvor,Nfilters)
predicted_seds=fltarr(Nvor,Nfilters)
all_predicted_specs=ptrarr(Nvor)
all_predicted_specs_normalized=ptrarr(Nvor)
;predicted_maps=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),Nfilters) ;predicted maps
;actual_maps=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),Nfilters) ;actual maps
diff_maps=fltarr(sxpar(href,'NAXIS1'),sxpar(href,'NAXIS2'),Nfilters) ;difference maps
;predicted_maps[*]=la_undef()
;actual_maps[*]=la_undef()
diff_maps[*]=la_undef()
;imrange=[-1.,1.] ;MJy/sr
imrange=[-0.3,0.2] ;MJy/sr
;===== Compute seds (pointer)
all_filters=[astrosat_filters,jwst_filters,muse_filters]
Nfilters=n_elements(all_filters)
seds_ptr=ptrarr(Nvor)
nperc=5./100.
FOR ii=0L,Nvor-1 DO BEGIN
seds_ptr[ii]=ptr_new([*astrosat_seds[ii],*muse_seds[ii],*jwst_seds[ii]])
;=== check for 0 variances
ind=where((*seds_ptr[ii]).sigmaII EQ 0,count)
IF count NE 0 THEN BEGIN
this_sed=*seds_ptr[ii]
Ivalues=((*seds_ptr[ii]).stokesI)[ind]
sigmaii_values=(Ivalues*nperc)^2
this_sed[ind].sigmaii=sigmaii_values
seds_ptr[ii]=ptr_new(this_sed)
ENDIF
ENDFOR
t1=systime(0,/sec)
first_vid=0L
;first_vid=12640L ;for tests
;do_normalize=1
do_normalize=0
lambir=dustem_get_wavelengths()
;show_each=10
show_each=100
NHvor=fltarr(Nvor)
FOR vid=first_vid,Nvor-1 DO BEGIN
IF vid mod show_each EQ 0 THEN BEGIN
t2=systime(0,/sec)
delta_t_hr=(t2-t1)/60.^2 ;elapsed time [hr]
frac_perc=vid/Nvor*100
delta_t_remain=delta_t_hr/frac_perc*100.-delta_t_hr ;remaining time [hr]
message,'done '+strtrim(frac_perc)+' % in '+strtrim(delta_t_hr,2)+' hr remaining '+strtrim(delta_t_remain,2)+' hr',/continue
ENDIF
;===== get the SSP weights for the given voronoi bins
weights=phangs_binid2weights(st_muse_weights,vid,st_templates,age_values,metalicity_values,reddening=reddening)
sed=*seds_ptr[vid]
;===== get combined Astro_sat+Muse+JWST SED for that voronoi bin
ind=where(sed.stokesI EQ la_undef(),count)
IF count NE 0 THEN goto,do_the_next
;===== set the fixed parameters and initial values
amplitude=1.
reddening=0. ;This sets Muse reddening to 0. Will be contsrained later
fpd=phangs_stellar_continuum_plugin_weight2params(weights,parameter_values=fiv,redenning=reddening,/force_include_reddening,amplitude=amplitude,/force_include_amplitude)
NH_value=la_mul(la_mean(use_NHmap[*all_seds_indices[vid]]),10.) ;NH value in 1.e20 H/cm2
NHvor[vid]=NH_value
IF do_normalize EQ 1 THEN BEGIN
sed.stokesI=sed.stokesI/NH_value ;normalize SED to 1.e20 H/cm2
;sed.sigmaII=sed.sigmaII/NH_value^2 ;normalize SED to 1.e20 H/cm2
ENDIF
;print,fpd,fiv
;stop
Nparams=n_elements(fiv)
key=intarr(Nparams)
FOR i=0L,Nparams-1 DO BEGIN
toto=dustem_parameter_description2type(fpd[i],string_name=string_name,key=one_key)
key[i]=one_key
ENDFOR
spec=dustem_plugin_phangs_stellar_continuum(key=key,val=fiv)
;sed_ref=interpol(spec[*,0],lambir,pd_filter_wav[0])
dustem_predicted_sed=interpol(spec[*,0],lambir,sed.wave)
;Those are reference SEDs used for normalization
sed_ref=dustem_predicted_sed[pd_filter_index[0]]
sed_goal=(sed.stokesI)[pd_filter_index[0]]
;Normalize
dustem_predicted_sed=dustem_predicted_sed/sed_ref*sed_goal
all_predicted_specs[vid]=ptr_new(spec[*,0])
all_predicted_specs_normalized[vid]=ptr_new(spec[*,0]/sed_ref*sed_goal)
IF vid mod show_each EQ 0 THEN BEGIN
wset,1
cgplot,sed.wave,sed.stokesI,/xlog,/ylog,psym=-4
cgoplot,sed.wave,dustem_predicted_sed,color='red'
ENDIF
actual_seds[vid,*]=sed.stokesI
predicted_seds[vid,*]=dustem_predicted_sed
do_the_next:
ENDFOR
;stop
;compute E(B-V) needed to bring prediction to observed astrosat flux
first_vid=0L
ebv=fltarr(Nvor)
astrosat_filters=dustem_filter_names2filters(['F148W','F154W','F169M','F172M','N219M'])
wave_refs=dustem_filter2wav(astrosat_filters)*1.e4 ;AA
which_ebv_filter=1
FOR vid=first_vid,Nvor-1 DO BEGIN
;flux_ratio=predicted_seds[vid,which_ebv_filter]/actual_seds[vid,which_ebv_filter] ;This uses only one astrosat filter to derive E(B-V)
flux_ratio=la_mean(predicted_seds[vid,0:4])/la_mean(actual_seds[vid,0:4]) ;This is an attempt to increase SNR on derived E(B-V)
ebv[vid]=calz_guess_ebv(wave_refs[which_ebv_filter],flux_ratio,R_v=R_v)
ENDFOR
stop
save,actual_seds,predicted_seds,href,all_seds_indices,do_normalize,all_filters,NHvor,ebv,file=data_dir+'ngc0628_astrosat_voronoi_prediction_fast.sav',/verb
from_restore:
message,'see plot_phangs_ssps_against_uv_fast instead'
restore,data_dir+'ngc0628_astrosat_minus_prediction_fast.sav',/verb
restore,data_dir+'ngc0628_astrosat_voronoi_prediction_fast.sav',/verb
;needed only for NHCO
restore,data_dir+'ngc0628_jwst_images.sav',/verb
use_NHmap=NHCO
;stop
;===== plot histograms
window,0,xsize=800,ysize=800
!p.multi=[0,1,2]
xtit='(data-model) [MJy/sr]'
IF do_normalize THEN xtit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]'
NHthreshold=0. & tit=''
;NHthreshold=0.1 & tit='NH > 1e20 H/cm2'
;NHthreshold=0.5 & tit='NH > 5e20 H/cm2'
;NHthreshold=1. & tit='NH > 1e21 H/cm2'
;NHthreshold=5. & tit='NH > 5e21 H/cm2'
;NHthreshold=10. & tit='NH > 1e22 H/cm2'
;NHthreshold=50. & tit='NH > 5e22 H/cm2'
;vmin=-0.1 & vmax=0.1 & Nbins=50
vmin=-1. & vmax=1. & Nbins=51
;vmin=-5. & vmax=5. & Nbins=100
;vmin=-10. & vmax=10. & Nbins=100
;im=diff_maps[*,*,0]
ims=actual_seds-predicted_seds
im=ims[*,0]
ind=where(im NE la_undef())
xtit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]'
res=histogram(im[ind],locations=x,min=vmin,max=vmax,Nbins=Nbins)
yrange=[max([min(res),1.]),1.e4]
colors=['violet','blue','yellow','brown','red']
cgplot,x,res,/ylog,xtit=xtit,ytit='N',psym=10,yrange=yrange,/ysty,color='violet',tit=tit,/nodata
FOR k=0L,4 DO BEGIN
im=ims[*,k]
ind=where(im NE la_undef())
res1=histogram(im[ind],locations=x1,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x1,res1,color=colors[k],psym=10
ENDFOR
im=ims[*,0]
;ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
ind=where(im NE la_undef())
res0=histogram(im[ind],locations=x0,min=vmin,max=vmax,Nbins=Nbins)
cgplot,x0,res0,/ylog,xtit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]',ytit='N',psym=10,yrange=[max([min(res0),1.]),1.e4],/ysty,color='violet',tit=tit
im=ims[*,1]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res1=histogram(im[ind],locations=x1,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x1,res1,color='blue',psym=10
im=ims[*,2]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res2=histogram(im[ind],locations=x2,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x2,res2,color='yellow',psym=10
im=ims[*,3]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res3=histogram(im[ind],locations=x3,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x3,res3,color='brown',psym=10
im=ims[*,4]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res4=histogram(im[ind],locations=x4,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x4,res4,color='red',psym=10
;same in percent
window,0,xsize=800,ysize=800
!p.multi=[0,1,2]
xtit='(data-model) [%]'
IF do_normalize THEN xtit='(data-model) [%]'
NHthreshold=0. & tit=''
;NHthreshold=0.1 & tit='NH > 1e20 H/cm2'
;NHthreshold=0.5 & tit='NH > 5e20 H/cm2'
;NHthreshold=1. & tit='NH > 1e21 H/cm2'
;NHthreshold=5. & tit='NH > 5e21 H/cm2'
;NHthreshold=10. & tit='NH > 1e22 H/cm2'
;NHthreshold=50. & tit='NH > 5e22 H/cm2'
;vmin=-0.1 & vmax=0.1 & Nbins=50
;vmin=-1. & vmax=1. & Nbins=50
;vmin=-5. & vmax=5. & Nbins=100
vmin=-500. & vmax=500. & Nbins=100
;im=diff_maps[*,*,0]
ims=(actual_seds-predicted_seds)/predicted_seds*100.
;ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
im=ims[*,1]
ind=where(im NE la_undef())
res0=histogram(im[ind],locations=x0,min=vmin,max=vmax,Nbins=Nbins)
cgplot,x0,res0,/ylog,xtit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]',ytit='N',psym=10,yrange=[max([min(res0),1.]),1.e7],/ysty,color='violet',tit=tit
im=ims[*,1]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res1=histogram(im[ind],locations=x1,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x1,res1,color='blue',psym=10
im=ims[*,2]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res2=histogram(im[ind],locations=x2,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x2,res2,color='yellow',psym=10
im=ims[*,3]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res3=histogram(im[ind],locations=x3,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x3,res3,color='brown',psym=10
im=ims[*,4]
ind=where(im NE la_undef() AND use_NHmap GT NHthreshold)
res4=histogram(im[ind],locations=x4,min=vmin,max=vmax,Nbins=Nbins)
cgoplot,x4,res4,color='red',psym=10
cgplot,use_NHmap,diff_maps[*,*,0],/xlog,yr=[-1.,1.],/ysty,psym=3,xr=[1.e-3,1.e2],xtit='NH/1e21',ytit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]'
cgplot,use_NHmap,diff_maps[*,*,0],/xlog,yr=[-10.,10.],/ysty,psym=3,xr=[1.e-3,1.e2],xtit='NH/1e21',ytit='(data-model) normalized to 1e21 H/cm2 [MJy/sr]'
message,'========== Finished computing difference SEDs',/continue
stop
END