dustem_plugin_stellar_population.pro
198 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
Function dustem_plugin_stellar_population, key=key, val=val, scope=scope, paramtag=paramtag,help=help
;+
; NAME:
; dustem_plugin_stellar_population
; PURPOSE:
; Produces a system variable called '!dustem_composite_stellar_population' in which a structure containing parameters pertaining to (a) stellar population(s) is placed
; CATEGORY:
; DUSTEM Wrapper
; CALLING SEQUENCE:
; dustem_create_plugin_population(key=key,val=val)
; INPUTS:
; None
; OPTIONAL INPUT PARAMETERS:
; key = input parameter number
; val = input parameter value
; OUTPUTS:
; None
; OPTIONAL OUTPUT PARAMETERS:
; None
; ACCEPTED KEY-WORDS:
; help = if set, print this help
; COMMON BLOCKS:
; None
; SIDE EFFECTS:
; None
; RESTRICTIONS:
; The dustem fortran code must be installed
; The dustem idl wrapper must be installed
; PROCEDURE:
; This is a dustem plugin
;-
;- HISTORY: ADDED STELLAR LUMINOSITY CLASSES
IF keyword_set(help) THEN BEGIN
doc_library,'dustem_plugin_stellar_population'
goto,the_end
ENDIF
scope='STELLAR_POPULATION'
paramtag=['R_star (R_sol)','T_BB (K)','D (pc)','N_stars']
;REMARKS: BECAUSE I STILL HAVEN'T SET THE DEFAULT VALUE FOR THE MAJORIY OF THE STELLAR POULATIONS, I WILL COMMENT THE CORRESPONDING LINES INSTEAD OF CHOOSING ARBITRARY VALUES.
;CONSIDERED STARS: SPEC_TYPE(4) = OBAFG, LUM_CLASS(10) = IA+,IA,IAB,IB,II,III,IV,V,VI,VII
;===========Initializing the defaut stellar population structure===========
one_pop={radius:0.,temperature:0.,distance:0.,nstars:0.,popid:''}
;===========Counters===========
popnumber = 0.
counto = 0.
countb = 0.
counta = 0.
countf = 0.
countg = 0.
;==============================
;===========Specifying whether to add the Mathis field (and its scaling via G0) to the composite ISRF===================
ismathis=0 ;this value will have to be manually changed at the present moment
defsysv, '!ismathis', ismathis
;======================================================================================================================
;===========Constants (in cgs)========== (except for the stellar population distance (in pc))
rsun2cm = 6.957e10
;Stelar density constant to automate the computation of the number of stars. (It links the distance and the number of stars)
;The below stellar density will have to be modified as the density goes up towards the center, in globular clusters and goes down as we move out of the galactic plane
stellar_density = 0.14 ;stars/pc^3 stellar density in the SOLAR VICINITY
;============================================================================================
;================NOTA BENE==========================================================================
;KM are not included because I assumed that their UV part was not that important to excite the dust.
;This will help ease and shorten the fitting procedure
;===================================================================================================
IF keyword_set(key) THEN BEGIN
lumclass = (strmid(key,2)).remove(-1) ; extracting the luminosity class strings
params = strmid(key,0,/reverse_offset) ; extracting the indices (in the 'key' array) of the stellar parameters to fit
; Locating the O3 stellar population parameters - this new code structure accounts for the presence of different luminosity classes.
testo3 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 3
ind = where(testo3,countindo3)
IF countindo3 NE 0 THEN BEGIN
lumclasso3 = lumclass(ind)
nlmo3 = n_elements(lumclasso3)
indo3_1 = fltarr(nlmo3)
indo3_2 = indo3_1
indo3_3 = indo3_1
indo3_4 = indo3_1
countindo3_1 = indo3_1
countindo3_2 = indo3_1
countindo3_3 = indo3_1
countindo3_4 = indo3_1
FOR i=0L,nlmo3-1 DO BEGIN
popnumber+=1
counto+=1
indo3_1[i] = where(testo3 and params EQ 1, countindo3_1x); index of radius of this stellar population in the val array
countindo3_1[i] = countindo3_1x
indo3_2[i] = where(testo3 and params EQ 2, countindo3_2x); index of temperature of this stellar population in the val array
countindo3_2[i] = countindo3_2x
indo3_3[i] = where(testo3 and params EQ 3, countindo3_3x); index of distance of this stellar population in the val array
countindo3_3[i] = countindo3_3x
indo3_4[i] = where(testo3 and params EQ 4, countindo3_4x); index of the nstars of this stellar population in the val array (Q: does it make sense to have an nstars>1.? If not upper limiting it in the general fitting procedure might be handy)
countindo3_4[i] = countindo3_4x
ENDFOR
ENDIF
; Locating the O4 stellar population parameters
testo4 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 4
ind = where(testo4,countindo4)
IF countindo4 NE 0 THEN BEGIN
lumclasso4 = lumclass(ind)
nlmo4 = n_elements(lumclasso4)
indo4_1 = fltarr(nlmo4)
indo4_2 = indo4_1
indo4_3 = indo4_1
indo4_4 = indo4_1
countindo4_1 = indo4_1
countindo4_2 = indo4_1
countindo4_3 = indo4_1
countindo4_4 = indo4_1
FOR i=0L,nlmo4-1 DO BEGIN
popnumber+=1
counto+=1
indo4_1[i] = where(testo4 and params EQ 1, countindo4_1x); index of radius of this stellar population in the val array
countindo4_1[i] = countindo4_1x
indo4_2[i] = where(testo4 and params EQ 2, countindo4_2x); index of temperature of this stellar population in the val array
countindo4_2[i] = countindo4_2x
indo4_3[i] = where(testo4 and params EQ 3, countindo4_3x); index of distance of this stellar population in the val array
countindo4_3[i] = countindo4_3x
indo4_4[i] = where(testo4 and params EQ 4, countindo4_4x); index of the nstars of this stellar population in the val array
countindo4_4[i] = countindo4_4x
ENDFOR
ENDIF
; Locating the O5 stellar population parameters
testo5 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 5
ind = where(testo5,countindo5)
IF countindo5 NE 0 THEN BEGIN
lumclasso5 = lumclass(ind)
nlmo5 = n_elements(lumclasso5)
indo5_1 = fltarr(nlmo5)
indo5_2 = indo5_1
indo5_3 = indo5_1
indo5_4 = indo5_1
countindo5_1 = indo5_1
countindo5_2 = indo5_1
countindo5_3 = indo5_1
countindo5_4 = indo5_1
FOR i=0L,nlmo5-1 DO BEGIN
popnumber+=1
counto+=1
indo5_1[i] = where(testo5 and params EQ 1, countindo5_1x); index of radius of this stellar population in the val array
countindo5_1[i] = countindo5_1x
indo5_2[i] = where(testo5 and params EQ 2, countindo5_2x); index of temperature of this stellar population in the val array
countindo5_2[i] = countindo5_2x
indo5_3[i] = where(testo5 and params EQ 3, countindo5_3x); index of distance of this stellar population in the val array
countindo5_3[i] = countindo5_3x
indo5_4[i] = where(testo5 and params EQ 4, countindo5_4x); index of the nstars of this stellar population in the val array
countindo5_4[i] = countindo5_4x
ENDFOR
ENDIF
; Locating the O6 stellar population parameters
testo6 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 6
ind = where(testo6,countindo6)
IF countindo6 NE 0 THEN BEGIN
lumclasso6 = lumclass(ind)
nlmo6 = long(n_elements(lumclasso6))
indo6_1 = fltarr(nlmo6)
indo6_2 = indo6_1
indo6_3 = indo6_1
indo6_4 = indo6_1
countindo6_1 = indo6_1
countindo6_2 = indo6_1
countindo6_3 = indo6_1
countindo6_4 = indo6_1
FOR i=0L,nlmo6-1 DO BEGIN
popnumber+=1
counto+=1
indo6_1[i] = where(testo6 and params EQ 1, countindo6_1x); index of radius of this stellar population in the val array
countindo6_1[i] = countindo6_1x
indo6_2[i] = where(testo6 and params EQ 2, countindo6_2x); index of temperature of this stellar population in the val array
countindo6_2[i] = countindo6_2x
indo6_3[i] = where(testo6 and params EQ 3, countindo6_3x); index of distance of this stellar population in the val array
countindo6_3[i] = countindo6_3x
indo6_4[i] = where(testo6 and params EQ 4, countindo6_4x); index of the nstars of this stellar population in the val array
countindo6_4[i] = countindo6_4x
ENDFOR
ENDIF
; Locating the O7 stellar population parameters
testo7 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 7
ind = where(testo7,countindo7)
IF countindo7 NE 0 THEN BEGIN
lumclasso7 = lumclass(ind)
nlmo7 = n_elements(lumclasso7)
indo7_1 = fltarr(nlmo7)
indo7_2 = indo7_1
indo7_3 = indo7_1
indo7_4 = indo7_1
countindo7_1 = indo7_1
countindo7_2 = indo7_1
countindo7_3 = indo7_1
countindo7_4 = indo7_1
FOR i=0L,nlmo7-1 DO BEGIN
popnumber+=1
counto+=1
indo7_1[i] = where(testo7 and params EQ 1, countindo7_1x); index of radius of this stellar population in the val array
countindo7_1[i] = countindo7_1x
indo7_2[i] = where(testo7 and params EQ 2, countindo7_2x); index of temperature of this stellar population in the val array
countindo7_2[i] = countindo7_2x
indo7_3[i] = where(testo7 and params EQ 3, countindo7_3x); index of distance of this stellar population in the val array
countindo7_3[i] = countindo7_3x
indo7_4[i] = where(testo7 and params EQ 4, countindo7_4x); index of the nstars of this stellar population in the val array
countindo7_4[i] = countindo7_4x
ENDFOR
ENDIF
; Locating the O8 stellar population parameters
testo8 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 8
ind = where(testo8,countindo8)
IF countindo8 NE 0 THEN BEGIN
lumclasso8 = lumclass(ind)
nlmo8 = n_elements(lumclasso8)
indo8_1 = fltarr(nlmo8)
indo8_2 = indo8_1
indo8_3 = indo8_1
indo8_4 = indo8_1
countindo8_1 = indo8_1
countindo8_2 = indo8_1
countindo8_3 = indo8_1
countindo8_4 = indo8_1
FOR i=0L,nlmo8-1 DO BEGIN
popnumber+=1
counto+=1
indo8_1[i] = where(testo8 and params EQ 1, countindo8_1x); index of radius of this stellar population in the val array
countindo8_1[i] = countindo8_1x
indo8_2[i] = where(testo8 and params EQ 2, countindo8_2x); index of temperature of this stellar population in the val array
countindo8_2[i] = countindo8_2x
indo8_3[i] = where(testo8 and params EQ 3, countindo8_3x); index of distance of this stellar population in the val array
countindo8_3[i] = countindo8_3x
indo8_4[i] = where(testo8 and params EQ 4, countindo8_4x); index of the nstars of this stellar population in the val array
countindo8_4[i] = countindo8_4x
ENDFOR
ENDIF
; Locating the O9 stellar population parameters
testo9 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 9
ind = where(testo9,countindo9)
IF countindo9 NE 0 THEN BEGIN
lumclasso9 = strupcase(lumclass(ind))
nlmo9 = long(n_elements(lumclasso9))
indo9_1 = fltarr(nlmo9)
indo9_2 = indo9_1
indo9_3 = indo9_1
indo9_4 = indo9_1
countindo9_1 = indo9_1
countindo9_2 = indo9_1
countindo9_3 = indo9_1
countindo9_4 = indo9_1
FOR i=0L,nlmo9-1 DO BEGIN
popnumber+=1
counto+=1
indo9_1[i] = where(testo9 and params EQ 1, countindo9_1x); index of radius of this stellar population in the val array
countindo9_1[i] = countindo9_1x
indo9_2[i] = where(testo9 and params EQ 2, countindo9_2x); index of temperature of this stellar population in the val array
countindo9_2[i] = countindo9_2x
indo9_3[i] = where(testo9 and params EQ 3, countindo9_3x); index of distance of this stellar population in the val array
countindo9_3[i] = countindo9_3x
indo9_4[i] = where(testo9 and params EQ 4, countindo9_4x); index of the nstars of this stellar population in the val array
countindo9_4[i] = countindo9_4x
ENDFOR
ENDIF
;======================================================
; Locating the B0 stellar population parameters
testb0 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 0
ind = where(testb0,countindb0)
IF countindb0 NE 0 THEN BEGIN
lumclassb0 = uniq(lumclass(ind))
nlmb0 = n_elements(lumclassb0)
indb0_1 = fltarr(nlmb0)
indb0_2 = indb0_1
indb0_3 = indb0_1
indb0_4 = indb0_1
countindb0_1 = indb0_1
countindb0_2 = indb0_1
countindb0_3 = indb0_1
countindb0_4 = indb0_1
FOR i=0L,nlmb0-1 DO BEGIN
popnumber+=1
countb+=1
indb0_1[i] = where(testb0 and params EQ 1, countindb0_1x); index of radius of this stellar population in the val array
countindb0_1[i] = countindb0_1x
indb0_2[i] = where(testb0 and params EQ 2, countindb0_2x); index of temperature of this stellar population in the val array
countindb0_2[i] = countindb0_2x
indb0_3[i] = where(testb0 and params EQ 3, countindb0_3x); index of distance of this stellar population in the val array
countindb0_3[i] = countindb0_3x
indb0_4[i] = where(testb0 and params EQ 4, countindb0_4x); index of the nstars of this stellar population in the val array
countindb0_4[i] = countindb0_4x
ENDFOR
ENDIF
; Locating the B1 stellar population parameters
testb1 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 1
ind = where(testb1,countindb1)
IF countindb1 NE 0 THEN BEGIN
lumclassb1 = strupcase(lumclass(ind))
nlmb1 = long(n_elements(lumclassb1))
indb1_1 = fltarr(nlmb1)
indb1_2 = indb1_1
indb1_3 = indb1_1
indb1_4 = indb1_1
countindb1_1 = indb1_1
countindb1_2 = indb1_1
countindb1_3 = indb1_1
countindb1_4 = indb1_1
FOR i=0L,nlmb1-1 DO BEGIN
popnumber+=1
countb+=1
indb1_1[i] = where(testb1 and params EQ 1, countindb1_1x); index of radius of this stellar population in the val array
countindb1_1[i] = countindb1_1x
indb1_2[i] = where(testb1 and params EQ 2, countindb1_2x); index of temperature of this stellar population in the val array
countindb1_2[i] = countindb1_2x
indb1_3[i] = where(testb1 and params EQ 3, countindb1_3x); index of distance of this stellar population in the val array
countindb1_3[i] = countindb1_3x
indb1_4[i] = where(testb1 and params EQ 4, countindb1_4x); index of the nstars of this stellar population in the val array
countindb1_4[i] = countindb1_4x
ENDFOR
ENDIF
; Locating the B2 stellar population parameters
testb2 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 2
ind = where(testb2,countindb2)
IF countindb2 NE 0 THEN BEGIN
lumclassb2 = uniq(lumclass(ind))
nlmb2 = n_elements(lumclassb2)
indb2_1 = fltarr(nlmb2)
indb2_2 = indb2_1
indb2_3 = indb2_1
indb2_4 = indb2_1
countindb2_1 = indb2_1
countindb2_2 = indb2_1
countindb2_3 = indb2_1
countindb2_4 = indb2_1
FOR i=0L,nlmb2-1 DO BEGIN
popnumber+=1
countb+=1
indb2_1[i] = where(testb2 and params EQ 1, countindb2_1x); index of radius of this stellar population in the val array
countindb2_1[i] = countindb2_1x
indb2_2[i] = where(testb2 and params EQ 2, countindb2_2x); index of temperature of this stellar population in the val array
countindb2_2[i] = countindb2_2x
indb2_3[i] = where(testb2 and params EQ 3, countindb2_3x); index of distance of this stellar population in the val array
countindb2_3[i] = countindb2_3x
indb2_4[i] = where(testb2 and params EQ 4, countindb2_4x); index of the nstars of this stellar population in the val array
countindb2_4[i] = countindb2_4x
ENDFOR
ENDIF
; Locating the B3 stellar population parameters
testb3 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 3
ind = where(testb3,countindb3)
IF countindb3 NE 0 THEN BEGIN
lumclassb3 = uniq(lumclass(ind))
nlmb3 = n_elements(lumclassb3)
indb3_1 = fltarr(nlmb3)
indb3_2 = indb3_1
indb3_3 = indb3_1
indb3_4 = indb3_1
countindb3_1 = indb3_1
countindb3_2 = indb3_1
countindb3_3 = indb3_1
countindb3_4 = indb3_1
FOR i=0L,nlmb3-1 DO BEGIN
popnumber+=1
countb+=1
indb3_1[i] = where(testb3 and params EQ 1, countindb3_1x); index of radius of this stellar population in the val array
countindb3_1[i] = countindb3_1x
indb3_2[i] = where(testb3 and params EQ 2, countindb3_2x); index of temperature of this stellar population in the val array
countindb3_2[i] = countindb3_2x
indb3_3[i] = where(testb3 and params EQ 3, countindb3_3x); index of distance of this stellar population in the val array
countindb3_3[i] = countindb3_3x
indb3_4[i] = where(testb3 and params EQ 4, countindb3_4x); index of the nstars of this stellar population in the val array
countindb3_4[i] = countindb3_4x
ENDFOR
ENDIF
; Locating the B4 stellar population parameters
testb4 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 4
ind = where(testb4,countindb4)
IF countindb4 NE 0 THEN BEGIN
lumclassb4 = uniq(lumclass(ind))
nlmb4 = n_elements(lumclassb4)
indb4_1 = fltarr(nlmb4)
indb4_2 = indb4_1
indb4_3 = indb4_1
indb4_4 = indb4_1
countindb4_1 = indb4_1
countindb4_2 = indb4_1
countindb4_3 = indb4_1
countindb4_4 = indb4_1
FOR i=0L,nlmb4-1 DO BEGIN
popnumber+=1
countb+=1
indb4_1[i] = where(testb4 and params EQ 1, countindb4_1x); index of radius of this stellar population in the val array
countindb4_1[i] = countindb4_1x
indb4_2[i] = where(testb4 and params EQ 2, countindb4_2x); index of temperature of this stellar population in the val array
countindb4_2[i] = countindb4_2x
indb4_3[i] = where(testb4 and params EQ 3, countindb4_3x); index of distance of this stellar population in the val array
countindb4_3[i] = countindb4_3x
indb4_4[i] = where(testb4 and params EQ 4, countindb4_4x); index of the nstars of this stellar population in the val array
countindb4_4[i] = countindb4_4x
ENDFOR
ENDIF
; Locating the B5 stellar population parameters
testb5 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 5
ind = where(testb5,countindb5)
IF countindb5 NE 0 THEN BEGIN
lumclassb5 = uniq(lumclass(ind))
nlmb5 = n_elements(lumclassb5)
indb5_1 = fltarr(nlmb5)
indb5_2 = indb5_1
indb5_3 = indb5_1
indb5_4 = indb5_1
countindb5_1 = indb5_1
countindb5_2 = indb5_1
countindb5_3 = indb5_1
countindb5_4 = indb5_1
FOR i=0L,nlmb5-1 DO BEGIN
popnumber+=1
countb+=1
indb5_1[i] = where(testb5 and params EQ 1, countindb5_1x); index of radius of this stellar population in the val array
countindb5_1[i] = countindb5_1x
indb5_2[i] = where(testb5 and params EQ 2, countindb5_2x); index of temperature of this stellar population in the val array
countindb5_2[i] = countindb5_2x
indb5_3[i] = where(testb5 and params EQ 3, countindb5_3x); index of distance of this stellar population in the val array
countindb5_3[i] = countindb5_3x
indb5_4[i] = where(testb5 and params EQ 4, countindb5_4x); index of the nstars of this stellar population in the val array
countindb5_4[i] = countindb5_4x
ENDFOR
ENDIF
; Locating the B6 stellar population parameters
testb6 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 6
ind = where(testb6,countindb6)
IF countindb6 NE 0 THEN BEGIN
lumclassb6 = uniq(lumclass(ind))
nlmb6 = n_elements(lumclassb6)
indb6_1 = fltarr(nlmb6)
indb6_2 = indb6_1
indb6_3 = indb6_1
indb6_4 = indb6_1
countindb6_1 = indb6_1
countindb6_2 = indb6_1
countindb6_3 = indb6_1
countindb6_4 = indb6_1
FOR i=0L,nlmb6-1 DO BEGIN
popnumber+=1
countb+=1
indb6_1[i] = where(testb6 and params EQ 1, countindb6_1x); index of radius of this stellar population in the val array
countindb6_1[i] = countindb6_1x
indb6_2[i] = where(testb6 and params EQ 2, countindb6_2x); index of temperature of this stellar population in the val array
countindb6_2[i] = countindb6_2x
indb6_3[i] = where(testb6 and params EQ 3, countindb6_3x); index of distance of this stellar population in the val array
countindb6_3[i] = countindb6_3x
indb6_4[i] = where(testb6 and params EQ 4, countindb6_4x); index of the nstars of this stellar population in the val array
countindb6_4[i] = countindb6_4x
ENDFOR
ENDIF
; Locating the B7 stellar population parameters
testb7 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 7
ind = where(testb7,countindb7)
IF countindb7 NE 0 THEN BEGIN
lumclassb7 = uniq(lumclass(ind))
nlmb7 = n_elements(lumclassb7)
indb7_1 = fltarr(nlmb7)
indb7_2 = indb7_1
indb7_3 = indb7_1
indb7_4 = indb7_1
countindb7_1 = indb7_1
countindb7_2 = indb7_1
countindb7_3 = indb7_1
countindb7_4 = indb7_1
FOR i=0L,nlmb7-1 DO BEGIN
popnumber+=1
countb+=1
indb7_1[i] = where(testb7 and params EQ 1, countindb7_1x); index of radius of this stellar population in the val array
countindb7_1[i] = countindb7_1x
indb7_2[i] = where(testb7 and params EQ 2, countindb7_2x); index of temperature of this stellar population in the val array
countindb7_2[i] = countindb7_2x
indb7_3[i] = where(testb7 and params EQ 3, countindb7_3x); index of distance of this stellar population in the val array
countindb7_3[i] = countindb7_3x
indb7_4[i] = where(testb7 and params EQ 4, countindb7_4x); index of the nstars of this stellar population in the val array
countindb7_4[i] = countindb7_4x
ENDFOR
ENDIF
; Locating the B8 stellar population parameters
testb8 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 8
ind = where(testb8,countindb8)
IF countindb8 NE 0 THEN BEGIN
lumclassb8 = uniq(lumclass(ind))
nlmb8 = n_elements(lumclassb8)
indb8_1 = fltarr(nlmb8)
indb8_2 = indb8_1
indb8_3 = indb8_1
indb8_4 = indb8_1
countindb8_1 = indb8_1
countindb8_2 = indb8_1
countindb8_3 = indb8_1
countindb8_4 = indb8_1
FOR i=0L,nlmb8-1 DO BEGIN
popnumber+=1
countb+=1
indb8_1[i] = where(testb8 and params EQ 1, countindb8_1x); index of radius of this stellar population in the val array
countindb8_1[i] = countindb8_1x
indb8_2[i] = where(testb8 and params EQ 2, countindb8_2x); index of temperature of this stellar population in the val array
countindb8_2[i] = countindb8_2x
indb8_3[i] = where(testb8 and params EQ 3, countindb8_3x); index of distance of this stellar population in the val array
countindb8_3[i] = countindb8_3x
indb8_4[i] = where(testb8 and params EQ 4, countindb8_4x); index of the nstars of this stellar population in the val array
countindb8_4[i] = countindb8_4x
ENDFOR
ENDIF
; Locating the B9 stellar population parameters
testb9 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 9
ind = where(testb9,countindb9)
IF countindb9 NE 0 THEN BEGIN
lumclassb9 = uniq(lumclass(ind))
nlmb9 = n_elements(lumclassb9)
indb9_1 = fltarr(nlmb9)
indb9_2 = indb9_1
indb9_3 = indb9_1
indb9_4 = indb9_1
countindb9_1 = indb9_1
countindb9_2 = indb9_1
countindb9_3 = indb9_1
countindb9_4 = indb9_1
FOR i=0L,nlmb9-1 DO BEGIN
popnumber+=1
countb+=1
indb9_1[i] = where(testb9 and params EQ 1, countindb9_1x); index of radius of this stellar population in the val array
countindb9_1[i] = countindb9_1x
indb9_2[i] = where(testb9 and params EQ 2, countindb9_2x); index of temperature of this stellar population in the val array
countindb9_2[i] = countindb9_2x
indb9_3[i] = where(testb9 and params EQ 3, countindb9_3x); index of distance of this stellar population in the val array
countindb9_3[i] = countindb9_3x
indb9_4[i] = where(testb9 and params EQ 4, countindb9_4x); index of the nstars of this stellar population in the val array
countindb9_4[i] = countindb9_4x
ENDFOR
ENDIF
;======================================================
; Locating the A0 stellar population parameters
testa0 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 0
ind = where(testa0,countinda0)
IF countinda0 NE 0 THEN BEGIN
lumclassA0 = uniq(lumclass(ind))
nlmA0 = n_elements(lumclassA0)
indA0_1 = fltarr(nlmA0)
indA0_2 = indA0_1
indA0_3 = indA0_1
indA0_4 = indA0_1
countindA0_1 = indA0_1
countindA0_2 = indA0_1
countindA0_3 = indA0_1
countindA0_4 = indA0_1
FOR i=0L,nlmA0-1 DO BEGIN
popnumber+=1
counta+=1
inda0_1[i] = where(testa0 and params EQ 1, countinda0_1x); index of radius of this stellar population in the val array
countinda0_1[i] = countinda0_1x
inda0_2[i] = where(testa0 and params EQ 2, countinda0_2x); index of temperature of this stellar population in the val array
countinda0_2[i] = countinda0_2x
inda0_3[i] = where(testa0 and params EQ 3, countinda0_3x); index of distance of this stellar population in the val array
countinda0_3[i] = countinda0_3x
inda0_4[i] = where(testa0 and params EQ 4, countinda0_4x); index of the nstars of this stellar population in the val array
countinda0_4[i] = countinda0_4x
ENDFOR
ENDIF
; Locating the A1 stellar population parameters
testa1 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 1
ind = where(testa1,countinda1)
IF countinda1 NE 0 THEN BEGIN
lumclassA1 = lumclass(ind)
nlmA1 = n_elements(lumclassA1)
indA1_1 = fltarr(nlmA1)
indA1_2 = indA1_1
indA1_3 = indA1_1
indA1_4 = indA1_1
countindA1_1 = indA1_1
countindA1_2 = indA1_1
countindA1_3 = indA1_1
countindA1_4 = indA1_1
FOR i=0L,nlmA1-1 DO BEGIN
popnumber+=1
counta+=1
inda1_1[i] = where(testa1 and params EQ 1, countinda1_1x); index of radius of this stellar population in the val array
countinda1_1[i] = countinda1_1x
inda1_2[i] = where(testa1 and params EQ 2, countinda1_2x); index of temperature of this stellar population in the val array
countinda1_2[i] = countinda1_2x
inda1_3[i] = where(testa1 and params EQ 3, countinda1_3x); index of distance of this stellar population in the val array
countinda1_3[i] = countinda1_3x
inda1_4[i] = where(testa1 and params EQ 4, countinda1_4x); index of the nstars of this stellar population in the val array
countinda1_4[i] = countinda1_4x
ENDFOR
ENDIF
; Locating the A2 stellar population parameters
testa2 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 2
ind = where(testa2,countinda2)
IF countinda2 NE 0 THEN BEGIN
lumclassA2 = lumclass(ind)
nlmA2 = n_elements(lumclassA2)
indA2_1 = fltarr(nlmA2)
indA2_2 = indA2_1
indA2_3 = indA2_1
indA2_4 = indA2_1
countindA2_1 = indA2_1
countindA2_2 = indA2_1
countindA2_3 = indA2_1
countindA2_4 = indA2_1
FOR i=0L,nlmA2-1 DO BEGIN
popnumber+=1
counta+=1
inda2_1[i] = where(testa2 and params EQ 1, countinda2_1x); index of radius of this stellar population in the val array
countinda2_1[i] = countinda2_1x
inda2_2[i] = where(testa2 and params EQ 2, countinda2_2x); index of temperature of this stellar population in the val array
countinda2_2[i] = countinda2_2x
inda2_3[i] = where(testa2 and params EQ 3, countinda2_3x); index of distance of this stellar population in the val array
countinda2_3[i] = countinda2_3x
inda2_4[i] = where(testa2 and params EQ 4, countinda2_4x); index of the nstars of this stellar population in the val array
countinda2_4[i] = countinda2_4x
ENDFOR
ENDIF
; Locating the A3 stellar population parameters
testa3 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 3
ind = where(testa3,countinda3)
IF countinda3 NE 0 THEN BEGIN
lumclassA3 = lumclass(ind)
nlmA3 = n_elements(lumclassA3)
indA3_1 = fltarr(nlmA3)
indA3_2 = indA3_1
indA3_3 = indA3_1
indA3_4 = indA3_1
countindA3_1 = indA3_1
countindA3_2 = indA3_1
countindA3_3 = indA3_1
countindA3_4 = indA3_1
FOR i=0L,nlmA3-1 DO BEGIN
popnumber+=1
counta+=1
inda3_1[i] = where(testa3 and params EQ 1, countinda3_1x); index of radius of this stellar population in the val array
countinda3_1[i] = countinda3_1x
inda3_2[i] = where(testa3 and params EQ 2, countinda3_2x); index of temperature of this stellar population in the val array
countinda3_2[i] = countinda3_2x
inda3_3[i] = where(testa3 and params EQ 3, countinda3_3x); index of distance of this stellar population in the val array
countinda3_3[i] = countinda3_3x
inda3_4[i] = where(testa3 and params EQ 4, countinda3_4x); index of the nstars of this stellar population in the val array
countinda3_4[i] = countinda3_4x
ENDFOR
ENDIF
; Locating the A4 stellar population parameters
testa4 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 4
ind = where(testa4,countinda4)
IF countinda4 NE 0 THEN BEGIN
lumclassA4 = lumclass(ind)
nlmA4 = n_elements(lumclassA4)
indA4_1 = fltarr(nlmA4)
indA4_2 = indA4_1
indA4_3 = indA4_1
indA4_4 = indA4_1
countindA4_1 = indA4_1
countindA4_2 = indA4_1
countindA4_3 = indA4_1
countindA4_4 = indA4_1
FOR i=0L,nlmA4-1 DO BEGIN
popnumber+=1
counta+=1
inda4_1[i] = where(testa4 and params EQ 1, countinda4_1x); index of radius of this stellar population in the val array
countinda4_1[i] = countinda4_1x
inda4_2[i] = where(testa4 and params EQ 2, countinda4_2x); index of temperature of this stellar population in the val array
countinda4_2[i] = countinda4_2x
inda4_3[i] = where(testa4 and params EQ 3, countinda4_3x); index of distance of this stellar population in the val array
countinda4_3[i] = countinda4_3x
inda4_4[i] = where(testa4 and params EQ 4, countinda4_4x); index of the nstars of this stellar population in the val array
countinda4_4[i] = countinda4_4x
ENDFOR
ENDIF
; Locating the A5 stellar population parameters
testa5 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 5
ind = where(testa5,countinda5)
IF countinda5 NE 0 THEN BEGIN
lumclassA5 = lumclass(ind)
nlmA5 = n_elements(lumclassA5)
indA5_1 = fltarr(nlmA5)
indA5_2 = indA5_1
indA5_3 = indA5_1
indA5_4 = indA5_1
countindA5_1 = indA5_1
countindA5_2 = indA5_1
countindA5_3 = indA5_1
countindA5_4 = indA5_1
FOR i=0L,nlmA5-1 DO BEGIN
popnumber+=1
counta+=1
inda5_1[i] = where(testa5 and params EQ 1, countinda5_1x); index of radius of this stellar population in the val array
countinda5_1[i] = countinda5_1x
inda5_2[i] = where(testa5 and params EQ 2, countinda5_2x); index of temperature of this stellar population in the val array
countinda5_2[i] = countinda5_2x
inda5_3[i] = where(testa5 and params EQ 3, countinda5_3x); index of distance of this stellar population in the val array
countinda5_3[i] = countinda5_3x
inda5_4[i] = where(testa5 and params EQ 4, countinda5_4x); index of the nstars of this stellar population in the val array
countinda5_4[i] = countinda5_4x
ENDFOR
ENDIF
; Locating the A6 stellar population parameters
testa6 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 6
ind = where(testa6,countinda6)
IF countinda6 NE 0 THEN BEGIN
lumclassA6 = lumclass(ind)
nlmA6 = n_elements(lumclassA6)
indA6_1 = fltarr(nlmA6)
indA6_2 = indA6_1
indA6_3 = indA6_1
indA6_4 = indA6_1
countindA6_1 = indA6_1
countindA6_2 = indA6_1
countindA6_3 = indA6_1
countindA6_4 = indA6_1
FOR i=0L,nlmA6-1 DO BEGIN
popnumber+=1
counta+=1
inda6_1[i] = where(testa6 and params EQ 1, countinda6_1x); index of radius of this stellar population in the val array
countinda6_1[i] = countinda6_1x
inda6_2[i] = where(testa6 and params EQ 2, countinda6_2x); index of temperature of this stellar population in the val array
countinda6_2[i] = countinda6_2x
inda6_3[i] = where(testa6 and params EQ 3, countinda6_3x); index of distance of this stellar population in the val array
countinda6_3[i] = countinda6_3x
inda6_4[i] = where(testa6 and params EQ 4, countinda6_4x); index of the nstars of this stellar population in the val array
countinda6_4[i] = countinda6_4x
ENDFOR
ENDIF
; Locating the A7 stellar population parameters
testa7 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 7
ind = where(testa7,countinda7)
IF countinda7 NE 0 THEN BEGIN
lumclassA7 = lumclass(ind)
nlmA7 = n_elements(lumclassA7)
indA7_1 = fltarr(nlmA7)
indA7_2 = indA7_1
indA7_3 = indA7_1
indA7_4 = indA7_1
countindA7_1 = indA7_1
countindA7_2 = indA7_1
countindA7_3 = indA7_1
countindA7_4 = indA7_1
FOR i=0L,nlmA7-1 DO BEGIN
popnumber+=1
counta+=1
inda7_1[i] = where(testa7 and params EQ 1, countinda7_1x); index of radius of this stellar population in the val array
countinda7_1[i] = countinda7_1x
inda7_2[i] = where(testa7 and params EQ 2, countinda7_2x); index of temperature of this stellar population in the val array
countinda7_2[i] = countinda7_2x
inda7_3[i] = where(testa7 and params EQ 3, countinda7_3x); index of distance of this stellar population in the val array
countinda7_3[i] = countinda7_3x
inda7_4[i] = where(testa7 and params EQ 4, countinda7_4x); index of the nstars of this stellar population in the val array
countinda7_4[i] = countinda7_4x
ENDFOR
ENDIF
; Locating the A8 stellar population parameters
testa8 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 8
ind = where(testa8,countinda8)
IF countinda8 NE 0 THEN BEGIN
lumclassA8 = lumclass(ind)
nlmA8 = n_elements(lumclassA8)
indA8_1 = fltarr(nlmA8)
indA8_2 = indA8_1
indA8_3 = indA8_1
indA8_4 = indA8_1
countindA8_1 = indA8_1
countindA8_2 = indA8_1
countindA8_3 = indA8_1
countindA8_4 = indA8_1
FOR i=0L,nlmA8-1 DO BEGIN
popnumber+=1
counta+=1
inda8_1[i] = where(testa8 and params EQ 1, countinda8_1x); index of radius of this stellar population in the val array
countinda8_1[i] = countinda8_1x
inda8_2[i] = where(testa8 and params EQ 2, countinda8_2x); index of temperature of this stellar population in the val array
countinda8_2[i] = countinda8_2x
inda8_3[i] = where(testa8 and params EQ 3, countinda8_3x); index of distance of this stellar population in the val array
countinda8_3[i] = countinda8_3x
inda8_4[i] = where(testa8 and params EQ 4, countinda8_4x); index of the nstars of this stellar population in the val array
countinda8_4[i] = countinda8_4x
ENDFOR
ENDIF
; Locating the A9 stellar population parameters
testa9 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 9
ind = where(testa9,countinda9)
IF countinda9 NE 0 THEN BEGIN
lumclassA9 = lumclass(ind)
nlmA9 = n_elements(lumclassA9)
indA9_1 = fltarr(nlmA9)
indA9_2 = indA9_1
indA9_3 = indA9_1
indA9_4 = indA9_1
countindA9_1 = indA9_1
countindA9_2 = indA9_1
countindA9_3 = indA9_1
countindA9_4 = indA9_1
FOR i=0L,nlmA9-1 DO BEGIN
popnumber+=1
counta+=1
inda9_1[i] = where(testa9 and params EQ 1, countinda9_1x); index of radius of this stellar population in the val array
countinda9_1[i] = countinda9_1x
inda9_2[i] = where(testa9 and params EQ 2, countinda9_2x); index of temperature of this stellar population in the val array
countinda9_2[i] = countinda9_2x
inda9_3[i] = where(testa9 and params EQ 3, countinda9_3x); index of distance of this stellar population in the val array
countinda9_3[i] = countinda9_3x
inda9_4[i] = where(testa9 and params EQ 4, countinda9_4x); index of the nstars of this stellar population in the val array
countinda9_4[i] = countinda9_4x
ENDFOR
ENDIF
;======================================================
; Locating the F0 stellar population parameters
testf0 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 0
ind = where(testf0,countindf0)
IF countindf0 NE 0 THEN BEGIN
lumclassF0 = lumclass(ind)
nlmF0 = n_elements(lumclassF0)
indF0_1 = fltarr(nlmF0)
indF0_2 = indF0_1
indF0_3 = indF0_1
indF0_4 = indF0_1
countindF0_1 = indF0_1
countindF0_2 = indF0_1
countindF0_3 = indF0_1
countindF0_4 = indF0_1
FOR i=0L,nlmF0-1 DO BEGIN
popnumber+=1
countf+=1
indf0_1[i] = where(testf0 and params EQ 1, countindf0_1x); index of radius of this stellar population in the val array
countindf0_1[i] = countindf0_1x
indf0_2[i] = where(testf0 and params EQ 2, countindf0_2x); index of temperature of this stellar population in the val array
countindf0_2[i] = countindf0_2x
indf0_3[i] = where(testf0 and params EQ 3, countindf0_3x); index of distance of this stellar population in the val array
countindf0_3[i] = countindf0_3x
indf0_4[i] = where(testf0 and params EQ 4, countindf0_4x); index of the nstars of this stellar population in the val array
countindf0_4[i] = countindf0_4x
ENDFOR
ENDIF
; Locating the F1 stellar population parameters
testf1 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 1
ind = where(testf1,countindf1)
IF countindf1 NE 0 THEN BEGIN
lumclassF1 = lumclass(ind)
nlmF1 = n_elements(lumclassF1)
indF1_1 = fltarr(nlmF1)
indF1_2 = indF1_1
indF1_3 = indF1_1
indF1_4 = indF1_1
countindF1_1 = indF1_1
countindF1_2 = indF1_1
countindF1_3 = indF1_1
countindF1_4 = indF1_1
FOR i=0L,nlmF1-1 DO BEGIN
popnumber+=1
countf+=1
indf1_1[i] = where(testf1 and params EQ 1, countindf1_1x); index of radius of this stellar population in the val array
countindf1_1[i] = countindf1_1x
indf1_2[i] = where(testf1 and params EQ 2, countindf1_2x); index of temperature of this stellar population in the val array
countindf1_2[i] = countindf1_2x
indf1_3[i] = where(testf1 and params EQ 3, countindf1_3x); index of distance of this stellar population in the val array
countindf1_3[i] = countindf1_3x
indf1_4[i] = where(testf1 and params EQ 4, countindf1_4x); index of the nstars of this stellar population in the val array
countindf1_4[i] = countindf1_4x
ENDFOR
ENDIF
; Locating the F2 stellar population parameters
testf2 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 2
ind = where(testf2,countindf2)
IF countindf2 NE 0 THEN BEGIN
lumclassF2 = lumclass(ind)
nlmF2 = n_elements(lumclassF2)
indF2_1 = fltarr(nlmF2)
indF2_2 = testf2
indF2_3 = testf2
indF2_4 = testf2
countindF2_1 = testf2
countindF2_2 = testf2
countindF2_3 = testf2
countindF2_4 = testf2
FOR i=0L,nlmF2-1 DO BEGIN
popnumber+=1
countf+=1
indf2_1[i] = where(testf2 and params EQ 1, countindf2_1x); index of radius of this stellar population in the val array
countindf2_1[i] = countindf2_1x
indf2_2[i] = where(testf2 and params EQ 2, countindf2_2x); index of temperature of this stellar population in the val array
countindf2_2[i] = countindf2_2x
indf2_3[i] = where(testf2 and params EQ 3, countindf2_3x); index of distance of this stellar population in the val array
countindf2_3[i] = countindf2_3x
indf2_4[i] = where(testf2 and params EQ 4, countindf2_4x); index of the nstars of this stellar population in the val array
countindf2_4[i] = countindf2_4x
ENDFOR
ENDIF
; Locating the F3 stellar population parameters
testf3 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 3
ind = where(testf3,countindf3)
IF countindf3 NE 0 THEN BEGIN
lumclassF3 = lumclass(ind)
nlmF3 = n_elements(lumclassF3)
indF3_1 = fltarr(nlmF3)
indF3_2 = indF3_1
indF3_3 = indF3_1
indF3_4 = indF3_1
countindF3_1 = indF3_1
countindF3_2 = indF3_1
countindF3_3 = indF3_1
countindF3_4 = indF3_1
FOR i=0L,nlmF3-1 DO BEGIN
popnumber+=1
countf+=1
indf3_1[i] = where(testf3 and params EQ 1, countindf3_1x); index of radius of this stellar population in the val array
countindf3_1[i] = countindf3_1x
indf3_2[i] = where(testf3 and params EQ 2, countindf3_2x); index of temperature of this stellar population in the val array
countindf3_2[i] = countindf3_2x
indf3_3[i] = where(testf3 and params EQ 3, countindf3_3x); index of distance of this stellar population in the val array
countindf3_3[i] = countindf3_3x
indf3_4[i] = where(testf3 and params EQ 4, countindf3_4x); index of the nstars of this stellar population in the val array
countindf3_4[i] = countindf3_4x
ENDFOR
ENDIF
; Locating the F4 stellar population parameters
testf4 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 4
ind = where(testf4,countindf4)
IF countindf4 NE 0 THEN BEGIN
lumclassF4 = lumclass(ind)
nlmF4 = n_elements(lumclassF4)
indF4_1 = fltarr(nlmF4)
indF4_2 = indF4_1
indF4_3 = indF4_1
indF4_4 = indF4_1
countindF4_1 = indF4_1
countindF4_2 = indF4_1
countindF4_3 = indF4_1
countindF4_4 = indF4_1
FOR i=0L,nlmF4-1 DO BEGIN
popnumber+=1
countf+=1
indf4_1[i] = where(testf4 and params EQ 1, countindf4_1x); index of radius of this stellar population in the val array
countindf4_1[i] = countindf4_1x
indf4_2[i] = where(testf4 and params EQ 2, countindf4_2x); index of temperature of this stellar population in the val array
countindf4_2[i] = countindf4_2x
indf4_3[i] = where(testf4 and params EQ 3, countindf4_3x); index of distance of this stellar population in the val array
countindf4_3[i] = countindf4_3x
indf4_4[i] = where(testf4 and params EQ 4, countindf4_4x); index of the nstars of this stellar population in the val array
countindf4_4[i] = countindf4_4x
ENDFOR
ENDIF
; Locating the F5 stellar population parameters
testf5 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 5
ind = where(testf5,countindf5)
IF countindf5 NE 0 THEN BEGIN
lumclassF5 = lumclass(ind)
nlmF5 = n_elements(lumclassF5)
indF5_1 = fltarr(nlmF5)
indF5_2 = indF5_1
indF5_3 = indF5_1
indF5_4 = indF5_1
countindF5_1 = indF5_1
countindF5_2 = indF5_1
countindF5_3 = indF5_1
countindF5_4 = indF5_1
FOR i=0L,nlmF5-1 DO BEGIN
popnumber+=1
countf+=1
indf5_1[i] = where(testf5 and params EQ 1, countindf5_1x); index of radius of this stellar population in the val array
countindf5_1[i] = countindf5_1x
indf5_2[i] = where(testf5 and params EQ 2, countindf5_2x); index of temperature of this stellar population in the val array
countindf5_2[i] = countindf5_2x
indf5_3[i] = where(testf5 and params EQ 3, countindf5_3x); index of distance of this stellar population in the val array
countindf5_3[i] = countindf5_3x
indf5_4[i] = where(testf5 and params EQ 4, countindf5_4x); index of the nstars of this stellar population in the val array
countindf5_4[i] = countindf5_4x
ENDFOR
ENDIF
; Locating the F6 stellar population parameters
testf6 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 6
ind = where(testf6,countindf6)
IF countindf6 NE 0 THEN BEGIN
lumclassF6 = lumclass(ind)
nlmF6 = n_elements(lumclassF6)
indF6_1 = fltarr(nlmF6)
indF6_2 = indF6_1
indF6_3 = indF6_1
indF6_4 = indF6_1
countindF6_1 = indF6_1
countindF6_2 = indF6_1
countindF6_3 = indF6_1
countindF6_4 = indF6_1
FOR i=0L,nlmF6-1 DO BEGIN
popnumber+=1
countf+=1
indf6_1[i] = where(testf6 and params EQ 1, countindf6_1x); index of radius of this stellar population in the val array
countindf6_1[i] = countindf6_1x
indf6_2[i] = where(testf6 and params EQ 2, countindf6_2x); index of temperature of this stellar population in the val array
countindf6_2[i] = countindf6_2x
indf6_3[i] = where(testf6 and params EQ 3, countindf6_3x); index of distance of this stellar population in the val array
countindf6_3[i] = countindf6_3x
indf6_4[i] = where(testf6 and params EQ 4, countindf6_4x); index of the nstars of this stellar population in the val array
countindf6_4[i] = countindf6_4x
ENDFOR
ENDIF
; Locating the F7 stellar population parameters
testf7 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 7
ind = where(testf7,countindf7)
IF countindf7 NE 0 THEN BEGIN
umclassF7 = lumclass(ind)
nlmF7 = n_elements(lumclassF7)
indF7_1 = fltarr(nlmF7)
indF7_2 = indF7_1
indF7_3 = indF7_1
indF7_4 = indF7_1
countindF7_1 = indF7_1
countindF7_2 = indF7_1
countindF7_3 = indF7_1
countindF7_4 = indF7_1
FOR i=0L,nlmF7-1 DO BEGIN
popnumber+=1
countf+=1
indf7_1[i] = where(testf7 and params EQ 1, countindf7_1x); index of radius of this stellar population in the val array
countindf7_1[i] = countindf7_1x
indf7_2[i] = where(testf7 and params EQ 2, countindf7_2x); index of temperature of this stellar population in the val array
countindf7_2[i] = countindf7_2x
indf7_3[i] = where(testf7 and params EQ 3, countindf7_3x); index of distance of this stellar population in the val array
countindf7_3[i] = countindf7_3x
indf7_4[i] = where(testf7 and params EQ 4, countindf7_4x); index of the nstars of this stellar population in the val array
countindf7_4[i] = countindf7_4x
ENDFOR
ENDIF
; Locating the F8 stellar population parameters
testf8 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 8
ind = where(testf8,countindf8)
IF countindf8 NE 0 THEN BEGIN
lumclassF8 = lumclass(ind)
nlmF8 = n_elements(lumclassF8)
indF8_1 = fltarr(nlmF8)
indF8_2 = indF8_1
indF8_3 = indF8_1
indF8_4 = indF8_1
countindF8_1 = indF8_1
countindF8_2 = indF8_1
countindF8_3 = indF8_1
countindF8_4 = indF8_1
FOR i=0L,nlmF8-1 DO BEGIN
popnumber+=1
countf+=1
indf8_1[i] = where(testf8 and params EQ 1, countindf8_1x); index of radius of this stellar population in the val array
countindf8_1[i] = countindf8_1x
indf8_2[i] = where(testf8 and params EQ 2, countindf8_2x); index of temperature of this stellar population in the val array
countindf8_2[i] = countindf8_2x
indf8_3[i] = where(testf8 and params EQ 3, countindf8_3x); index of distance of this stellar population in the val array
countindf8_3[i] = countindf8_3x
indf8_4[i] = where(testf8 and params EQ 4, countindf8_4x); index of the nstars of this stellar population in the val array
countindf8_4[i] = countindf8_4x
ENDFOR
ENDIF
; Locating the F9 stellar population parameters
testf9 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 9
ind = where(testf9,countindf9)
IF countindf9 NE 0 THEN BEGIN
lumclassF9 = lumclass(ind)
nlmF9 = n_elements(lumclassF9)
indF9_1 = fltarr(nlmF9)
indF9_2 = indF9_1
indF9_3 = indF9_1
indF9_4 = indF9_1
countindF9_1 = indF9_1
countindF9_2 = indF9_1
countindF9_3 = indF9_1
countindF9_4 = indF9_1
FOR i=0L,nlmF9-1 DO BEGIN
popnumber+=1
countf+=1
indf9_1[i] = where(testf9 and params EQ 1, countindf9_1x); index of radius of this stellar population in the val array
countindf9_1[i] = countindf9_1x
indf9_2[i] = where(testf9 and params EQ 2, countindf9_2x); index of temperature of this stellar population in the val array
countindf9_2[i] = countindf9_2x
indf9_3[i] = where(testf9 and params EQ 3, countindf9_3x); index of distance of this stellar population in the val array
countindf9_3[i] = countindf9_3x
indf9_4[i] = where(testf9 and params EQ 4, countindf9_4x); index of the nstars of this stellar population in the val array
countindf9_4[i] = countindf9_4x
ENDFOR
ENDIF
;======================================================
; Locating the G0 stellar population parameters
testg0 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 0
ind = where(testg0,countindg0)
IF countindg0 NE 0 THEN BEGIN
lumclassG0 = lumclass(ind)
nlmG0 = n_elements(lumclassG0)
indG0_1 = fltarr(nlmG0)
indG0_2 = indG0_1
indG0_3 = indG0_1
indG0_4 = indG0_1
countindG0_1 = indG0_1
countindG0_2 = indG0_1
countindG0_3 = indG0_1
countindG0_4 = indG0_1
FOR i=0L,nlmG0-1 DO BEGIN
popnumber+=1
countg+=1
indg0_1[i] = where(testg0 and params EQ 1, countindg0_1x); index of radius of this stellar population in the val array
countindg0_1[i] = countindg0_1x
indg0_2[i] = where(testg0 and params EQ 2, countindg0_2x); index of temperature of this stellar population in the val array
countindg0_2[i] = countindg0_2x
indg0_3[i] = where(testg0 and params EQ 3, countindg0_3x); index of distance of this stellar population in the val array
countindg0_3[i] = countindg0_3x
indg0_4[i] = where(testg0 and params EQ 4, countindg0_4x); index of the nstars of this stellar population in the val array
countindg0_4[i] = countindg0_4x
ENDFOR
ENDIF
; Locating the G1 stellar population parameters
testg1 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 1
ind = where(testg1,countindg1)
IF countindg1 NE 0 THEN BEGIN
lumclassG1 = lumclass(ind)
nlmG1 = n_elements(lumclassG1)
indG1_1 = fltarr(nlmG1)
indG1_2 = indG1_1
indG1_3 = indG1_1
indG1_4 = indG1_1
countindG1_1 = indG1_1
countindG1_2 = indG1_1
countindG1_3 = indG1_1
countindG1_4 = indG1_1
FOR i=0L,nlmG1-1 DO BEGIN
popnumber+=1
countg+=1
indg1_1[i] = where(testg1 and params EQ 1, countindg1_1x); index of radius of this stellar population in the val array
countindg1_1[i] = countindg1_1x
indg1_2[i] = where(testg1 and params EQ 2, countindg1_2x); index of temperature of this stellar population in the val array
countindg1_2[i] = countindg1_2x
indg1_3[i] = where(testg1 and params EQ 3, countindg1_3x); index of distance of this stellar population in the val array
countindg1_3[i] = countindg1_3x
indg1_4[i] = where(testg1 and params EQ 4, countindg1_4x); index of the nstars of this stellar population in the val array
countindg1_4[i] = countindg1_4x
ENDFOR
ENDIF
; Locating the G2 stellar population parameters
testg2 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 2
ind = where(testg2,countindg2) ;sun-like star
IF countindg2 NE 0 THEN BEGIN
lumclassG2 = lumclass(ind)
nlmG2 = n_elements(lumclassG2)
indG2_1 = fltarr(nlmG2)
indG2_2 = indG2_1
indG2_3 = indG2_1
indG2_4 = indG2_1
countindG2_1 = indG2_1
countindG2_2 = indG2_1
countindG2_3 = indG2_1
countindG2_4 = indG2_1
FOR i=0L,nlmG2-1 DO BEGIN
popnumber+=1
countg+=1
indg2_1[i] = where(testg2 and params EQ 1, countindg2_1x); index of radius of this stellar population in the val array
countindg2_1[i] = countindg2_1x
indg2_2[i] = where(testg2 and params EQ 2, countindg2_2x); index of temperature of this stellar population in the val array
countindg2_2[i] = countindg2_2x
indg2_3[i] = where(testg2 and params EQ 3, countindg2_3x); index of distance of this stellar population in the val array
countindg2_3[i] = countindg2_3x
indg2_4[i] = where(testg2 and params EQ 4, countindg2_4x); index of the nstars of this stellar population in the val array
countindg2_4[i] = countindg2_4x
ENDFOR
ENDIF
; Locating the G3 stellar population parameters
testg3 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 3
ind = where(testg3,countindg3)
IF countindg3 NE 0 THEN BEGIN
lumclassG3 = lumclass(ind)
nlmG3 = n_elements(lumclassG3)
indG3_1 = fltarr(nlmG3)
indG3_2 = indG3_1
indG3_3 = indG3_1
indG3_4 = indG3_1
countindG3_1 = indG3_1
countindG3_2 = indG3_1
countindG3_3 = indG3_1
countindG3_4 = indG3_1
FOR i=0L,nlmG3-1 DO BEGIN
popnumber+=1
countg+=1
indg3_1[i] = where(testg3 and params EQ 1, countindg3_1x); index of radius of this stellar population in the val array
countindg3_1[i] = countindg3_1x
indg3_2[i] = where(testg3 and params EQ 2, countindg3_2x); index of temperature of this stellar population in the val array
countindg3_2[i] = countindg3_2x
indg3_3[i] = where(testg3 and params EQ 3, countindg3_3x); index of distance of this stellar population in the val array
countindg3_3[i] = countindg3_3x
indg3_4[i] = where(testg3 and params EQ 4, countindg3_4x); index of the nstars of this stellar population in the val array
countindg3_4[i] = countindg3_4x
ENDFOR
ENDIF
; Locating the G4 stellar population parameters
testg3 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 3
ind = where(testg3,countindg4)
IF countindg4 NE 0 THEN BEGIN
lumclassG4 = lumclass(ind)
nlmG4 = n_elements(lumclassG4)
indG4_1 = fltarr(nlmG4)
indG4_2 = indG4_1
indG4_3 = indG4_1
indG4_4 = indG4_1
countindG4_1 = indG4_1
countindG4_2 = indG4_1
countindG4_3 = indG4_1
countindG4_4 = indG4_1
FOR i=0L,nlmG4-1 DO BEGIN
popnumber+=1
countg+=1
indg4_1[i] = where(testg3 and params EQ 1, countindg4_1x); index of radius of this stellar population in the val array
countindg4_1[i] = countindg4_1x
indg4_2[i] = where(testg3 and params EQ 2, countindg4_2x); index of temperature of this stellar population in the val array
countindg4_2[i] = countindg4_2x
indg4_3[i] = where(testg3 and params EQ 3, countindg4_3x); index of distance of this stellar population in the val array
countindg4_3[i] = countindg4_3x
indg4_4[i] = where(testg3 and params EQ 4, countindg4_4x); index of the nstars of this stellar population in the val array
countindg4_4[i] = countindg4_4x
ENDFOR
ENDIF
; Locating the G5 stellar population parameters
testg5 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 5
ind = where(testg5,countindg5)
IF countindg5 NE 0 THEN BEGIN
lumclassG5 = lumclass(ind)
nlmG5 = n_elements(lumclassG5)
indG5_1 = fltarr(nlmG5)
indG5_2 = indG5_1
indG5_3 = indG5_1
indG5_4 = indG5_1
countindG5_1 = indG5_1
countindG5_2 = indG5_1
countindG5_3 = indG5_1
countindG5_4 = indG5_1
FOR i=0L,nlmG5-1 DO BEGIN
popnumber+=1
countg+=1
indg5_1[i] = where(testg5 and params EQ 1, countindg5_1x); index of radius of this stellar population in the val array
countindg5_1[i] = countindg5_1x
indg5_2[i] = where(testg5 and params EQ 2, countindg5_2x); index of temperature of this stellar population in the val array
countindg5_2[i] = countindg5_2x
indg5_3[i] = where(testg5 and params EQ 3, countindg5_3x); index of distance of this stellar population in the val array
countindg5_3[i] = countindg5_3x
indg5_4[i] = where(testg5 and params EQ 4, countindg5_4x); index of the nstars of this stellar population in the val array
countindg5_4[i] = countindg5_4x
ENDFOR
ENDIF
; Locating the G6 stellar population parameters
testg6 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 6
ind = where(testg6,countindg6)
IF countindg6 NE 0 THEN BEGIN
lumclassG6 = lumclass(ind)
nlmG6 = n_elements(lumclassG6)
indG6_1 = fltarr(nlmG6)
indG6_2 = indG6_1
indG6_3 = indG6_1
indG6_4 = indG6_1
countindG6_1 = indG6_1
countindG6_2 = indG6_1
countindG6_3 = indG6_1
countindG6_4 = indG6_1
FOR i=0L,nlmG6-1 DO BEGIN
popnumber+=1
countg+=1
indg6_1[i] = where(testg6 and params EQ 1, countindg6_1x); index of radius of this stellar population in the val array
countindg6_1[i] = countindg6_1x
indg6_2[i] = where(testg6 and params EQ 2, countindg6_2x); index of temperature of this stellar population in the val array
countindg6_2[i] = countindg6_2x
indg6_3[i] = where(testg6 and params EQ 3, countindg6_3x); index of distance of this stellar population in the val array
countindg6_3[i] = countindg6_3x
indg6_4[i] = where(testg6 and params EQ 4, countindg6_4x); index of the nstars of this stellar population in the val array
countindg6_4[i] = countindg6_4x
ENDFOR
ENDIF
; Locating the G7 stellar population parameters
testg7 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 7
ind = where(testg7,countindg7)
IF countindg7 NE 0 THEN BEGIN
lumclassG7 = lumclass(ind)
nlmG7 = n_elements(lumclassG7)
indG7_1 = fltarr(nlmG7)
indG7_2 = indG7_1
indG7_3 = indG7_1
indG7_4 = indG7_1
countindG7_1 = indG7_1
countindG7_2 = indG7_1
countindG7_3 = indG7_1
countindG7_4 = indG7_1
FOR i=0L,nlmG7-1 DO BEGIN
popnumber+=1
countg+=1
indg7_1[i] = where(testg7 and params EQ 1, countindg7_1x); index of radius of this stellar population in the val array
countindg7_1[i] = countindg7_1x
indg7_2[i] = where(testg7 and params EQ 2, countindg7_2x); index of temperature of this stellar population in the val array
countindg7_2[i] = countindg7_2x
indg7_3[i] = where(testg7 and params EQ 3, countindg7_3x); index of distance of this stellar population in the val array
countindg7_3[i] = countindg7_3x
indg7_4[i] = where(testg7 and params EQ 4, countindg7_4x); index of the nstars of this stellar population in the val array
countindg7_4[i] = countindg7_4x
ENDFOR
ENDIF
; Locating the G8 stellar population parameters
testg8 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 8
ind = where(testg8,countindg8)
IF countindg8 NE 0 THEN BEGIN
lumclassG8 = lumclass(ind)
nlmG8 = n_elements(lumclassG8)
indG8_1 = fltarr(nlmG8)
indG8_2 = indG8_1
indG8_3 = indG8_1
indG8_4 = indG8_1
countindG8_1 = indG8_1
countindG8_2 = indG8_1
countindG8_3 = indG8_1
countindG8_4 = indG8_1
FOR i=0L,nlmG8-1 DO BEGIN
popnumber+=1
countg+=1
indg8_1[i] = where(testg8 and params EQ 1, countindg8_1x); index of radius of this stellar population in the val array
countindg8_1[i] = countindg8_1x
indg8_2[i] = where(testg8 and params EQ 2, countindg8_2x); index of temperature of this stellar population in the val array
countindg8_2[i] = countindg8_2x
indg8_3[i] = where(testg8 and params EQ 3, countindg8_3x); index of distance of this stellar population in the val array
countindg8_3[i] = countindg8_3x
indg8_4[i] = where(testg8 and params EQ 4, countindg8_4x); index of the nstars of this stellar population in the val array
countindg8_4[i] = countindg8_4x
ENDFOR
ENDIF
; Locating the G9 stellar population parameters
testg9 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 9
ind = where(testg9,countindg9)
IF countindg9 NE 0 THEN BEGIN
lumclassG9 = lumclass(ind)
nlmG9 = n_elements(lumclassG9)
indG9_1 = fltarr(nlmG9)
indG9_2 = indG9_1
indG9_3 = indG9_1
indG9_4 = indG9_1
countindG9_1 = indG9_1
countindG9_2 = indG9_1
countindG9_3 = indG9_1
countindG9_4 = indG9_1
FOR i=0L,nlmG9-1 DO BEGIN
popnumber+=1
countg+=1
indg9_1[i] = where(testg9 and params EQ 1, countindg9_1x); index of radius of this stellar population in the val array
countindg9_1[i] = countindg9_1x
indg9_2[i] = where(testg9 and params EQ 2, countindg9_2x); index of temperature of this stellar population in the val array
countindg9_2[i] = countindg9_2x
indg9_3[i] = where(testg9 and params EQ 3, countindg9_3x); index of distance of this stellar population in the val array
countindg9_3[i] = countindg9_3x
indg9_4[i] = where(testg9 and params EQ 4, countindg9_4x); index of the nstars of this stellar population in the val array
countindg9_4[i] = countindg9_4x
ENDFOR
ENDIF
comp_pop=replicate(one_pop,popnumber) ; Replication of the default and initialized stellar population structure to create the composite stellar population structure. All the tag values are by default set to te null value
;Filling the tags of the compsite stellar population structure using the indices defined above
FOR i=0L,popnumber-1 DO BEGIN ; Looping over all the structure fields
IF counto NE 0 THEN BEGIN ; Filling the structure of the O STELLAR POPULATION(S)
FOR k=0L,counto-1 DO BEGIN
IF countindo3 NE 0 THEN BEGIN
FOR l=0L,nlmO3-1 DO BEGIN
comp_pop(k+i+l).popid = 'O3'+lumclasso3(l)+'_stellar_population'
IF countindo3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo3_1[l]))(0)*rsun2cm ELSE BEGIN
; IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
; IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).radius = ;Luminos supergiants
; IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
; IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).radius = ;Less luminous supergiants
; IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).radius = ;Bright giants
; IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
; IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).radius = ;Subgiants
IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 15.0*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
; IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
; IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs
ENDELSE
IF countindo3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo3_2[l]))(0) ELSE BEGIN
; IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 44.9e3 ;(K)
; IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0 ; should be lower limited in the general procedure because this is the average distance between two stars
IF countindo3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo3
ENDIF
IF countindo4 NE 0 THEN BEGIN
FOR l=0L,nlmO4-1 DO BEGIN
comp_pop(k+i+l).popid = 'O4'+lumclasso4(l)+'_stellar_population'
IF countindo4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo4_1[l]))(0)*rsun2cm ELSE BEGIN
; IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
; IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).radius = ;Luminos supergiants
; IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
; IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).radius ;Less luminous supergiants
; IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).radius = ;Bright giants
; IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
; IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).radius = ;Subgiants
IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 13.43*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
; IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
; IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs
ENDELSE
IF countindo4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo4_2[l]))(0) ELSE BEGIN
; IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 42.9e3
; IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindo4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo4
ENDIF
IF countindo5 NE 0 THEN BEGIN
FOR l=0L,nlmo5-1 DO BEGIN
comp_pop(k+i+l).popid = 'O5'+lumclasso5(l)+'_stellar_population'
IF countindo5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo5_1[l]))(0)*rsun2cm ELSE BEGIN
; IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
; IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).radius = ;Luminos supergiants
; IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
; IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).radius ;Less luminous supergiants
; IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).radius = ;Bright giants
; IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
; IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).radius = ;Subgiants
IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 12*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
; IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
; IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs
ENDELSE
IF countindo5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo5_2[l]))(0) ELSE BEGIN
; IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 41.4e3
; IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindo5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo5
ENDIF
IF countindo6 NE 0 THEN BEGIN
FOR l=0L,nlmo6-1 DO BEGIN
comp_pop(k+i+l).popid = 'O6'+lumclasso6(l)+'_stellar_population'
IF countindo6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo6_1[l]))(0)*rsun2cm ELSE BEGIN
; IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 10.71*rsun2cm
; IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindo6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo6_2[l]))(0) ELSE BEGIN
; IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 39.5e3
; IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindo6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo6
ENDIF
IF countindo7 NE 0 THEN BEGIN
FOR l=0L,nlmo7-1 DO BEGIN
comp_pop(k+l+i).popid = 'O7'+lumclass7(l)+'_stellar_population'
IF countindo7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo7_1[l]))(0) ELSE BEGIN
; IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 9.52*rsun2cm
; IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindo7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo7_2[l]))(0) ELSE BEGIN
; IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 37.1e3
; IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindo7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo7
ENDIF
IF countindo8 NE 0 THEN BEGIN
FOR l=0L,nlmo8-1 DO BEGIN
comp_pop(k+i+l).popid = 'O8'+lumclasso8(l)+'_stellar_population'
IF countindo8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo8_1[l]))(0) ELSE BEGIN
; IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 8.5*rsun2cm
; IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindo8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo8_2[l]))(0) ELSE BEGIN
; IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 35.1e3
; IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindo8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo8
ENDIF
IF countindo9 NE 0 THEN BEGIN
FOR l=0L,nlmo9-1 DO BEGIN
comp_pop(k+i+l).popid = 'O9'+lumclasso9(l)+'_stellar_population'
IF countindo9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo9_1[l]))(0) ELSE BEGIN
; IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = 20.0*rsun2cm ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
; IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 7.51*rsun2cm
; IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclasso9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindo9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo9_2[l]))(0) ELSE BEGIN
; IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature = 29.5e3 ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
; IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 33.3e3
; IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindo9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
IF countindo9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmo9
ENDIF
ENDFOR
counto=0L
i+=k-1
ENDIF
;==============================================================================================
IF countb NE 0 THEN BEGIN ; Filling the structure of the B STELLAR POPULATION(S)
FOR k=0L,countb-1 DO BEGIN
IF countindb0 NE 0 THEN BEGIN
FOR l=0L,nlmb0-1 DO BEGIN
comp_pop(k+i+l).popid = 'B0'+lumclassb0(l)+'_stellar_population'
IF countindb0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb0_1[l]))(0) ELSE BEGIN
; IF lumclassb0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 7.16*rsun2cm
; IF lumclassb0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb0_2[l]))(0) ELSE BEGIN
; IF lumclasb0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 31.4e3
; IF lumclasb0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb0
ENDIF
IF countindb1 NE 0 THEN BEGIN
FOR l=0L,nlmb1-1 DO BEGIN
comp_pop(k+i+l).popid = 'B1'+lumclassb1(l)+'_stellar_population'
IF countindb1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb1_1[l]))(0) ELSE BEGIN
; IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).radius = 7.3*rsun2cm ;taken from Alnitak Ab's data.
IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 5.71*rsun2cm
; IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb1_2[l]))(0) ELSE BEGIN
; IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature = 29.0e3 ;taken from Alnitak Ab's data.
IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 26.0e3
; IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
IF countindb1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb1
ENDIF
IF countindb2 NE 0 THEN BEGIN
FOR l=0L,nlmb2-1 DO BEGIN
comp_pop(k+i+l).popid = 'B2'+lumclassb2(l)+'_stellar_population'
IF countindb2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb2_1[l]))(0) ELSE BEGIN
; IF lumclassb2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 4.06*rsun2cm
; IF lumclassb2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb2_2[l]))(0) ELSE BEGIN
; IF lumclasb2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 20.6e3
; IF lumclasb2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb2
ENDIF
IF countindb3 NE 0 THEN BEGIN
FOR l=0L,nlmb3-1 DO BEGIN
comp_pop(k+i+l).popid = 'B3'+lumclassb3(l)+'_stellar_population'
IF countindb3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb3_1[l]))(0) ELSE BEGIN
; IF lumclassb3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.61*rsun2cm
; IF lumclassb3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb3_2[l]))(0) ELSE BEGIN
; IF lumclasb3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 17.0e3
; IF lumclasb3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb3
ENDIF
IF countindb4 NE 0 THEN BEGIN
FOR l=0L,nlmb4-1 DO BEGIN
comp_pop(k+i+l).popid = 'B4'+lumclassb4(l)+'_stellar_population'
IF countindb4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb4_1[l]))(0) ELSE BEGIN
; IF lumclassb4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.46*rsun2cm
; IF lumclassb4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb4_2[l]))(0) ELSE BEGIN
; IF lumclasb4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 16.4e3
; IF lumclasb4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb4
ENDIF
IF countindb5 NE 0 THEN BEGIN
FOR l=0L,nlmb5-1 DO BEGIN
comp_pop(k+i+l).popid = 'B5'+lumclassb5(l)+'_stellar_population'
IF countindb5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb5_1[l]))(0) ELSE BEGIN
; IF lumclassb5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.36*rsun2cm
; IF lumclassb5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb5_2[l]))(0) ELSE BEGIN
; IF lumclasb5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 15.7e3
; IF lumclasb5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb5
ENDIF
IF countindb6 NE 0 THEN BEGIN
FOR l=0L,nlmb6-1 DO BEGIN
comp_pop(k+i+l).popid = 'B6'+lumclassb6(l)+'_stellar_population'
IF countindb6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb6_1[l]))(0) ELSE BEGIN
; IF lumclassb6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.27*rsun2cm
; IF lumclassb6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb6_2[l]))(0) ELSE BEGIN
; IF lumclasb6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 14.5e3
; IF lumclasb6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb6
ENDIF
IF countindb7 NE 0 THEN BEGIN
FOR l=0L,nlmb7-1 DO BEGIN
comp_pop(k+i+l).popid = 'B7'+lumclassb7(l)+'_stellar_population'
IF countindb7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb7_1[l]))(0) ELSE BEGIN
; IF lumclassb7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.94*rsun2cm
; IF lumclassb7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb7_2[l]))(0) ELSE BEGIN
; IF lumclasb7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 14.0e3
; IF lumclasb7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb7
ENDIF
IF countindb8 NE 0 THEN BEGIN
FOR l=0L,nlmb7-1 DO BEGIN
comp_pop(k+i+l).popid = 'B8'+lumclassb8(l)+'_stellar_population'
IF countindb8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb8_1[l]))(0) ELSE BEGIN
; IF lumclassb8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.86*rsun2cm
; IF lumclassb8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb8_2[l]))(0) ELSE BEGIN
; IF lumclasb8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 12.3e3
; IF lumclasb8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb8
ENDIF
IF countindb9 NE 0 THEN BEGIN
FOR l=0L,nlmb9-1 DO BEGIN
comp_pop(k+i+l).popid = 'B9'+lumclassb9(l)+'_stellar_population'
IF countindb9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb9_1[l]))(0) ELSE BEGIN
; IF lumclassb9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassb9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.49*rsun2cm
; IF lumclassb9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassb9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindb9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb9_2[l]))(0) ELSE BEGIN
; IF lumclasb9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasb9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 10.7e3
; IF lumclasb9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasb9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindb9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindb9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmb9
ENDIF
ENDFOR
countb=0.
i+=k-1
ENDIF
;==============================================================================================
IF counta NE 0 THEN BEGIN ; Filling the structure of the A STELLAR POPULATION(S)
FOR k=0L+i,counta-1+i DO BEGIN
IF countinda0 NE 0 THEN BEGIN
FOR l=0L,nlma0-1 DO BEGIN
comp_pop(k+i+l).popid = 'A0'+lumclassa0(l)+'_stellar_population'
IF countinda0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda0_1[l]))(0) ELSE BEGIN
; IF lumclassa0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.193*rsun2cm
; IF lumclassa0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda0_2[l]))(0) ELSE BEGIN
; IF lumclasa0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 9.7e3
; IF lumclasa0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma0
ENDIF
IF countinda1 NE 0 THEN BEGIN
FOR l=0L,nlma1-1 DO BEGIN
comp_pop(k+i+l).popid = 'A1'+lumclassa1(l)+'_stellar_population'
IF countinda1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda1_1[l]))(0) ELSE BEGIN
; IF lumclassa1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.136*rsun2cm
; IF lumclassa1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda1_2[l]))(0) ELSE BEGIN
; IF lumclasa1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 9.3e3
; IF lumclasa1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
; K+=1
ENDFOR
k+=nlma1
ENDIF
IF countinda2 NE 0 THEN BEGIN
FOR l=0L,nlma2-1 DO BEGIN
comp_pop(k+i+l).popid = 'A2'+lumclassa2(l)+'_stellar_population'
IF countinda2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda2_1[l]))(0) ELSE BEGIN
; IF lumclassa2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.117*rsun2cm
; IF lumclassa2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda2_2[l]))(0) ELSE BEGIN
; IF lumclasa2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.8e3
; IF lumclasa2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma2
ENDIF
IF countinda3 NE 0 THEN BEGIN
FOR l=0L,nlma3-1 DO BEGIN
comp_pop(k+i+l).popid = 'A3'+lumclassa3(l)+'_stellar_population'
IF countinda3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda3_1[l]))(0) ELSE BEGIN
; IF lumclassa3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.861*rsun2cm
; IF lumclassa3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda3_2[l]))(0) ELSE BEGIN
; IF lumclasa3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.6e3
; IF lumclasa3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma3
ENDIF
IF countinda4 NE 0 THEN BEGIN
FOR l=0L,nlma4-1 DO BEGIN
comp_pop(k+i+l).popid = 'A4'+lumclassa4(l)+'_stellar_population'
IF countinda4_1 NE 0 THEN comp_pop(k+i+l).radius = (val(inda4_1))(0) ELSE BEGIN
; IF lumclassa4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.794*rsun2cm
; IF lumclassa4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda4_2 NE 0 THEN comp_pop(k+i+l).temperature = (val(inda4_2))(0) ELSE BEGIN
; IF lumclasa4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.25e3
; IF lumclasa4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda4_3 NE 0 THEN comp_pop(k+i+l).distance = (val(inda4_3))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda4_4 NE 0 THEN comp_pop(k+i+l).nstars = (val(inda4_4))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma4
ENDIF
IF countinda5 NE 0 THEN BEGIN
FOR l=0L,nlma5-1 DO BEGIN
comp_pop(k+i+l).popid = 'A5'+lumclassa5(l)+'_stellar_population'
IF countinda5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda5_1[l]))(0) ELSE BEGIN
; IF lumclassa5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa5(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.785*rsun2cm
; IF lumclassa5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda5_2[l]))(0) ELSE BEGIN
; IF lumclasa5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.1e3
; IF lumclasa5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma5
ENDIF
IF countinda6 NE 0 THEN BEGIN
FOR l=0L,nlma6-1 DO BEGIN
comp_pop(k+i+l).popid = 'A6'+lumclassa6(l)+'_stellar_population'
IF countinda6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda6_1[l]))(0) ELSE BEGIN
; IF lumclassa6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.775*rsun2cm
; IF lumclassa6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda6_2[l]))(0) ELSE BEGIN
; IF lumclasa6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.91e3
; IF lumclasa6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda6_5[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma6
ENDIF
IF countinda7 NE 0 THEN BEGIN
FOR l=0L,nlma7-1 DO BEGIN
comp_pop(k+i+l).popid = 'A7'+lumclassa7(l)+'_stellar_population'
IF countinda7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda7_1[l]))(0) ELSE BEGIN
; IF lumclassa7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.75*rsun2cm
; IF lumclassa7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda7_2[l]))(0) ELSE BEGIN
; IF lumclasa7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.76e3
; IF lumclasa7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma7
ENDIF
IF countinda8 NE 0 THEN BEGIN
FOR l=0L,nlma8-1 DO BEGIN
comp_pop(k+i+l).popid = 'A8'+lumclassa8(l)+'_stellar_population'
IF countinda8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda8_1[l]))(0) ELSE BEGIN
; IF lumclassa8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.747*rsun2cm
; IF lumclassa8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda8_2[l]))(0) ELSE BEGIN
; IF lumclasa8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.590e3
; IF lumclasa8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma8
ENDIF
IF countinda9 NE 0 THEN BEGIN
FOR l=0L,nlma9-1 DO BEGIN
comp_pop(k+i+l).popid = 'A9'+lumclassa9(l)+'_stellar_population'
IF countinda9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda9_1[l]))(0) ELSE BEGIN
; IF lumclassa9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassa9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.747*rsun2cm
; IF lumclassa9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassa9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countinda9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda9_2[l]))(0) ELSE begin
; IF lumclasa9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclasa9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.4e3
; IF lumclasa9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclasa9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countinda9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countinda9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlma9
ENDIF
ENDFOR
counta=0.
i+=k-1
ENDIF
;==============================================================================================
IF countf NE 0 THEN BEGIN ; Filling the structure of the F STELLAR POPULATION(S)
FOR k=0L+i,countf-1+i DO BEGIN
IF countindf0 NE 0 THEN BEGIN
FOR l=0L,nlmaf0-1 DO BEGIN
comp_pop(k+i+l).popid = 'F0'+lumclassf0(l)+'_stellar_population'
IF countindf0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf0_1[l]))(0) ELSE BEGIN
; IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf0(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.728*rsun2cm
; IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf0_2[l]))(0) ELSE BEGIN
; IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.22e3
; IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf0
ENDIF
IF countindf1 NE 0 THEN BEGIN
FOR l=0L,nlmaf1-1 DO BEGIN
comp_pop(k+i+l).popid = 'F1'+lumclassf1(l)+'_stellar_population'
IF countindf1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf1_1[l]))(0) ELSE BEGIN
; IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.679*rsun2cm
; IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf1_2[l]))(0) ELSE BEGIN
; IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.02e3
; IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf1(l) EQ 'VIII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf1
ENDIF
IF countindf2 NE 0 THEN BEGIN
FOR l=0L,nlmaf2-1 DO BEGIN
comp_pop(k+i+l).popid = 'F2'+lumclassf2(l)+'_stellar_population'
IF countindf2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf2_1[l]))(0) ELSE BEGIN
; IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.622*rsun2cm
; IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf2_2[l]))(0) ELSE BEGIN
; IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.820e3
; IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf2
ENDIF
IF countindf3 NE 0 THEN BEGIN
FOR l=0L,nlmaf3-1 DO BEGIN
comp_pop(k+i+l).popid = 'F3'+lumclassf3(l)+'_stellar_population'
IF countindf3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf3_1[l]))(0) ELSE BEGIN
; IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.578*rsun2cm
; IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf3_2[l]))(0) ELSE BEGIN
; IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.75e3
; IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf3
ENDIF
IF countindf4 NE 0 THEN BEGIN
FOR l=0L,nlmaf4-1 DO BEGIN
comp_pop(k+i+l).popid = 'F4'+lumclassf4(l)+'_stellar_population'
IF countindf4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf4_1[l]))(0) ELSE BEGIN
; IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.533*rsun2cm
; IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf4_2[l]))(0) ELSE BEGIN
; IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.67e3
; IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf4
ENDIF
IF countindf5 NE 0 THEN BEGIN
FOR l=0L,nlmaf5-1 DO BEGIN
comp_pop(k+i+l).popid = 'F5'+lumclassf5(l)+'_stellar_population'
IF countindf5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf5_1[l]))(0) ELSE BEGIN
; IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.473*rsun2cm
; IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf5_2[l]))(0) ELSE BEGIN
; IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.55e3
; IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf5
ENDIF
IF countindf6 NE 0 THEN BEGIN
FOR l=0L,nlmaf6-1 DO BEGIN
comp_pop(k+i+l).popid = 'F6'+lumclassf6(l)+'_stellar_population'
IF countindf6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf6_1[l]))(0) ELSE BEGIN
; IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.359*rsun2cm
; IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf6_2[l]))(0) ELSE BEGIN
; IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.35e3
; IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf6
ENDIF
IF countindf7 NE 0 THEN BEGIN
FOR l=0L,nlmaf7-1 DO BEGIN
comp_pop(k+i+l).popid = 'F7'+lumclassf7(l)+'_stellar_population'
IF countindf7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf7_1[l]))(0) ELSE BEGIN
; IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.324*rsun2cm
; IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf7_2[l]))(0) ELSE BEGIN
; IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.28e3
; IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf7
ENDIF
IF countindf8 NE 0 THEN BEGIN
FOR l=0L,nlmaf8-1 DO BEGIN
comp_pop(k+i+l).popid = 'F8'+lumclassf8(l)+'_stellar_population'
IF countindf8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf8_1[l]))(0) ELSE BEGIN
; IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.221*rsun2cm
; IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf8_2[l]))(0) ELSE BEGIN
; IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.18e3
; IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf8
ENDIF
IF countindf9 NE 0 THEN BEGIN
FOR l=0L,nlmaf9-1 DO BEGIN
comp_pop(k+i+l).popid = 'F9'+lumclassf9(l)+'_stellar_population'
IF countindf9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf9_1[l]))(0) ELSE BEGIN
; IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.167*rsun2cm
; IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindf9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf9_2[l]))(0) ELSE BEGIN
; IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.05e3
; IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindf9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindf9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmf9
ENDIF
ENDFOR
countf=0.
i+=k-1
ENDIF
;==============================================================================================
IF countg NE 0 THEN BEGIN ; Filling the structure of the G STELLAR POPULATION(S)
FOR k=0L+i,countg-1+i DO BEGIN
IF countindg0 NE 0 THEN BEGIN
FOR l=0L,nlmg0-1 DO BEGIN
comp_pop(k+i+l).popid = 'G0'+lumclassg0(l)+'_stellar_population'
IF countindg0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg0_1[l]))(0) ELSE BEGIN
; IF lumclassg0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.1*rsun2cm
; IF lumclassg0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg0_2[l]))(0) ELSE BEGIN
; IF lumclassfg0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.93e3
; IF lumclassfg0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg0
ENDIF
IF countindg1 NE 0 THEN BEGIN
FOR l=0L,nlmg1-1 DO BEGIN
comp_pop(k+i+l).popid = 'G1'+lumclassg1(l)+'_stellar_population'
IF countindg1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg1_1[l]))(0) ELSE BEGIN
; IF lumclassg1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg1(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.06*rsun2cm
; IF lumclassg1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg1_2[l]))(0) ELSE begin
; IF lumclassfg1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.86e3
; IF lumclassfg1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg1
ENDIF
IF countindg2 NE 0 THEN BEGIN
FOR l=0L,nlmg2-1 DO BEGIN
comp_pop(k+i+l).popid = 'G2'+lumclassg2(l)+'_stellar_population'
IF countindg2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg2_1[l]))(0) ELSE BEGIN
; IF lumclassg2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.012*rsun2cm
; IF lumclassg2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg2_2[l]))(0) ELSE BEGIN
; IF lumclassfg2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.77e3
; IF lumclassfg2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg2
ENDIF
IF countindg3 NE 0 THEN BEGIN
FOR l=0L,nlmg3-1 DO BEGIN
comp_pop(k+i+l).popid = 'G3'+lumclassg3(l)+'_stellar_population'
IF countindg3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg3_1[l]))(0) ELSE BEGIN
; IF lumclassg3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.002*rsun2cm
; IF lumclassg3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg3_2[l]))(0) ELSE BEGIN
; IF lumclassfg3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.72e3
; IF lumclassfg3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature
ENDELSE
IF countindg3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg3
ENDIF
IF countindg4 NE 0 THEN BEGIN
FOR l=0L,nlmg4-1 DO BEGIN
comp_pop(k+i+l).popid = 'G4'+lumclassg4(l)+'_stellar_population'
IF countindg4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg4_1[l]))(0) ELSE BEGIN
; IF lumclassg4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.991*rsun2cm
; IF lumclassg4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg4_2[l]))(0) ELSE BEGIN
; IF lumclassfg4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.68e3
; IF lumclassfg4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg4
ENDIF
IF countindg5 NE 0 THEN BEGIN
FOR l=0L,nlmg5-1 DO BEGIN
comp_pop(k+i+l).popid = 'G5'+lumclassg5(l)+'_stellar_population'
IF countindg5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg5_1[l]))(0) ELSE BEGIN
; IF lumclassg5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.977*rsun2cm
; IF lumclassg5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg5_2[l]))(0) ELSE BEGIn
; IF lumclassfg5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.66e3
; IF lumclassfg5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg5
ENDIF
IF countindg6 NE 0 THEN BEGIN
FOR l=0L,nlmg6-1 DO BEGIN
comp_pop(k+i+l).popid = 'G6'+lumclassg6(l)+'_stellar_population'
IF countindg6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg6_1[l]))(0) ELSE BEGIN
; IF lumclassg6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.949*rsun2cm
; IF lumclassg6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg6_2[l]))(0) ELSE BEGIN
; IF lumclassfg6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.6e3
; IF lumclassfg6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg6
ENDIF
IF countindg7 NE 0 THEN BEGIN
FOR l=0L,nlmg7-1 DO BEGIN
comp_pop(k+i+l).popid = 'G7'+lumclassg7(l)+'_stellar_population'
IF countindg7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg7_1[l]))(0) ELSE BEGIN
; IF lumclassg7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.927*rsun2cm
; IF lumclassg7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg7_2[l]))(0) ELSE BEGIN
; IF lumclassfg7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg7(l) EQ 'V' THEN ccomp_pop(k+i+l).temperature = 5.55e3
; IF lumclassfg7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg7
ENDIF
IF countindg8 NE 0 THEN BEGIN
FOR l=0L,nlmg8-1 DO BEGIN
comp_pop(k+i+l).popid = 'G8'+lumclassg8(l)+'_stellar_population'
IF countindg8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg8_1[l]))(0) ELSE BEGIN
; IF lumclassg8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.914*rsun2cm
; IF lumclassg8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg8_2[l]))(0) ELSE BEGIN
; IF lumclassfg8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.48e3
; IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg8
ENDIF
IF countindg9 NE 0 THEN BEGIN
FOR l=0L,nlmg9-1 DO BEGIN
comp_pop(k+i+l).popid = 'G9'+lumclassg9(l)+'_stellar_population'
IF countindg9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg9_1[l]))(0) ELSE BEGIN
; IF lumclassg9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
IF lumclassg9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.853*rsun2cm
; IF lumclassg9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
; IF lumclassg9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
ENDELSE
IF countindg9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg9_2[l]))(0) ELSE BEGIN
; IF lumclassfg9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
IF lumclassfg9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.38e3
; IF lumclassfg9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
; IF lumclassfg9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
ENDELSE
IF countindg9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
IF countindg9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
;K+=1
ENDFOR
k+=nlmg9
ENDIF
ENDFOR
countg=0.
i+=k-1
ENDIF
;==============================================================================================
ENDFOR
;==============================================================================================
;========================================================NOTA BENE============================================================================
;THIS PROCEDURE DEVIDES BY THE VALUE OF G0. THE WRAPPER USES G0 AND GAS.G0. PLEASE LOCATE IT IN THE LINES BELOW AND CHANGE G0 TO THE ONE YOU'RE USING!!!!
;=============================================================================================================================================
st=((*!dustem_params).isrf)
;stop ;to check if the structure is indeed what we need.
c2a = 3e18 ;speed of light in ansgtroms/s (because of the Astron's PLANCK function)
pc2cm = 3.086e18 ;cm (cgs)
wave_angstrom = st.lambisrf*1.e4 ;mic to Angstrom (Astron Planck's function uses wavelengths in Angstroms)
stellar_component=fltarr(n_elements(st)) ; array of zeros to contain the new ISRF values.
;storing the mathis isrf in variable mathis_isrf
ma_isrf_dir=!dustem_soft_dir+'data/ISRF_MATHIS.DAT'
ma_isrf=dustem_read_isrf(ma_isrf_dir)
IF !ismathis THEN Ncomhead=4 ELSE Ncomhead=3
Ncomments = n_elements(comp_pop.popid)*3+Ncomhead
c = strarr(Ncomments)
;First and last lines of the new composite ISRF.DAT file
c(0)='# DUSTEM: exciting radiation field featuring'
IF !ismathis THEN c(1)='# Mathis ISRF'
c(Ncomments-2)='# Nbr of points'
c(Ncomments-1)='# wave (microns), 4*pi*Inu (erg/cm2/s/Hz)'
FOR i=0L,n_elements(comp_pop.popid)-1 DO BEGIN ; Looping over all the stellar populations
;The initial procedure had omega multiplied by a !pi factor. Its presence in the Planck (Astron) procedure makes for a good reason to discuss this with J.P.
omega = ((comp_pop.radius)[i]/((comp_pop.distance)[i]*pc2cm))^2 ; Dilution factor of a stellar population
Inu = planck(wave_angstrom,(comp_pop.temperature)[i])/(4.*!pi)*(wave_angstrom)^2/c2a ; ergs/cm2/s/Hz/sr
stellar_component=stellar_component+(comp_pop.nstars)[i]*omega*Inu
;Rest of the lines of the new composite ISRF.DAT file
IF !ismathis THEN BEGIN
c(3*i+2) = '#'+(comp_pop.popid)[i]
c(3*i+3) = '# Blackbody with T='+string((comp_pop.temperature)[i])
c(3*i+4) = '# dilution factor wdil='+string(omega)
ENDIF ELSE BEGIN
c(3*i+1) = '#'+(comp_pop.popid)[i]
c(3*i+2) = '# Blackbody with T='+string((comp_pop.temperature)[i])
c(3*i+3) = '# dilution factor wdil='+string(omega)
ENDELSE
ENDFOR
IF !ismathis THEN st.isrf=ma_isrf.isrf+stellar_component/(st.gas.G0) ELSE st.isrf=stellar_component;/((*!dustem_params).gas.G0)
;don't mind my tests I'm just making sure the ISRF file changes at all
print,'stellar_component is:'
print, stellar_component
print, 'isrf is:'
print, st.isrf
file=!dustem_dat+'data/ISRF.DAT'
openw,unit,file,/get_lun
FOR i=0,Ncomments-1 DO BEGIN
printf,unit,c(i)
ENDFOR
n_waves=n_elements(st)
printf,unit,n_waves
FOR i=0L,n_waves-1 DO BEGIN
printf,unit,st(i).lambisrf,st(i).isrf
ENDFOR
close,unit
free_lun,unit
out=st.isrf
;============This block creates a composite (9V) stellar population structure for when the function isn't used as a plugin===================
ENDIF ELSE BEGIN
;IF NOT keyword_set(scope) AND NOT keyword_set(val) THEN BEGIN ;I need this condition because I don't want the accidental definition of the system variable (@the end.) that is actually tied to any parameters outside this routine.
popnumber = 5.
comp_pop = replicate(one_pop,popnumber)
;###BY DEFAULT ALL STELLAR POPULATIONS ARE ON THE MS###
;BECAUSE LESS MASSIVE (COLDER) STARS ARE MORE ABUNDANT, THEY WILL BE CHOSEN TO BUILD THE COMPOSITE STELLAR STRUCTURE
;THIS MEANS THAT THE CHOSEN SPECTRAL TYPE IS 9V (MAIN SEQUENCE)
;CHOSEN STELLAR POPULATIONS
;O9V
;B9V
;A9V
;F9V
;G9V
comp_pop(0).popid = 'O9V_stellar_population'
comp_pop(0).radius = 7.51*rsun2cm
comp_pop(0).temperature = 33.3e3
comp_pop(0).distance = 10.0
comp_pop(0).nstars = stellar_density*(4.*!pi/3)*comp_pop(0).distance
comp_pop(1).popid = 'B9V_stellar_population'
comp_pop(1).radius = 2.49*rsun2cm
comp_pop(1).temperature = 10.7e3
comp_pop(1).distance = 10.0
comp_pop(1).nstars = stellar_density*(4.*!pi/3)*comp_pop(1).distance
comp_pop(2).popid = 'A9V_stellar_population'
comp_pop(2).radius = 1.747*rsun2cm
comp_pop(2).temperature = 7.4e3
comp_pop(2).distance = 10.0
comp_pop(2).nstars = stellar_density*(4.*!pi/3)*comp_pop(2).distance
comp_pop(3).popid = 'F9V_stellar_population'
comp_pop(3).radius = 1.167*rsun2cm
comp_pop(3).temperature = 6.05e3
comp_pop(3).distance = 10.0
comp_pop(3).nstars = stellar_density*(4.*!pi/3)*comp_pop(3).distance
comp_pop(4).popid = 'G9V_stellar_population'
comp_pop(4).radius = 0.853*rsun2cm
comp_pop(4).temperature = 5.38e3
comp_pop(4).distance = 10.0
comp_pop(4).nstars = stellar_density*(4.*!pi/3)*comp_pop(4).distance
out=0.
;ENDIF
ENDELSE
if keyword_set(key) then begin
print, 'comp_pop is:'
print, comp_pop
endif
;integrating the mathis isrf
ma_isrf_dat=!dustem_soft_dir+'data/ISRF_MATHIS.DAT'
ma_isrf=dustem_read_isrf(ma_isrf_dat)
un=uniq(ma_isrf.isrf)
int_mathis=INT_TABULATED((ma_isrf.lambisrf)[un],(ma_isrf.isrf)[un])
;integrating the composite isrf
int_isrf=INT_TABULATED((ma_isrf.lambisrf)[un],(st.isrf)[un])
print, 'G0_stellar_population='
print, int_isrf/int_mathis
;stop
the_end:
return, out
end