dustem_plugin_stellar_population.pro 198 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
Function dustem_plugin_stellar_population, key=key, val=val, scope=scope, paramtag=paramtag,help=help 

;+
; NAME:
;    dustem_plugin_stellar_population
; PURPOSE:
;    Produces a system variable called '!dustem_composite_stellar_population' in which a structure containing parameters pertaining to (a) stellar population(s) is placed
; CATEGORY:
;    DUSTEM Wrapper
; CALLING SEQUENCE:
;    dustem_create_plugin_population(key=key,val=val)
; INPUTS:
;    None
; OPTIONAL INPUT PARAMETERS:
;    key  = input parameter number
;    val  = input parameter value
; OUTPUTS:
;    None
; OPTIONAL OUTPUT PARAMETERS:
;    None
; ACCEPTED KEY-WORDS:
;    help                  = if set, print this help
; COMMON BLOCKS:
;    None
; SIDE EFFECTS:
;    None
; RESTRICTIONS:
;    The dustem fortran code must be installed
;    The dustem idl wrapper must be installed
; PROCEDURE:
;    This is a dustem plugin
;-
;- HISTORY: ADDED STELLAR LUMINOSITY CLASSES
IF keyword_set(help) THEN BEGIN
  doc_library,'dustem_plugin_stellar_population'
  goto,the_end
ENDIF



scope='STELLAR_POPULATION'
paramtag=['R_star (R_sol)','T_BB (K)','D (pc)','N_stars']

;REMARKS: BECAUSE I STILL HAVEN'T SET THE DEFAULT VALUE FOR THE MAJORIY OF THE STELLAR POULATIONS, I WILL COMMENT THE CORRESPONDING LINES INSTEAD OF CHOOSING ARBITRARY VALUES. 


;CONSIDERED STARS: SPEC_TYPE(4) = OBAFG, LUM_CLASS(10) = IA+,IA,IAB,IB,II,III,IV,V,VI,VII 

;===========Initializing the defaut stellar population structure===========
one_pop={radius:0.,temperature:0.,distance:0.,nstars:0.,popid:''} 

;===========Counters===========
popnumber = 0.
counto = 0.
countb = 0.
counta = 0.
countf = 0.
countg = 0.
;==============================


;===========Specifying whether to add the Mathis field (and its scaling via G0) to the composite ISRF===================
ismathis=0 ;this value will have to be manually changed at the present moment
defsysv, '!ismathis', ismathis
;====================================================================================================================== 


;===========Constants (in cgs)========== (except for the stellar population distance (in pc))
rsun2cm = 6.957e10 

;Stelar density constant to automate the computation of the number of stars. (It links the distance and the number of stars)
;The below stellar density will have to be modified as the density goes up towards the center, in globular clusters and goes down as we move out of the galactic plane
stellar_density = 0.14 ;stars/pc^3 stellar density in the SOLAR VICINITY     
;============================================================================================ 
 
;================NOTA BENE========================================================================== 
;KM are not included because I assumed that their UV part was not that important to excite the dust. 
;This will help ease and shorten the fitting procedure
;===================================================================================================

IF keyword_set(key) THEN BEGIN 
    
    lumclass = (strmid(key,2)).remove(-1) ; extracting the luminosity class strings 
    params = strmid(key,0,/reverse_offset) ; extracting the indices (in the 'key' array) of the stellar parameters to fit  
    
    ; Locating the O3 stellar population parameters - this new code structure accounts for the presence of different luminosity classes.
    testo3 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 3
    ind = where(testo3,countindo3) 
    IF countindo3 NE 0 THEN BEGIN 
        lumclasso3 = lumclass(ind)
        nlmo3 = n_elements(lumclasso3)
        indo3_1 = fltarr(nlmo3)
        indo3_2 = indo3_1
        indo3_3 = indo3_1
        indo3_4 = indo3_1  
        countindo3_1 = indo3_1
        countindo3_2 = indo3_1 
        countindo3_3 = indo3_1
        countindo3_4 = indo3_1  
        FOR i=0L,nlmo3-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo3_1[i] =  where(testo3 and params EQ 1, countindo3_1x); index of radius of this stellar population in the val array
            countindo3_1[i] = countindo3_1x
            indo3_2[i] =  where(testo3 and params EQ 2, countindo3_2x); index of temperature of this stellar population in the val array
            countindo3_2[i] = countindo3_2x
            indo3_3[i] =  where(testo3 and params EQ 3, countindo3_3x); index of distance of this stellar population in the val array
            countindo3_3[i] = countindo3_3x
            indo3_4[i] =  where(testo3 and params EQ 4, countindo3_4x); index of the nstars of this stellar population in the val array (Q: does it make sense to have an nstars>1.? If not upper limiting it in the general fitting procedure might be handy)
            countindo3_4[i] = countindo3_4x
        ENDFOR  
    ENDIF
    
    ; Locating the O4 stellar population parameters
    testo4 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 4
    ind = where(testo4,countindo4)
    IF countindo4 NE 0 THEN BEGIN 
        lumclasso4 = lumclass(ind)
        nlmo4 = n_elements(lumclasso4)
        indo4_1 = fltarr(nlmo4)
        indo4_2 = indo4_1
        indo4_3 = indo4_1
        indo4_4 = indo4_1 
        countindo4_1 = indo4_1
        countindo4_2 = indo4_1
        countindo4_3 = indo4_1
        countindo4_4 = indo4_1
        FOR i=0L,nlmo4-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo4_1[i] =  where(testo4 and params EQ 1, countindo4_1x); index of radius of this stellar population in the val array
            countindo4_1[i] = countindo4_1x
            indo4_2[i] =  where(testo4 and params EQ 2, countindo4_2x); index of temperature of this stellar population in the val array
            countindo4_2[i] = countindo4_2x
            indo4_3[i] =  where(testo4 and params EQ 3, countindo4_3x); index of distance of this stellar population in the val array
            countindo4_3[i] = countindo4_3x
            indo4_4[i] =  where(testo4 and params EQ 4, countindo4_4x); index of the nstars of this stellar population in the val array
            countindo4_4[i] = countindo4_4x
        ENDFOR
    ENDIF
    
    ; Locating the O5 stellar population parameters
    testo5 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 5
    ind = where(testo5,countindo5)
    IF countindo5 NE 0 THEN BEGIN
        lumclasso5 = lumclass(ind)
        nlmo5 = n_elements(lumclasso5)
        indo5_1 = fltarr(nlmo5)
        indo5_2 = indo5_1
        indo5_3 = indo5_1
        indo5_4 = indo5_1   
        countindo5_1 = indo5_1
        countindo5_2 = indo5_1
        countindo5_3 = indo5_1
        countindo5_4 = indo5_1
        FOR i=0L,nlmo5-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo5_1[i] =  where(testo5 and params EQ 1, countindo5_1x); index of radius of this stellar population in the val array
            countindo5_1[i] = countindo5_1x
            indo5_2[i] =  where(testo5 and params EQ 2, countindo5_2x); index of temperature of this stellar population in the val array
            countindo5_2[i] = countindo5_2x
            indo5_3[i] =  where(testo5 and params EQ 3, countindo5_3x); index of distance of this stellar population in the val array
            countindo5_3[i] = countindo5_3x
            indo5_4[i] =  where(testo5 and params EQ 4, countindo5_4x); index of the nstars of this stellar population in the val array
            countindo5_4[i] = countindo5_4x
        ENDFOR
    ENDIF
    
    ; Locating the O6 stellar population parameters
    testo6 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 6
    ind = where(testo6,countindo6)
    IF countindo6 NE 0 THEN BEGIN
        lumclasso6 = lumclass(ind)
        nlmo6 = long(n_elements(lumclasso6))
        indo6_1 = fltarr(nlmo6)
        indo6_2 = indo6_1
        indo6_3 = indo6_1
        indo6_4 = indo6_1    
        countindo6_1 = indo6_1
        countindo6_2 = indo6_1
        countindo6_3 = indo6_1
        countindo6_4 = indo6_1
        FOR i=0L,nlmo6-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo6_1[i] =  where(testo6 and params EQ 1, countindo6_1x); index of radius of this stellar population in the val array
            countindo6_1[i] = countindo6_1x
            indo6_2[i] =  where(testo6 and params EQ 2, countindo6_2x); index of temperature of this stellar population in the val array
            countindo6_2[i] = countindo6_2x
            indo6_3[i] =  where(testo6 and params EQ 3, countindo6_3x); index of distance of this stellar population in the val array
            countindo6_3[i] = countindo6_3x
            indo6_4[i] =  where(testo6 and params EQ 4, countindo6_4x); index of the nstars of this stellar population in the val array
            countindo6_4[i] = countindo6_4x
        ENDFOR
    ENDIF
    
    
    ; Locating the O7 stellar population parameters
    testo7 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 7
    ind = where(testo7,countindo7)
    IF countindo7 NE 0 THEN BEGIN
        lumclasso7 = lumclass(ind)
        nlmo7 = n_elements(lumclasso7)
        indo7_1 = fltarr(nlmo7)
        indo7_2 = indo7_1
        indo7_3 = indo7_1
        indo7_4 = indo7_1    
        countindo7_1 = indo7_1
        countindo7_2 = indo7_1
        countindo7_3 = indo7_1
        countindo7_4 = indo7_1
        FOR i=0L,nlmo7-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo7_1[i] =  where(testo7 and params EQ 1, countindo7_1x); index of radius of this stellar population in the val array
            countindo7_1[i] = countindo7_1x
            indo7_2[i] =  where(testo7 and params EQ 2, countindo7_2x); index of temperature of this stellar population in the val array
            countindo7_2[i] = countindo7_2x
            indo7_3[i] =  where(testo7 and params EQ 3, countindo7_3x); index of distance of this stellar population in the val array
            countindo7_3[i] = countindo7_3x
            indo7_4[i] =  where(testo7 and params EQ 4, countindo7_4x); index of the nstars of this stellar population in the val array
            countindo7_4[i] = countindo7_4x
        ENDFOR
    ENDIF
    
    ; Locating the O8 stellar population parameters
    testo8 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 8
    ind = where(testo8,countindo8)
    IF countindo8 NE 0 THEN BEGIN
        lumclasso8 = lumclass(ind)
        nlmo8 = n_elements(lumclasso8)
        indo8_1 = fltarr(nlmo8)
        indo8_2 = indo8_1
        indo8_3 = indo8_1
        indo8_4 = indo8_1   
        countindo8_1 = indo8_1
        countindo8_2 = indo8_1
        countindo8_3 = indo8_1
        countindo8_4 = indo8_1
        FOR i=0L,nlmo8-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo8_1[i] =  where(testo8 and params EQ 1, countindo8_1x); index of radius of this stellar population in the val array
            countindo8_1[i] = countindo8_1x
            indo8_2[i] =  where(testo8 and params EQ 2, countindo8_2x); index of temperature of this stellar population in the val array
            countindo8_2[i] = countindo8_2x
            indo8_3[i] =  where(testo8 and params EQ 3, countindo8_3x); index of distance of this stellar population in the val array
            countindo8_3[i] = countindo8_3x
            indo8_4[i] =  where(testo8 and params EQ 4, countindo8_4x); index of the nstars of this stellar population in the val array
            countindo8_4[i] = countindo8_4x
        ENDFOR
    ENDIF
    
    ; Locating the O9 stellar population parameters
    testo9 = strupcase(strmid(key,0,1)) EQ 'O' and strmid(key,1,1) EQ 9
    ind = where(testo9,countindo9)
    IF countindo9 NE 0 THEN BEGIN
        lumclasso9 = strupcase(lumclass(ind))
        nlmo9 = long(n_elements(lumclasso9))
        indo9_1 = fltarr(nlmo9)
        indo9_2 = indo9_1 
        indo9_3 = indo9_1 
        indo9_4 = indo9_1    
        countindo9_1 = indo9_1 
        countindo9_2 = indo9_1 
        countindo9_3 = indo9_1 
        countindo9_4 = indo9_1  
        FOR i=0L,nlmo9-1 DO BEGIN
            popnumber+=1
            counto+=1
            indo9_1[i] =  where(testo9 and params EQ 1, countindo9_1x); index of radius of this stellar population in the val array
            countindo9_1[i] = countindo9_1x
            indo9_2[i] =  where(testo9 and params EQ 2, countindo9_2x); index of temperature of this stellar population in the val array
            countindo9_2[i] = countindo9_2x
            indo9_3[i] =  where(testo9 and params EQ 3, countindo9_3x); index of distance of this stellar population in the val array
            countindo9_3[i] = countindo9_3x
            indo9_4[i] =  where(testo9 and params EQ 4, countindo9_4x); index of the nstars of this stellar population in the val array
            countindo9_4[i] = countindo9_4x
        ENDFOR
    ENDIF
    
    ;======================================================
    
    ; Locating the B0 stellar population parameters
    testb0 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 0
    ind = where(testb0,countindb0)
    IF countindb0 NE 0 THEN BEGIN
         lumclassb0 = uniq(lumclass(ind))
         nlmb0 = n_elements(lumclassb0)
         indb0_1 = fltarr(nlmb0)
         indb0_2 = indb0_1
         indb0_3 = indb0_1
         indb0_4 = indb0_1  
         countindb0_1 = indb0_1
         countindb0_2 = indb0_1
         countindb0_3 = indb0_1
         countindb0_4 = indb0_1       
         FOR i=0L,nlmb0-1 DO BEGIN   
            popnumber+=1
            countb+=1
            indb0_1[i] =  where(testb0 and params EQ 1, countindb0_1x); index of radius of this stellar population in the val array
            countindb0_1[i] = countindb0_1x
            indb0_2[i] =  where(testb0 and params EQ 2, countindb0_2x); index of temperature of this stellar population in the val array
            countindb0_2[i] = countindb0_2x
            indb0_3[i] =  where(testb0 and params EQ 3, countindb0_3x); index of distance of this stellar population in the val array
            countindb0_3[i] = countindb0_3x
            indb0_4[i] =  where(testb0 and params EQ 4, countindb0_4x); index of the nstars of this stellar population in the val array
            countindb0_4[i] = countindb0_4x
        ENDFOR
    ENDIF
    
    ; Locating the B1 stellar population parameters
    testb1 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 1
    ind = where(testb1,countindb1)
    IF countindb1 NE 0 THEN BEGIN
        lumclassb1 = strupcase(lumclass(ind))
        nlmb1 = long(n_elements(lumclassb1))
        indb1_1 = fltarr(nlmb1)
        indb1_2 = indb1_1
        indb1_3 = indb1_1
        indb1_4 = indb1_1 
        countindb1_1 = indb1_1
        countindb1_2 = indb1_1
        countindb1_3 = indb1_1
        countindb1_4 = indb1_1     
        FOR i=0L,nlmb1-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb1_1[i] =  where(testb1 and params EQ 1, countindb1_1x); index of radius of this stellar population in the val array
            countindb1_1[i] = countindb1_1x
            indb1_2[i] =  where(testb1 and params EQ 2, countindb1_2x); index of temperature of this stellar population in the val array
            countindb1_2[i] = countindb1_2x
            indb1_3[i] =  where(testb1 and params EQ 3, countindb1_3x); index of distance of this stellar population in the val array
            countindb1_3[i] = countindb1_3x
            indb1_4[i] =  where(testb1 and params EQ 4, countindb1_4x); index of the nstars of this stellar population in the val array
            countindb1_4[i] = countindb1_4x
        ENDFOR
    ENDIF
    
    ; Locating the B2 stellar population parameters
    testb2 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 2
    ind = where(testb2,countindb2)
    IF countindb2 NE 0 THEN BEGIN
        lumclassb2 = uniq(lumclass(ind))
        nlmb2 = n_elements(lumclassb2)
        indb2_1 = fltarr(nlmb2)
        indb2_2 = indb2_1
        indb2_3 = indb2_1
        indb2_4 = indb2_1    
        countindb2_1 = indb2_1
        countindb2_2 = indb2_1
        countindb2_3 = indb2_1
        countindb2_4 = indb2_1
        FOR i=0L,nlmb2-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb2_1[i] =  where(testb2 and params EQ 1, countindb2_1x); index of radius of this stellar population in the val array
            countindb2_1[i] = countindb2_1x
            indb2_2[i] =  where(testb2 and params EQ 2, countindb2_2x); index of temperature of this stellar population in the val array
            countindb2_2[i] = countindb2_2x
            indb2_3[i] =  where(testb2 and params EQ 3, countindb2_3x); index of distance of this stellar population in the val array
            countindb2_3[i] = countindb2_3x
            indb2_4[i] =  where(testb2 and params EQ 4, countindb2_4x); index of the nstars of this stellar population in the val array
            countindb2_4[i] = countindb2_4x
        ENDFOR
    ENDIF
    
    ; Locating the B3 stellar population parameters
    testb3 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 3
    ind = where(testb3,countindb3)
    IF countindb3 NE 0 THEN BEGIN
        lumclassb3 = uniq(lumclass(ind))
        nlmb3 = n_elements(lumclassb3)
        indb3_1 = fltarr(nlmb3)
        indb3_2 = indb3_1
        indb3_3 = indb3_1
        indb3_4 = indb3_1
        countindb3_1 = indb3_1
        countindb3_2 = indb3_1
        countindb3_3 = indb3_1
        countindb3_4 = indb3_1
        FOR i=0L,nlmb3-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb3_1[i] =  where(testb3 and params EQ 1, countindb3_1x); index of radius of this stellar population in the val array
            countindb3_1[i] = countindb3_1x
            indb3_2[i] =  where(testb3 and params EQ 2, countindb3_2x); index of temperature of this stellar population in the val array
            countindb3_2[i] = countindb3_2x
            indb3_3[i] =  where(testb3 and params EQ 3, countindb3_3x); index of distance of this stellar population in the val array
            countindb3_3[i] = countindb3_3x
            indb3_4[i] =  where(testb3 and params EQ 4, countindb3_4x); index of the nstars of this stellar population in the val array
            countindb3_4[i] = countindb3_4x
        ENDFOR
    ENDIF
    
    ; Locating the B4 stellar population parameters
    testb4 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 4
    ind = where(testb4,countindb4)
    IF countindb4 NE 0 THEN BEGIN
        lumclassb4 = uniq(lumclass(ind))
        nlmb4 = n_elements(lumclassb4)
        indb4_1 = fltarr(nlmb4)
        indb4_2 = indb4_1
        indb4_3 = indb4_1
        indb4_4 = indb4_1
        countindb4_1 = indb4_1
        countindb4_2 = indb4_1
        countindb4_3 = indb4_1
        countindb4_4 = indb4_1
        FOR i=0L,nlmb4-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb4_1[i] =  where(testb4 and params EQ 1, countindb4_1x); index of radius of this stellar population in the val array
            countindb4_1[i] = countindb4_1x
            indb4_2[i] =  where(testb4 and params EQ 2, countindb4_2x); index of temperature of this stellar population in the val array
            countindb4_2[i] = countindb4_2x
            indb4_3[i] =  where(testb4 and params EQ 3, countindb4_3x); index of distance of this stellar population in the val array
            countindb4_3[i] = countindb4_3x
            indb4_4[i] =  where(testb4 and params EQ 4, countindb4_4x); index of the nstars of this stellar population in the val array
            countindb4_4[i] = countindb4_4x
        ENDFOR
    ENDIF
    
    ; Locating the B5 stellar population parameters
    testb5 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 5
    ind = where(testb5,countindb5)
    IF countindb5 NE 0 THEN BEGIN
        lumclassb5 = uniq(lumclass(ind))
        nlmb5 = n_elements(lumclassb5)
        indb5_1 = fltarr(nlmb5)
        indb5_2 = indb5_1
        indb5_3 = indb5_1
        indb5_4 = indb5_1
        countindb5_1 = indb5_1
        countindb5_2 = indb5_1
        countindb5_3 = indb5_1
        countindb5_4 = indb5_1
        FOR i=0L,nlmb5-1 DO BEGIN    
            popnumber+=1
            countb+=1
            indb5_1[i] =  where(testb5 and params EQ 1, countindb5_1x); index of radius of this stellar population in the val array
            countindb5_1[i] = countindb5_1x
            indb5_2[i] =  where(testb5 and params EQ 2, countindb5_2x); index of temperature of this stellar population in the val array
            countindb5_2[i] = countindb5_2x
            indb5_3[i] =  where(testb5 and params EQ 3, countindb5_3x); index of distance of this stellar population in the val array
            countindb5_3[i] = countindb5_3x
            indb5_4[i] =  where(testb5 and params EQ 4, countindb5_4x); index of the nstars of this stellar population in the val array
            countindb5_4[i] = countindb5_4x
        ENDFOR
    ENDIF
    
    ; Locating the B6 stellar population parameters
    testb6 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 6
    ind = where(testb6,countindb6)
    IF countindb6 NE 0 THEN BEGIN
        lumclassb6 = uniq(lumclass(ind))
        nlmb6 = n_elements(lumclassb6)
        indb6_1 = fltarr(nlmb6)
        indb6_2 = indb6_1
        indb6_3 = indb6_1
        indb6_4 = indb6_1
        countindb6_1 = indb6_1
        countindb6_2 = indb6_1
        countindb6_3 = indb6_1
        countindb6_4 = indb6_1
        FOR i=0L,nlmb6-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb6_1[i] =  where(testb6 and params EQ 1, countindb6_1x); index of radius of this stellar population in the val array
            countindb6_1[i] = countindb6_1x
            indb6_2[i] =  where(testb6 and params EQ 2, countindb6_2x); index of temperature of this stellar population in the val array
            countindb6_2[i] = countindb6_2x
            indb6_3[i] =  where(testb6 and params EQ 3, countindb6_3x); index of distance of this stellar population in the val array
            countindb6_3[i] = countindb6_3x
            indb6_4[i] =  where(testb6 and params EQ 4, countindb6_4x); index of the nstars of this stellar population in the val array
            countindb6_4[i] = countindb6_4x
        ENDFOR
    ENDIF
    
    ; Locating the B7 stellar population parameters
    testb7 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 7
    ind = where(testb7,countindb7)
    IF countindb7 NE 0 THEN BEGIN
        lumclassb7 = uniq(lumclass(ind))
        nlmb7 = n_elements(lumclassb7)
        indb7_1 = fltarr(nlmb7)
        indb7_2 = indb7_1
        indb7_3 = indb7_1
        indb7_4 = indb7_1  
        countindb7_1 = indb7_1
        countindb7_2 = indb7_1
        countindb7_3 = indb7_1
        countindb7_4 = indb7_1
        FOR i=0L,nlmb7-1 DO BEGIN 
            popnumber+=1
            countb+=1
            indb7_1[i] =  where(testb7 and params EQ 1, countindb7_1x); index of radius of this stellar population in the val array
            countindb7_1[i] = countindb7_1x
            indb7_2[i] =  where(testb7 and params EQ 2, countindb7_2x); index of temperature of this stellar population in the val array
            countindb7_2[i] = countindb7_2x
            indb7_3[i] =  where(testb7 and params EQ 3, countindb7_3x); index of distance of this stellar population in the val array
            countindb7_3[i] = countindb7_3x
            indb7_4[i] =  where(testb7 and params EQ 4, countindb7_4x); index of the nstars of this stellar population in the val array
            countindb7_4[i] = countindb7_4x
        ENDFOR
    ENDIF
    
    ; Locating the B8 stellar population parameters
    testb8 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 8 
    ind = where(testb8,countindb8)
    IF countindb8 NE 0 THEN BEGIN
        lumclassb8 = uniq(lumclass(ind))
        nlmb8 = n_elements(lumclassb8)
        indb8_1 = fltarr(nlmb8)
        indb8_2 = indb8_1
        indb8_3 = indb8_1
        indb8_4 = indb8_1   
        countindb8_1 = indb8_1
        countindb8_2 = indb8_1
        countindb8_3 = indb8_1
        countindb8_4 = indb8_1
        FOR i=0L,nlmb8-1 DO BEGIN
            popnumber+=1
            countb+=1
            indb8_1[i] =  where(testb8 and params EQ 1, countindb8_1x); index of radius of this stellar population in the val array
            countindb8_1[i] = countindb8_1x
            indb8_2[i] =  where(testb8 and params EQ 2, countindb8_2x); index of temperature of this stellar population in the val array
            countindb8_2[i] = countindb8_2x
            indb8_3[i] =  where(testb8 and params EQ 3, countindb8_3x); index of distance of this stellar population in the val array
            countindb8_3[i] = countindb8_3x
            indb8_4[i] =  where(testb8 and params EQ 4, countindb8_4x); index of the nstars of this stellar population in the val array
            countindb8_4[i] = countindb8_4x
        ENDFOR
    ENDIF
    
    ; Locating the B9 stellar population parameters
    testb9 = strupcase(strmid(key,0,1)) EQ 'B' and strmid(key,1,1) EQ 9
    ind = where(testb9,countindb9)
    IF countindb9 NE 0 THEN BEGIN
        lumclassb9 = uniq(lumclass(ind))
        nlmb9 = n_elements(lumclassb9)
        indb9_1 = fltarr(nlmb9)
        indb9_2 = indb9_1
        indb9_3 = indb9_1
        indb9_4 = indb9_1   
        countindb9_1 = indb9_1
        countindb9_2 = indb9_1
        countindb9_3 = indb9_1
        countindb9_4 = indb9_1
        FOR i=0L,nlmb9-1 DO BEGIN
            popnumber+=1
            countb+=1
            indb9_1[i] =  where(testb9 and params EQ 1, countindb9_1x); index of radius of this stellar population in the val array
            countindb9_1[i] = countindb9_1x
            indb9_2[i] =  where(testb9 and params EQ 2, countindb9_2x); index of temperature of this stellar population in the val array
            countindb9_2[i] = countindb9_2x
            indb9_3[i] =  where(testb9 and params EQ 3, countindb9_3x); index of distance of this stellar population in the val array
            countindb9_3[i] = countindb9_3x
            indb9_4[i] =  where(testb9 and params EQ 4, countindb9_4x); index of the nstars of this stellar population in the val array
            countindb9_4[i] = countindb9_4x
        ENDFOR
    ENDIF
    
    
    ;======================================================
    
    ; Locating the A0 stellar population parameters
    testa0 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 0
    ind = where(testa0,countinda0)
    IF countinda0 NE 0 THEN BEGIN
        lumclassA0 = uniq(lumclass(ind))
        nlmA0 = n_elements(lumclassA0)
        indA0_1 = fltarr(nlmA0)
        indA0_2 = indA0_1 
        indA0_3 = indA0_1 
        indA0_4 = indA0_1    
        countindA0_1 = indA0_1 
        countindA0_2 = indA0_1 
        countindA0_3 = indA0_1 
        countindA0_4 = indA0_1  
        FOR i=0L,nlmA0-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda0_1[i] =  where(testa0 and params EQ 1, countinda0_1x); index of radius of this stellar population in the val array
            countinda0_1[i] = countinda0_1x
            inda0_2[i] =  where(testa0 and params EQ 2, countinda0_2x); index of temperature of this stellar population in the val array
            countinda0_2[i] = countinda0_2x
            inda0_3[i] =  where(testa0 and params EQ 3, countinda0_3x); index of distance of this stellar population in the val array
            countinda0_3[i] = countinda0_3x
            inda0_4[i] =  where(testa0 and params EQ 4, countinda0_4x); index of the nstars of this stellar population in the val array
            countinda0_4[i] =  countinda0_4x
        ENDFOR
    ENDIF
    
    ; Locating the A1 stellar population parameters
    testa1 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 1
    ind = where(testa1,countinda1)
    IF countinda1 NE 0 THEN BEGIN
        lumclassA1 = lumclass(ind)
        nlmA1 = n_elements(lumclassA1)
        indA1_1 = fltarr(nlmA1)
        indA1_2 = indA1_1
        indA1_3 = indA1_1
        indA1_4 = indA1_1  
        countindA1_1 = indA1_1
        countindA1_2 = indA1_1
        countindA1_3 = indA1_1
        countindA1_4 = indA1_1
        FOR i=0L,nlmA1-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda1_1[i] =  where(testa1 and params EQ 1, countinda1_1x); index of radius of this stellar population in the val array
            countinda1_1[i] = countinda1_1x
            inda1_2[i] =  where(testa1 and params EQ 2, countinda1_2x); index of temperature of this stellar population in the val array
            countinda1_2[i] = countinda1_2x
            inda1_3[i] =  where(testa1 and params EQ 3, countinda1_3x); index of distance of this stellar population in the val array
            countinda1_3[i] = countinda1_3x
            inda1_4[i] =  where(testa1 and params EQ 4, countinda1_4x); index of the nstars of this stellar population in the val array
            countinda1_4[i] = countinda1_4x
        ENDFOR
    ENDIF
    
    ; Locating the A2 stellar population parameters
    testa2 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 2
    ind = where(testa2,countinda2)
    IF countinda2 NE 0 THEN BEGIN
        lumclassA2 = lumclass(ind)
        nlmA2 = n_elements(lumclassA2)
        indA2_1 = fltarr(nlmA2)
        indA2_2 = indA2_1
        indA2_3 = indA2_1
        indA2_4 = indA2_1
        countindA2_1 = indA2_1
        countindA2_2 = indA2_1
        countindA2_3 = indA2_1
        countindA2_4 = indA2_1
        FOR i=0L,nlmA2-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda2_1[i] =  where(testa2 and params EQ 1, countinda2_1x); index of radius of this stellar population in the val array
            countinda2_1[i] = countinda2_1x
            inda2_2[i] =  where(testa2 and params EQ 2, countinda2_2x); index of temperature of this stellar population in the val array
            countinda2_2[i] = countinda2_2x
            inda2_3[i] =  where(testa2 and params EQ 3, countinda2_3x); index of distance of this stellar population in the val array
            countinda2_3[i] = countinda2_3x
            inda2_4[i] =  where(testa2 and params EQ 4, countinda2_4x); index of the nstars of this stellar population in the val array
            countinda2_4[i] = countinda2_4x
        ENDFOR
    ENDIF
    
    ; Locating the A3 stellar population parameters
    testa3 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 3
    ind = where(testa3,countinda3)
    IF countinda3 NE 0 THEN BEGIN
        lumclassA3 = lumclass(ind)
        nlmA3 = n_elements(lumclassA3)
        indA3_1 = fltarr(nlmA3)
        indA3_2 = indA3_1
        indA3_3 = indA3_1
        indA3_4 = indA3_1    
        countindA3_1 = indA3_1
        countindA3_2 = indA3_1
        countindA3_3 = indA3_1
        countindA3_4 = indA3_1
        FOR i=0L,nlmA3-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda3_1[i] =  where(testa3 and params EQ 1, countinda3_1x); index of radius of this stellar population in the val array
            countinda3_1[i] = countinda3_1x
            inda3_2[i] =  where(testa3 and params EQ 2, countinda3_2x); index of temperature of this stellar population in the val array
            countinda3_2[i] = countinda3_2x
            inda3_3[i] =  where(testa3 and params EQ 3, countinda3_3x); index of distance of this stellar population in the val array
            countinda3_3[i] = countinda3_3x
            inda3_4[i] =  where(testa3 and params EQ 4, countinda3_4x); index of the nstars of this stellar population in the val array
            countinda3_4[i] = countinda3_4x
        ENDFOR
    ENDIF
    
    ; Locating the A4 stellar population parameters
    testa4 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 4
    ind = where(testa4,countinda4)
    IF countinda4 NE 0 THEN BEGIN
        lumclassA4 = lumclass(ind)
        nlmA4 = n_elements(lumclassA4)
        indA4_1 = fltarr(nlmA4)
        indA4_2 = indA4_1
        indA4_3 = indA4_1
        indA4_4 = indA4_1   
        countindA4_1 = indA4_1
        countindA4_2 = indA4_1
        countindA4_3 = indA4_1
        countindA4_4 = indA4_1
        FOR i=0L,nlmA4-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda4_1[i] =  where(testa4 and params EQ 1, countinda4_1x); index of radius of this stellar population in the val array
            countinda4_1[i] = countinda4_1x
            inda4_2[i] =  where(testa4 and params EQ 2, countinda4_2x); index of temperature of this stellar population in the val array
            countinda4_2[i] = countinda4_2x
            inda4_3[i] =  where(testa4 and params EQ 3, countinda4_3x); index of distance of this stellar population in the val array
            countinda4_3[i] = countinda4_3x
            inda4_4[i] =  where(testa4 and params EQ 4, countinda4_4x); index of the nstars of this stellar population in the val array
            countinda4_4[i] = countinda4_4x
        ENDFOR
    ENDIF
    
    ; Locating the A5 stellar population parameters
    testa5 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 5
    ind = where(testa5,countinda5)
    IF countinda5 NE 0 THEN BEGIN
        lumclassA5 = lumclass(ind)
        nlmA5 = n_elements(lumclassA5)
        indA5_1 = fltarr(nlmA5)
        indA5_2 = indA5_1
        indA5_3 = indA5_1
        indA5_4 = indA5_1   
        countindA5_1 = indA5_1
        countindA5_2 = indA5_1
        countindA5_3 = indA5_1
        countindA5_4 = indA5_1
        FOR i=0L,nlmA5-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda5_1[i] =  where(testa5 and params EQ 1, countinda5_1x); index of radius of this stellar population in the val array
            countinda5_1[i] = countinda5_1x
            inda5_2[i] =  where(testa5 and params EQ 2, countinda5_2x); index of temperature of this stellar population in the val array
            countinda5_2[i] = countinda5_2x
            inda5_3[i] =  where(testa5 and params EQ 3, countinda5_3x); index of distance of this stellar population in the val array
            countinda5_3[i] = countinda5_3x
            inda5_4[i] =  where(testa5 and params EQ 4, countinda5_4x); index of the nstars of this stellar population in the val array
            countinda5_4[i] = countinda5_4x
        ENDFOR
    ENDIF
    
    ; Locating the A6 stellar population parameters
    testa6 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 6
    ind = where(testa6,countinda6)
    IF countinda6 NE 0 THEN BEGIN
        lumclassA6 = lumclass(ind)
        nlmA6 = n_elements(lumclassA6)
        indA6_1 = fltarr(nlmA6)
        indA6_2 = indA6_1
        indA6_3 = indA6_1
        indA6_4 = indA6_1   
        countindA6_1 = indA6_1
        countindA6_2 = indA6_1
        countindA6_3 = indA6_1
        countindA6_4 = indA6_1
        FOR i=0L,nlmA6-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda6_1[i] =  where(testa6 and params EQ 1, countinda6_1x); index of radius of this stellar population in the val array
            countinda6_1[i] = countinda6_1x
            inda6_2[i] =  where(testa6 and params EQ 2, countinda6_2x); index of temperature of this stellar population in the val array
            countinda6_2[i] = countinda6_2x
            inda6_3[i] =  where(testa6 and params EQ 3, countinda6_3x); index of distance of this stellar population in the val array
            countinda6_3[i] = countinda6_3x
            inda6_4[i] =  where(testa6 and params EQ 4, countinda6_4x); index of the nstars of this stellar population in the val array
            countinda6_4[i] = countinda6_4x
        ENDFOR
    ENDIF
    
    ; Locating the A7 stellar population parameters
    testa7 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 7
    ind = where(testa7,countinda7)
    IF countinda7 NE 0 THEN BEGIN
        lumclassA7 = lumclass(ind)
        nlmA7 = n_elements(lumclassA7)
        indA7_1 = fltarr(nlmA7)
        indA7_2 = indA7_1
        indA7_3 = indA7_1
        indA7_4 = indA7_1  
        countindA7_1 = indA7_1
        countindA7_2 = indA7_1
        countindA7_3 = indA7_1
        countindA7_4 = indA7_1
        FOR i=0L,nlmA7-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda7_1[i] =  where(testa7 and params EQ 1, countinda7_1x); index of radius of this stellar population in the val array
            countinda7_1[i] = countinda7_1x
            inda7_2[i] =  where(testa7 and params EQ 2, countinda7_2x); index of temperature of this stellar population in the val array
            countinda7_2[i] = countinda7_2x
            inda7_3[i] =  where(testa7 and params EQ 3, countinda7_3x); index of distance of this stellar population in the val array
            countinda7_3[i] = countinda7_3x
            inda7_4[i] =  where(testa7 and params EQ 4, countinda7_4x); index of the nstars of this stellar population in the val array
            countinda7_4[i] = countinda7_4x
       ENDFOR
    ENDIF
    
    ; Locating the A8 stellar population parameters
    testa8 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 8
    ind = where(testa8,countinda8)
    IF countinda8 NE 0 THEN BEGIN
        lumclassA8 = lumclass(ind)
        nlmA8 = n_elements(lumclassA8)
        indA8_1 = fltarr(nlmA8)
        indA8_2 = indA8_1
        indA8_3 = indA8_1
        indA8_4 = indA8_1
        countindA8_1 = indA8_1
        countindA8_2 = indA8_1
        countindA8_3 = indA8_1
        countindA8_4 = indA8_1
        FOR i=0L,nlmA8-1 DO BEGIN
            popnumber+=1
            counta+=1
            inda8_1[i] =  where(testa8 and params EQ 1, countinda8_1x); index of radius of this stellar population in the val array
            countinda8_1[i] = countinda8_1x
            inda8_2[i] =  where(testa8 and params EQ 2, countinda8_2x); index of temperature of this stellar population in the val array
            countinda8_2[i] = countinda8_2x
            inda8_3[i] =  where(testa8 and params EQ 3, countinda8_3x); index of distance of this stellar population in the val array
            countinda8_3[i] = countinda8_3x
            inda8_4[i] =  where(testa8 and params EQ 4, countinda8_4x); index of the nstars of this stellar population in the val array
            countinda8_4[i] = countinda8_4x
        ENDFOR
    ENDIF
   
    ; Locating the A9 stellar population parameters
    testa9 = strupcase(strmid(key,0,1)) EQ 'A' and strmid(key,1,1) EQ 9
    ind = where(testa9,countinda9)
    IF countinda9 NE 0 THEN BEGIN
        lumclassA9 = lumclass(ind)
        nlmA9 = n_elements(lumclassA9)
        indA9_1 = fltarr(nlmA9)
        indA9_2 = indA9_1
        indA9_3 = indA9_1
        indA9_4 = indA9_1    
        countindA9_1 = indA9_1
        countindA9_2 = indA9_1
        countindA9_3 = indA9_1
        countindA9_4 = indA9_1
        FOR i=0L,nlmA9-1 DO BEGIN
            popnumber+=1  
            counta+=1
            inda9_1[i] =  where(testa9 and params EQ 1, countinda9_1x); index of radius of this stellar population in the val array
            countinda9_1[i] = countinda9_1x
            inda9_2[i] =  where(testa9 and params EQ 2, countinda9_2x); index of temperature of this stellar population in the val array
            countinda9_2[i] = countinda9_2x
            inda9_3[i] =  where(testa9 and params EQ 3, countinda9_3x); index of distance of this stellar population in the val array
            countinda9_3[i] = countinda9_3x
            inda9_4[i] =  where(testa9 and params EQ 4, countinda9_4x); index of the nstars of this stellar population in the val array
            countinda9_4[i] = countinda9_4x
        ENDFOR
    ENDIF
    
    
    ;====================================================== 
     
    ; Locating the F0 stellar population parameters 
    testf0 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 0
    ind = where(testf0,countindf0)
    IF countindf0 NE 0 THEN BEGIN
        lumclassF0 = lumclass(ind)
        nlmF0 = n_elements(lumclassF0)
        indF0_1 = fltarr(nlmF0)
        indF0_2 = indF0_1
        indF0_3 = indF0_1
        indF0_4 = indF0_1
        countindF0_1 = indF0_1
        countindF0_2 = indF0_1
        countindF0_3 = indF0_1
        countindF0_4 = indF0_1
        FOR i=0L,nlmF0-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf0_1[i] =  where(testf0 and params EQ 1, countindf0_1x); index of radius of this stellar population in the val array
            countindf0_1[i] = countindf0_1x
            indf0_2[i] =  where(testf0 and params EQ 2, countindf0_2x); index of temperature of this stellar population in the val array
            countindf0_2[i] = countindf0_2x
            indf0_3[i] =  where(testf0 and params EQ 3, countindf0_3x); index of distance of this stellar population in the val array
            countindf0_3[i] = countindf0_3x
            indf0_4[i] =  where(testf0 and params EQ 4, countindf0_4x); index of the nstars of this stellar population in the val array
            countindf0_4[i] = countindf0_4x
        ENDFOR
    ENDIF
    
    ; Locating the F1 stellar population parameters
    testf1 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 1
    ind = where(testf1,countindf1)
    IF countindf1 NE 0 THEN BEGIN
        lumclassF1 = lumclass(ind)
        nlmF1 = n_elements(lumclassF1)
        indF1_1 = fltarr(nlmF1)
        indF1_2 = indF1_1
        indF1_3 = indF1_1
        indF1_4 = indF1_1
        countindF1_1 = indF1_1
        countindF1_2 = indF1_1
        countindF1_3 = indF1_1
        countindF1_4 = indF1_1
        FOR i=0L,nlmF1-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf1_1[i] =  where(testf1 and params EQ 1, countindf1_1x); index of radius of this stellar population in the val array
            countindf1_1[i] = countindf1_1x
            indf1_2[i] =  where(testf1 and params EQ 2, countindf1_2x); index of temperature of this stellar population in the val array
            countindf1_2[i] = countindf1_2x
            indf1_3[i] =  where(testf1 and params EQ 3, countindf1_3x); index of distance of this stellar population in the val array
            countindf1_3[i] = countindf1_3x
            indf1_4[i] =  where(testf1 and params EQ 4, countindf1_4x); index of the nstars of this stellar population in the val array
            countindf1_4[i] = countindf1_4x
        ENDFOR
    ENDIF
    
    ; Locating the F2 stellar population parameters
    testf2 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 2
    ind = where(testf2,countindf2)
    IF countindf2 NE 0 THEN BEGIN
        lumclassF2 = lumclass(ind)
        nlmF2 = n_elements(lumclassF2)
        indF2_1 = fltarr(nlmF2)
        indF2_2 = testf2
        indF2_3 = testf2
        indF2_4 = testf2
        countindF2_1 = testf2
        countindF2_2 = testf2
        countindF2_3 = testf2
        countindF2_4 = testf2
        FOR i=0L,nlmF2-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf2_1[i] =  where(testf2 and params EQ 1, countindf2_1x); index of radius of this stellar population in the val array
            countindf2_1[i] = countindf2_1x
            indf2_2[i] =  where(testf2 and params EQ 2, countindf2_2x); index of temperature of this stellar population in the val array
            countindf2_2[i] = countindf2_2x
            indf2_3[i] =  where(testf2 and params EQ 3, countindf2_3x); index of distance of this stellar population in the val array
            countindf2_3[i] = countindf2_3x
            indf2_4[i] =  where(testf2 and params EQ 4, countindf2_4x); index of the nstars of this stellar population in the val array
            countindf2_4[i] = countindf2_4x
        ENDFOR
    ENDIF
    
    ; Locating the F3 stellar population parameters
    testf3 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 3
    ind = where(testf3,countindf3)
    IF countindf3 NE 0 THEN BEGIN
        lumclassF3 = lumclass(ind)
        nlmF3 = n_elements(lumclassF3)
        indF3_1 = fltarr(nlmF3)
        indF3_2 = indF3_1
        indF3_3 = indF3_1
        indF3_4 = indF3_1
        countindF3_1 = indF3_1
        countindF3_2 = indF3_1
        countindF3_3 = indF3_1
        countindF3_4 = indF3_1
        FOR i=0L,nlmF3-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf3_1[i] =  where(testf3 and params EQ 1, countindf3_1x); index of radius of this stellar population in the val array
            countindf3_1[i] = countindf3_1x
            indf3_2[i] =  where(testf3 and params EQ 2, countindf3_2x); index of temperature of this stellar population in the val array
            countindf3_2[i] = countindf3_2x
            indf3_3[i] =  where(testf3 and params EQ 3, countindf3_3x); index of distance of this stellar population in the val array
            countindf3_3[i] = countindf3_3x
            indf3_4[i] =  where(testf3 and params EQ 4, countindf3_4x); index of the nstars of this stellar population in the val array
            countindf3_4[i] = countindf3_4x
        ENDFOR
    ENDIF
    
    ; Locating the F4 stellar population parameters
    testf4 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 4
    ind = where(testf4,countindf4)
    IF countindf4 NE 0 THEN BEGIN
        lumclassF4 = lumclass(ind)
        nlmF4 = n_elements(lumclassF4)
        indF4_1 = fltarr(nlmF4)
        indF4_2 = indF4_1
        indF4_3 = indF4_1
        indF4_4 = indF4_1
        countindF4_1 = indF4_1
        countindF4_2 = indF4_1
        countindF4_3 = indF4_1
        countindF4_4 = indF4_1
        FOR i=0L,nlmF4-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf4_1[i] =  where(testf4 and params EQ 1, countindf4_1x); index of radius of this stellar population in the val array
            countindf4_1[i] = countindf4_1x
            indf4_2[i] =  where(testf4 and params EQ 2, countindf4_2x); index of temperature of this stellar population in the val array
            countindf4_2[i] = countindf4_2x
            indf4_3[i] =  where(testf4 and params EQ 3, countindf4_3x); index of distance of this stellar population in the val array
            countindf4_3[i] = countindf4_3x
            indf4_4[i] =  where(testf4 and params EQ 4, countindf4_4x); index of the nstars of this stellar population in the val array
            countindf4_4[i] = countindf4_4x
        ENDFOR
    ENDIF
    
    ; Locating the F5 stellar population parameters
    testf5 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 5
    ind = where(testf5,countindf5)
    IF countindf5 NE 0 THEN BEGIN
       lumclassF5 = lumclass(ind)
       nlmF5 = n_elements(lumclassF5)
       indF5_1 = fltarr(nlmF5)
       indF5_2 = indF5_1
       indF5_3 = indF5_1
       indF5_4 = indF5_1
       countindF5_1 = indF5_1
       countindF5_2 = indF5_1
       countindF5_3 = indF5_1
       countindF5_4 = indF5_1
       FOR i=0L,nlmF5-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf5_1[i] =  where(testf5 and params EQ 1, countindf5_1x); index of radius of this stellar population in the val array
            countindf5_1[i] = countindf5_1x
            indf5_2[i] =  where(testf5 and params EQ 2, countindf5_2x); index of temperature of this stellar population in the val array
            countindf5_2[i] = countindf5_2x
            indf5_3[i] =  where(testf5 and params EQ 3, countindf5_3x); index of distance of this stellar population in the val array
            countindf5_3[i] = countindf5_3x
            indf5_4[i] =  where(testf5 and params EQ 4, countindf5_4x); index of the nstars of this stellar population in the val array
            countindf5_4[i] = countindf5_4x
        ENDFOR
    ENDIF
    
    ; Locating the F6 stellar population parameters
    testf6 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 6
    ind = where(testf6,countindf6)
    IF countindf6 NE 0 THEN BEGIN
         lumclassF6 = lumclass(ind)
         nlmF6 = n_elements(lumclassF6)
         indF6_1 = fltarr(nlmF6)
         indF6_2 = indF6_1
         indF6_3 = indF6_1
         indF6_4 = indF6_1
         countindF6_1 = indF6_1
         countindF6_2 = indF6_1
         countindF6_3 = indF6_1
         countindF6_4 = indF6_1
         FOR i=0L,nlmF6-1 DO BEGIN   
            popnumber+=1
            countf+=1
            indf6_1[i] =  where(testf6 and params EQ 1, countindf6_1x); index of radius of this stellar population in the val array
            countindf6_1[i] = countindf6_1x
            indf6_2[i] =  where(testf6 and params EQ 2, countindf6_2x); index of temperature of this stellar population in the val array
            countindf6_2[i] = countindf6_2x
            indf6_3[i] =  where(testf6 and params EQ 3, countindf6_3x); index of distance of this stellar population in the val array
            countindf6_3[i] = countindf6_3x
            indf6_4[i] =  where(testf6 and params EQ 4, countindf6_4x); index of the nstars of this stellar population in the val array
            countindf6_4[i] = countindf6_4x
         ENDFOR
     ENDIF
    
    ; Locating the F7 stellar population parameters
    testf7 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 7
    ind = where(testf7,countindf7)
    IF countindf7 NE 0 THEN BEGIN
        umclassF7 = lumclass(ind)
        nlmF7 = n_elements(lumclassF7)
        indF7_1 = fltarr(nlmF7)
        indF7_2 = indF7_1
        indF7_3 = indF7_1
        indF7_4 = indF7_1
        countindF7_1 = indF7_1
        countindF7_2 = indF7_1
        countindF7_3 = indF7_1
        countindF7_4 = indF7_1
        FOR i=0L,nlmF7-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf7_1[i] =  where(testf7 and params EQ 1, countindf7_1x); index of radius of this stellar population in the val array
            countindf7_1[i] = countindf7_1x
            indf7_2[i] =  where(testf7 and params EQ 2, countindf7_2x); index of temperature of this stellar population in the val array
            countindf7_2[i] = countindf7_2x
            indf7_3[i] =  where(testf7 and params EQ 3, countindf7_3x); index of distance of this stellar population in the val array
            countindf7_3[i] = countindf7_3x
            indf7_4[i] =  where(testf7 and params EQ 4, countindf7_4x); index of the nstars of this stellar population in the val array
            countindf7_4[i] = countindf7_4x
        ENDFOR
    ENDIF
    
    ; Locating the F8 stellar population parameters
    testf8 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 8
    ind = where(testf8,countindf8)
    IF countindf8 NE 0 THEN BEGIN
        lumclassF8 = lumclass(ind)
        nlmF8 = n_elements(lumclassF8)
        indF8_1 = fltarr(nlmF8)
        indF8_2 = indF8_1
        indF8_3 = indF8_1
        indF8_4 = indF8_1
        countindF8_1 = indF8_1
        countindF8_2 = indF8_1
        countindF8_3 = indF8_1
        countindF8_4 = indF8_1
        FOR i=0L,nlmF8-1 DO BEGIN
            popnumber+=1
            countf+=1
            indf8_1[i] =  where(testf8 and params EQ 1, countindf8_1x); index of radius of this stellar population in the val array
            countindf8_1[i] = countindf8_1x
            indf8_2[i] =  where(testf8 and params EQ 2, countindf8_2x); index of temperature of this stellar population in the val array
            countindf8_2[i] = countindf8_2x
            indf8_3[i] =  where(testf8 and params EQ 3, countindf8_3x); index of distance of this stellar population in the val array
            countindf8_3[i] = countindf8_3x
            indf8_4[i] =  where(testf8 and params EQ 4, countindf8_4x); index of the nstars of this stellar population in the val array
            countindf8_4[i] = countindf8_4x
        ENDFOR
    ENDIF
    
    ; Locating the F9 stellar population parameters
    testf9 = strupcase(strmid(key,0,1)) EQ 'F' and strmid(key,1,1) EQ 9
    ind = where(testf9,countindf9)
    IF countindf9 NE 0 THEN BEGIN
        lumclassF9 = lumclass(ind)
        nlmF9 = n_elements(lumclassF9)
        indF9_1 = fltarr(nlmF9)
        indF9_2 = indF9_1
        indF9_3 = indF9_1
        indF9_4 = indF9_1
        countindF9_1 = indF9_1
        countindF9_2 = indF9_1
        countindF9_3 = indF9_1
        countindF9_4 = indF9_1
        FOR i=0L,nlmF9-1 DO BEGIN 
            popnumber+=1  
            countf+=1
            indf9_1[i] =  where(testf9 and params EQ 1, countindf9_1x); index of radius of this stellar population in the val array
            countindf9_1[i] = countindf9_1x
            indf9_2[i] =  where(testf9 and params EQ 2, countindf9_2x); index of temperature of this stellar population in the val array
            countindf9_2[i] = countindf9_2x
            indf9_3[i] =  where(testf9 and params EQ 3, countindf9_3x); index of distance of this stellar population in the val array
            countindf9_3[i] = countindf9_3x
            indf9_4[i] =  where(testf9 and params EQ 4, countindf9_4x); index of the nstars of this stellar population in the val array
            countindf9_4[i] = countindf9_4x
        ENDFOR
    ENDIF
    
    
    ;======================================================
    
    ; Locating the G0 stellar population parameters 
    testg0 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 0  
    ind = where(testg0,countindg0)
    IF countindg0 NE 0 THEN BEGIN
        lumclassG0 = lumclass(ind)
        nlmG0 = n_elements(lumclassG0)
        indG0_1 = fltarr(nlmG0)
        indG0_2 = indG0_1
        indG0_3 = indG0_1
        indG0_4 = indG0_1
        countindG0_1 = indG0_1
        countindG0_2 = indG0_1
        countindG0_3 = indG0_1
        countindG0_4 = indG0_1
        FOR i=0L,nlmG0-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg0_1[i] =  where(testg0 and params EQ 1, countindg0_1x); index of radius of this stellar population in the val array
            countindg0_1[i] = countindg0_1x
            indg0_2[i] =  where(testg0 and params EQ 2, countindg0_2x); index of temperature of this stellar population in the val array
            countindg0_2[i] = countindg0_2x
            indg0_3[i] =  where(testg0 and params EQ 3, countindg0_3x); index of distance of this stellar population in the val array
            countindg0_3[i] = countindg0_3x
            indg0_4[i] =  where(testg0 and params EQ 4, countindg0_4x); index of the nstars of this stellar population in the val array
            countindg0_4[i] = countindg0_4x
        ENDFOR
    ENDIF
    
    ; Locating the G1 stellar population parameters
    testg1 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 1 
    ind = where(testg1,countindg1)
    IF countindg1 NE 0 THEN BEGIN
        lumclassG1 = lumclass(ind)
        nlmG1 = n_elements(lumclassG1)
        indG1_1 = fltarr(nlmG1)
        indG1_2 = indG1_1
        indG1_3 = indG1_1
        indG1_4 = indG1_1    
        countindG1_1 = indG1_1
        countindG1_2 = indG1_1
        countindG1_3 = indG1_1
        countindG1_4 = indG1_1
        FOR i=0L,nlmG1-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg1_1[i] =  where(testg1 and params EQ 1, countindg1_1x); index of radius of this stellar population in the val array
            countindg1_1[i] = countindg1_1x
            indg1_2[i] =  where(testg1 and params EQ 2, countindg1_2x); index of temperature of this stellar population in the val array
            countindg1_2[i] = countindg1_2x
            indg1_3[i] =  where(testg1 and params EQ 3, countindg1_3x); index of distance of this stellar population in the val array
            countindg1_3[i] = countindg1_3x
            indg1_4[i] =  where(testg1 and params EQ 4, countindg1_4x); index of the nstars of this stellar population in the val array
            countindg1_4[i] = countindg1_4x
        ENDFOR
    ENDIF
    
    ; Locating the G2 stellar population parameters
    testg2 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 2
    ind = where(testg2,countindg2) ;sun-like star
    IF countindg2 NE 0 THEN BEGIN
        lumclassG2 = lumclass(ind)
        nlmG2 = n_elements(lumclassG2)
        indG2_1 = fltarr(nlmG2)
        indG2_2 = indG2_1
        indG2_3 = indG2_1
        indG2_4 = indG2_1
        countindG2_1 = indG2_1
        countindG2_2 = indG2_1
        countindG2_3 = indG2_1
        countindG2_4 = indG2_1
        FOR i=0L,nlmG2-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg2_1[i] =  where(testg2 and params EQ 1, countindg2_1x); index of radius of this stellar population in the val array
            countindg2_1[i] = countindg2_1x
            indg2_2[i] =  where(testg2 and params EQ 2, countindg2_2x); index of temperature of this stellar population in the val array
            countindg2_2[i] = countindg2_2x
            indg2_3[i] =  where(testg2 and params EQ 3, countindg2_3x); index of distance of this stellar population in the val array
            countindg2_3[i] = countindg2_3x
            indg2_4[i] =  where(testg2 and params EQ 4, countindg2_4x); index of the nstars of this stellar population in the val array
            countindg2_4[i] = countindg2_4x
        ENDFOR
    ENDIF
    
    ; Locating the G3 stellar population parameters
    testg3 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 3
    ind = where(testg3,countindg3)
    IF countindg3 NE 0 THEN BEGIN
        lumclassG3 = lumclass(ind)
        nlmG3 = n_elements(lumclassG3)
        indG3_1 = fltarr(nlmG3)
        indG3_2 = indG3_1
        indG3_3 = indG3_1
        indG3_4 = indG3_1   
        countindG3_1 = indG3_1
        countindG3_2 = indG3_1
        countindG3_3 = indG3_1
        countindG3_4 = indG3_1
        FOR i=0L,nlmG3-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg3_1[i] =  where(testg3 and params EQ 1, countindg3_1x); index of radius of this stellar population in the val array
            countindg3_1[i] = countindg3_1x
            indg3_2[i] =  where(testg3 and params EQ 2, countindg3_2x); index of temperature of this stellar population in the val array
            countindg3_2[i] = countindg3_2x
            indg3_3[i] =  where(testg3 and params EQ 3, countindg3_3x); index of distance of this stellar population in the val array
            countindg3_3[i] = countindg3_3x
            indg3_4[i] =  where(testg3 and params EQ 4, countindg3_4x); index of the nstars of this stellar population in the val array
            countindg3_4[i] = countindg3_4x
        ENDFOR
    ENDIF
    
    ; Locating the G4 stellar population parameters
    testg3 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 3
    ind = where(testg3,countindg4)
    IF countindg4 NE 0 THEN BEGIN
        lumclassG4 = lumclass(ind)
        nlmG4 = n_elements(lumclassG4)
        indG4_1 = fltarr(nlmG4)
        indG4_2 = indG4_1
        indG4_3 = indG4_1
        indG4_4 = indG4_1    
        countindG4_1 = indG4_1
        countindG4_2 = indG4_1
        countindG4_3 = indG4_1
        countindG4_4 = indG4_1
        FOR i=0L,nlmG4-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg4_1[i] =  where(testg3 and params EQ 1, countindg4_1x); index of radius of this stellar population in the val array
            countindg4_1[i] = countindg4_1x
            indg4_2[i] =  where(testg3 and params EQ 2, countindg4_2x); index of temperature of this stellar population in the val array
            countindg4_2[i] = countindg4_2x
            indg4_3[i] =  where(testg3 and params EQ 3, countindg4_3x); index of distance of this stellar population in the val array
            countindg4_3[i] = countindg4_3x
            indg4_4[i] =  where(testg3 and params EQ 4, countindg4_4x); index of the nstars of this stellar population in the val array
            countindg4_4[i] = countindg4_4x
        ENDFOR
    ENDIF
    
    ; Locating the G5 stellar population parameters
    testg5 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 5
    ind = where(testg5,countindg5)
    IF countindg5 NE 0 THEN BEGIN
        lumclassG5 = lumclass(ind)
        nlmG5 = n_elements(lumclassG5)
        indG5_1 = fltarr(nlmG5)
        indG5_2 = indG5_1
        indG5_3 = indG5_1
        indG5_4 = indG5_1
        countindG5_1 = indG5_1
        countindG5_2 = indG5_1
        countindG5_3 = indG5_1
        countindG5_4 = indG5_1
        FOR i=0L,nlmG5-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg5_1[i] =  where(testg5 and params EQ 1, countindg5_1x); index of radius of this stellar population in the val array
            countindg5_1[i] = countindg5_1x
            indg5_2[i] =  where(testg5 and params EQ 2, countindg5_2x); index of temperature of this stellar population in the val array
            countindg5_2[i] = countindg5_2x
            indg5_3[i] =  where(testg5 and params EQ 3, countindg5_3x); index of distance of this stellar population in the val array
            countindg5_3[i] = countindg5_3x
            indg5_4[i] =  where(testg5 and params EQ 4, countindg5_4x); index of the nstars of this stellar population in the val array
            countindg5_4[i] = countindg5_4x
       ENDFOR
    ENDIF
    
    ; Locating the G6 stellar population parameters
    testg6 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 6
    ind = where(testg6,countindg6)  
    IF countindg6 NE 0 THEN BEGIN
        lumclassG6 = lumclass(ind)
        nlmG6 = n_elements(lumclassG6) 
        indG6_1 = fltarr(nlmG6)
        indG6_2 = indG6_1
        indG6_3 = indG6_1
        indG6_4 = indG6_1 
        countindG6_1 = indG6_1
        countindG6_2 = indG6_1
        countindG6_3 = indG6_1
        countindG6_4 = indG6_1
        FOR i=0L,nlmG6-1 DO BEGIN     
            popnumber+=1
            countg+=1
            indg6_1[i] =  where(testg6 and params EQ 1, countindg6_1x); index of radius of this stellar population in the val array
            countindg6_1[i] = countindg6_1x
            indg6_2[i] =  where(testg6 and params EQ 2, countindg6_2x); index of temperature of this stellar population in the val array
            countindg6_2[i] = countindg6_2x
            indg6_3[i] =  where(testg6 and params EQ 3, countindg6_3x); index of distance of this stellar population in the val array
            countindg6_3[i] = countindg6_3x
            indg6_4[i] =  where(testg6 and params EQ 4, countindg6_4x); index of the nstars of this stellar population in the val array
            countindg6_4[i] = countindg6_4x
        ENDFOR
    ENDIF
    
    ; Locating the G7 stellar population parameters
    testg7 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 7
    ind = where(testg7,countindg7)   
    IF countindg7 NE 0 THEN BEGIN
        lumclassG7 = lumclass(ind)
        nlmG7 = n_elements(lumclassG7)
        indG7_1 = fltarr(nlmG7)
        indG7_2 = indG7_1
        indG7_3 = indG7_1
        indG7_4 = indG7_1
        countindG7_1 = indG7_1
        countindG7_2 = indG7_1
        countindG7_3 = indG7_1
        countindG7_4 = indG7_1
        FOR i=0L,nlmG7-1 DO BEGIN 
            popnumber+=1
            countg+=1
            indg7_1[i] =  where(testg7 and params EQ 1, countindg7_1x); index of radius of this stellar population in the val array
            countindg7_1[i] = countindg7_1x
            indg7_2[i] =  where(testg7 and params EQ 2, countindg7_2x); index of temperature of this stellar population in the val array
            countindg7_2[i] = countindg7_2x
            indg7_3[i] =  where(testg7 and params EQ 3, countindg7_3x); index of distance of this stellar population in the val array
            countindg7_3[i] = countindg7_3x
            indg7_4[i] =  where(testg7 and params EQ 4, countindg7_4x); index of the nstars of this stellar population in the val array
            countindg7_4[i] = countindg7_4x
        ENDFOR
    ENDIF
    
    ; Locating the G8 stellar population parameters
    testg8 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 8    
    ind = where(testg8,countindg8)
    IF countindg8 NE 0 THEN BEGIN
        lumclassG8 = lumclass(ind)
        nlmG8 = n_elements(lumclassG8)
        indG8_1 = fltarr(nlmG8)
        indG8_2 = indG8_1
        indG8_3 = indG8_1
        indG8_4 = indG8_1    
        countindG8_1 = indG8_1
        countindG8_2 = indG8_1
        countindG8_3 = indG8_1
        countindG8_4 = indG8_1
        FOR i=0L,nlmG8-1 DO BEGIN
            popnumber+=1
            countg+=1
            indg8_1[i] =  where(testg8 and params EQ 1, countindg8_1x); index of radius of this stellar population in the val array
            countindg8_1[i] = countindg8_1x
            indg8_2[i] =  where(testg8 and params EQ 2, countindg8_2x); index of temperature of this stellar population in the val array
            countindg8_2[i] = countindg8_2x
            indg8_3[i] =  where(testg8 and params EQ 3, countindg8_3x); index of distance of this stellar population in the val array
            countindg8_3[i] = countindg8_3x
            indg8_4[i] =  where(testg8 and params EQ 4, countindg8_4x); index of the nstars of this stellar population in the val array
            countindg8_4[i] = countindg8_4x
        ENDFOR
    ENDIF
    
    ; Locating the G9 stellar population parameters
    testg9 = strupcase(strmid(key,0,1)) EQ 'G' and strmid(key,1,1) EQ 9
    ind = where(testg9,countindg9)       
    IF countindg9 NE 0 THEN BEGIN
        lumclassG9 = lumclass(ind)
        nlmG9 = n_elements(lumclassG9)
        indG9_1 = fltarr(nlmG9)
        indG9_2 = indG9_1
        indG9_3 = indG9_1
        indG9_4 = indG9_1   
        countindG9_1 = indG9_1
        countindG9_2 = indG9_1
        countindG9_3 = indG9_1
        countindG9_4 = indG9_1
        FOR i=0L,nlmG9-1 DO BEGIN
            popnumber+=1   
            countg+=1
            indg9_1[i] =  where(testg9 and params EQ 1, countindg9_1x); index of radius of this stellar population in the val array
            countindg9_1[i] = countindg9_1x
            indg9_2[i] =  where(testg9 and params EQ 2, countindg9_2x); index of temperature of this stellar population in the val array
            countindg9_2[i] = countindg9_2x
            indg9_3[i] =  where(testg9 and params EQ 3, countindg9_3x); index of distance of this stellar population in the val array
            countindg9_3[i] = countindg9_3x
            indg9_4[i] =  where(testg9 and params EQ 4, countindg9_4x); index of the nstars of this stellar population in the val array
            countindg9_4[i] = countindg9_4x
        ENDFOR
    ENDIF
    
     
    comp_pop=replicate(one_pop,popnumber) ; Replication of the default and initialized stellar population structure to create the composite stellar population structure. All the tag values are by default set to te null value
    
    
    
    ;Filling the tags of the compsite stellar population structure using the indices defined above
    
    FOR i=0L,popnumber-1 DO BEGIN ; Looping over all the structure fields 
   
        IF counto NE 0 THEN BEGIN ; Filling the structure of the O STELLAR POPULATION(S)
                        
            FOR k=0L,counto-1 DO BEGIN 
          
                IF countindo3 NE 0 THEN BEGIN
                    FOR l=0L,nlmO3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O3'+lumclasso3(l)+'_stellar_population'
                        IF countindo3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo3_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =   ;Less luminous supergiants
;                             IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 15.0*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs   
                        ENDELSE
                        IF countindo3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo3_2[l]))(0) ELSE BEGIN       
;                             IF lumclasso3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 44.9e3 ;(K)
;                             IF lumclasso3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =   
                        ENDELSE      
                        IF countindo3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0 ; should be lower limited in the general procedure because this is the average distance between two stars
                        IF countindo3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmo3
                ENDIF
            
                IF countindo4 NE 0 THEN BEGIN
                    FOR l=0L,nlmO4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O4'+lumclasso4(l)+'_stellar_population'
                        IF countindo4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo4_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).radius    ;Less luminous supergiants
;                             IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 13.43*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs
                        ENDELSE
                        IF countindo4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo4_2[l]))(0) ELSE BEGIN
;                             IF lumclasso4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 42.9e3
;                             IF lumclasso4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR 
                    k+=nlmo4 
                ENDIF
                
                
                IF countindo5 NE 0 THEN BEGIN
                    FOR l=0L,nlmo5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O5'+lumclasso5(l)+'_stellar_population'
                        IF countindo5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo5_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius = ;Hypergiants or extremely luminous supergiants
;                             IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =  ;Luminos supergiants
;                             IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = ;Intermediate-size luminous supergiants
;                             IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).radius    ;Less luminous supergiants
;                             IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).radius =  ;Bright giants
;                             IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).radius = ;Normal giants
;                             IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =  ;Subgiants
                            IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 12*rsun2cm ;(cm,cgs);Dwarfs: Main-sequence stars
;                             IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).radius = ;Subdwarfs
;                             IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).radius = ;White dwarfs         
                        ENDELSE
                        IF countindo5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo5_2[l]))(0) ELSE BEGIN
;                             IF lumclasso5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasso5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 41.4e3
;                             IF lumclasso5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                            IF countindo5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                            IF countindo5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                            ;K+=1
                    ENDFOR
                    k+=nlmo5         
                ENDIF
        
                
                
                IF countindo6 NE 0 THEN BEGIN
                    FOR l=0L,nlmo6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O6'+lumclasso6(l)+'_stellar_population'
                        IF countindo6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo6_1[l]))(0)*rsun2cm ELSE BEGIN
;                             IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 10.71*rsun2cm
;                             IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE 
                        IF countindo6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo6_2[l]))(0) ELSE BEGIN
;                             IF lumclasso6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 39.5e3
;                             IF lumclasso6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1        
                    ENDFOR
                    k+=nlmo6
                ENDIF
        
                
                IF countindo7 NE 0 THEN BEGIN
                    FOR l=0L,nlmo7-1 DO BEGIN
                        comp_pop(k+l+i).popid = 'O7'+lumclass7(l)+'_stellar_population'
                        IF countindo7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo7_1[l]))(0) ELSE BEGIN
;                             IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 9.52*rsun2cm
;                             IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                            
                        ENDELSE
                        IF countindo7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo7_2[l]))(0) ELSE BEGIN
;                             IF lumclasso7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 37.1e3
;                             IF lumclasso7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmo7       
                ENDIF
                    
                
                IF countindo8 NE 0 THEN BEGIN
                    FOR l=0L,nlmo8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O8'+lumclasso8(l)+'_stellar_population'
                        IF countindo8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo8_1[l]))(0) ELSE BEGIN
;                             IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 8.5*rsun2cm
;                             IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindo8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo8_2[l]))(0) ELSE BEGIN
;                             IF lumclasso8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 35.1e3
;                             IF lumclasso8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindo8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindo8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmo8       
                ENDIF
        
                
                IF countindo9 NE 0 THEN BEGIN
                    FOR l=0L,nlmo9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'O9'+lumclasso9(l)+'_stellar_population'
                          
                        IF countindo9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indo9_1[l]))(0) ELSE BEGIN  
;                             IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).radius = 
                            IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = 20.0*rsun2cm ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
;                             IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 7.51*rsun2cm
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclasso9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindo9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indo9_2[l]))(0) ELSE BEGIN
;                             IF lumclasso9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature = 29.5e3 ;taken from Alnitak Aa's data. Even though its spec type is O9.5 (not O9)
;                             IF lumclasso9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasso9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 33.3e3
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasso9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                          
                        IF countindo9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indo9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
                        IF countindo9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indo9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                           
                    ENDFOR
                    k+=nlmo9
                              
                ENDIF
                    
            ENDFOR
                  
            counto=0L 
    
        i+=k-1
        ENDIF
        
       

                    
    ;==============================================================================================
                
                        
        IF countb NE 0 THEN BEGIN ; Filling the structure of the B STELLAR POPULATION(S)
                    
            FOR k=0L,countb-1 DO BEGIN
                
                IF countindb0 NE 0 THEN BEGIN
                    FOR l=0L,nlmb0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B0'+lumclassb0(l)+'_stellar_population'
                        IF countindb0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb0_1[l]))(0) ELSE BEGIN
;                              IF lumclassb0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                             IF lumclassb0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 7.16*rsun2cm
;                              IF lumclassb0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                              IF lumclassb0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb0_2[l]))(0) ELSE BEGIN
;                             IF lumclasb0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 31.4e3
;                             IF lumclasb0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1         
                    ENDFOR
                    k+=nlmb0
                ENDIF
                
                
                
                IF countindb1 NE 0 THEN BEGIN
                    FOR l=0L,nlmb1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B1'+lumclassb1(l)+'_stellar_population'
                        IF countindb1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb1_1[l]))(0) ELSE BEGIN
;                             IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius = 
;                             IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
                            IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).radius = 7.3*rsun2cm ;taken from Alnitak Ab's data.
                            IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 5.71*rsun2cm
;                             IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb1_2[l]))(0) ELSE BEGIN
;                             IF lumclassb1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
                            IF lumclassb1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature = 29.0e3 ;taken from Alnitak Ab's data.
                            IF lumclassb1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 26.0e3
;                             IF lumclassb1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassb1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 1.0E+00
                        IF countindb1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = 1;stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb1         
                ENDIF
                
                
                
                IF countindb2 NE 0 THEN BEGIN
                    FOR l=0L,nlmb2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B2'+lumclassb2(l)+'_stellar_population'
                        IF countindb2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb2_1[l]))(0) ELSE BEGIN
;                             IF lumclassb2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 4.06*rsun2cm
;                             IF lumclassb2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb2_2[l]))(0) ELSE BEGIN
;                             IF lumclasb2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 20.6e3 
;                             IF lumclasb2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb2          
                ENDIF
                
                
                
                IF countindb3 NE 0 THEN BEGIN
                    FOR l=0L,nlmb3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B3'+lumclassb3(l)+'_stellar_population'
                        IF countindb3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb3_1[l]))(0) ELSE BEGIN
;                             IF lumclassb3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.61*rsun2cm
;                             IF lumclassb3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb3_2[l]))(0) ELSE BEGIN
;                             IF lumclasb3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 17.0e3
;                             IF lumclasb3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb3          
                ENDIF
            
                IF countindb4 NE 0 THEN BEGIN
                    FOR l=0L,nlmb4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B4'+lumclassb4(l)+'_stellar_population'
                        IF countindb4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb4_1[l]))(0) ELSE BEGIN
;                             IF lumclassb4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.46*rsun2cm
;                             IF lumclassb4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb4_2[l]))(0) ELSE BEGIN
;                             IF lumclasb4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 16.4e3
;                             IF lumclasb4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb4       
                ENDIF
                
                
                IF countindb5 NE 0 THEN BEGIN
                    FOR l=0L,nlmb5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B5'+lumclassb5(l)+'_stellar_population'
                        IF countindb5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb5_1[l]))(0) ELSE BEGIN
;                             IF lumclassb5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.36*rsun2cm
;                             IF lumclassb5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb5_2[l]))(0) ELSE BEGIN
;                             IF lumclasb5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 15.7e3 
;                             IF lumclasb5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb5         
                ENDIF
        
                
                IF countindb6 NE 0 THEN BEGIN
                    FOR l=0L,nlmb6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B6'+lumclassb6(l)+'_stellar_population'
                        IF countindb6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb6_1[l]))(0) ELSE BEGIN
;                             IF lumclassb6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 3.27*rsun2cm
;                             IF lumclassb6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb6_2[l]))(0) ELSE BEGIN
;                             IF lumclasb6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 14.5e3 
;                             IF lumclasb6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmb6        
                ENDIF
        
                
                IF countindb7 NE 0 THEN BEGIN
                    FOR l=0L,nlmb7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B7'+lumclassb7(l)+'_stellar_population'
                        IF countindb7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb7_1[l]))(0) ELSE BEGIN
;                             IF lumclassb7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.94*rsun2cm
;                             IF lumclassb7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb7_2[l]))(0) ELSE BEGIN
;                             IF lumclasb7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =  
;                             IF lumclasb7(l) EQ 'III' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 14.0e3   
;                             IF lumclasb7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature = 
;                             IF lumclasb7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindb7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmb7        
                ENDIF
                    
                
                IF countindb8 NE 0 THEN BEGIN
                    FOR l=0L,nlmb7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'B8'+lumclassb8(l)+'_stellar_population'
                        IF countindb8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb8_1[l]))(0) ELSE BEGIN
;                             IF lumclassb8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassb8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.86*rsun2cm
;                             IF lumclassb8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassb8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindb8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb8_2[l]))(0) ELSE BEGIN
;                             IF lumclasb8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasb8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 12.3e3 
;                             IF lumclasb8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasb8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindb8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindb8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR  
                    k+=nlmb8      
                ENDIF
        
                
                IF countindb9 NE 0 THEN BEGIN
                    FOR l=0L,nlmb9-1 DO BEGIN
                    comp_pop(k+i+l).popid = 'B9'+lumclassb9(l)+'_stellar_population'
                    IF countindb9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indb9_1[l]))(0) ELSE BEGIN
;                         IF lumclassb9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                        IF lumclassb9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.49*rsun2cm
;                         IF lumclassb9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                         IF lumclassb9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                    ENDELSE
                    IF countindb9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indb9_2[l]))(0) ELSE BEGIN
;                         IF lumclasb9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                        IF lumclasb9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 10.7e3 
;                         IF lumclasb9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                         IF lumclasb9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                    ENDELSE
                    IF countindb9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indb9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                    IF countindb9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indb9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmb9         
                ENDIF
                        
                    
            ENDFOR
                    
            countb=0. 
  
        i+=k-1
        ENDIF 
                                               
    ;==============================================================================================
                        
        IF counta NE 0 THEN BEGIN ; Filling the structure of the A STELLAR POPULATION(S)
                    
            FOR k=0L+i,counta-1+i DO BEGIN
                
                IF countinda0 NE 0 THEN BEGIN
                    FOR l=0L,nlma0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A0'+lumclassa0(l)+'_stellar_population'
                        IF countinda0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda0_1[l]))(0) ELSE BEGIN
;                             IF lumclassa0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.193*rsun2cm
;                             IF lumclassa0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda0_2[l]))(0) ELSE BEGIN
;                             IF lumclasa0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 9.7e3
;                             IF lumclasa0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlma0        
                ENDIF
                
                
                
                IF countinda1 NE 0 THEN BEGIN
                    FOR l=0L,nlma1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A1'+lumclassa1(l)+'_stellar_population'
                        IF countinda1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda1_1[l]))(0) ELSE BEGIN
;                             IF lumclassa1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.136*rsun2cm
;                             IF lumclassa1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda1_2[l]))(0) ELSE BEGIN
;                             IF lumclasa1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 9.3e3
;                             IF lumclasa1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                       ; K+=1 
                    ENDFOR 
                    k+=nlma1      
                ENDIF
                
                IF countinda2 NE 0 THEN BEGIN
                    FOR l=0L,nlma2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A2'+lumclassa2(l)+'_stellar_population'
                        IF countinda2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda2_1[l]))(0) ELSE BEGIN
;                             IF lumclassa2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 2.117*rsun2cm
;                             IF lumclassa2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda2_2[l]))(0) ELSE BEGIN
;                             IF lumclasa2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.8e3
;                             IF lumclasa2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma2        
                ENDIF
                
                
                
                IF countinda3 NE 0 THEN BEGIN
                    FOR l=0L,nlma3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A3'+lumclassa3(l)+'_stellar_population'
                        IF countinda3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda3_1[l]))(0) ELSE BEGIN
;                             IF lumclassa3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.861*rsun2cm
;                             IF lumclassa3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa3(l) EQ 'VII' THEN comp_pop(k+i+l).radius = 
                        ENDELSE
                        IF countinda3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda3_2[l]))(0) ELSE BEGIN
;                             IF lumclasa3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.6e3
;                             IF lumclasa3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma3          
                ENDIF
            
                IF countinda4 NE 0 THEN BEGIN
                    FOR l=0L,nlma4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A4'+lumclassa4(l)+'_stellar_population'
                        IF countinda4_1 NE 0 THEN comp_pop(k+i+l).radius = (val(inda4_1))(0) ELSE BEGIN
;                             IF lumclassa4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.794*rsun2cm
;                             IF lumclassa4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa4(l) EQ 'VII' THEN comp_pop(k+i+l).radius = 
                        ENDELSE
                        IF countinda4_2 NE 0 THEN comp_pop(k+i+l).temperature = (val(inda4_2))(0) ELSE BEGIN
;                             IF lumclasa4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.25e3
;                             IF lumclasa4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countinda4_3 NE 0 THEN comp_pop(k+i+l).distance = (val(inda4_3))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda4_4 NE 0 THEN comp_pop(k+i+l).nstars = (val(inda4_4))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma4         
                ENDIF
                
                
                IF countinda5 NE 0 THEN BEGIN
                    FOR l=0L,nlma5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A5'+lumclassa5(l)+'_stellar_population'
                        IF countinda5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda5_1[l]))(0) ELSE BEGIN
;                             IF lumclassa5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa5(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.785*rsun2cm
;                             IF lumclassa5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda5_2[l]))(0) ELSE BEGIN
;                             IF lumclasa5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 8.1e3
;                             IF lumclasa5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR   
                    k+=nlma5     
                ENDIF
        
                
                IF countinda6 NE 0 THEN BEGIN
                    FOR l=0L,nlma6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A6'+lumclassa6(l)+'_stellar_population'
                        IF countinda6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda6_1[l]))(0) ELSE BEGIN
;                             IF lumclassa6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.775*rsun2cm
;                             IF lumclassa6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda6_2[l]))(0) ELSE BEGIN
;                             IF lumclasa6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.91e3 
;                             IF lumclasa6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda6_5[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR 
                    k+=nlma6       
                ENDIF
        
                
                IF countinda7 NE 0 THEN BEGIN
                    FOR l=0L,nlma7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A7'+lumclassa7(l)+'_stellar_population'
                        IF countinda7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda7_1[l]))(0) ELSE BEGIN
;                             IF lumclassa7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.75*rsun2cm
;                             IF lumclassa7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countinda7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda7_2[l]))(0) ELSE BEGIN
;                             IF lumclasa7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.76e3
;                             IF lumclasa7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countinda7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlma7       
                ENDIF
                    
                
                IF countinda8 NE 0 THEN BEGIN
                    FOR l=0L,nlma8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A8'+lumclassa8(l)+'_stellar_population'
                        IF countinda8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda8_1[l]))(0) ELSE BEGIN
;                             IF lumclassa8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.747*rsun2cm
;                             IF lumclassa8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda8_2[l]))(0) ELSE BEGIN
;                             IF lumclasa8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.590e3
;                             IF lumclasa8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR 
                    k+=nlma8       
                ENDIF
        
                
                IF countinda9 NE 0 THEN BEGIN
                    FOR l=0L,nlma9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'A9'+lumclassa9(l)+'_stellar_population'
                        IF countinda9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(inda9_1[l]))(0) ELSE BEGIN
;                             IF lumclassa9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassa9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.747*rsun2cm
;                             IF lumclassa9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassa9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countinda9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(inda9_2[l]))(0) ELSE begin
;                             IF lumclasa9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclasa9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.4e3 
;                             IF lumclasa9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclasa9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countinda9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(inda9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countinda9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(inda9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlma9       
                ENDIF
                        
                        
            ENDFOR
                        
            counta=0. 
        i+=k-1
        ENDIF
          
                            
    ;==============================================================================================    
                        
                    
        IF countf NE 0 THEN BEGIN ; Filling the structure of the F STELLAR POPULATION(S)
                 
            FOR k=0L+i,countf-1+i DO BEGIN
                
                 IF countindf0 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf0-1 DO BEGIN
                    comp_pop(k+i+l).popid = 'F0'+lumclassf0(l)+'_stellar_population'
                        IF countindf0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf0_1[l]))(0) ELSE BEGIN
;                             IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf0(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.728*rsun2cm
;                             IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf0_2[l]))(0) ELSE BEGIN
;                             IF lumclassf0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.22e3
;                             IF lumclassf0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmf0      
                ENDIF
                
                
                
                 IF countindf1 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F1'+lumclassf1(l)+'_stellar_population'
                        IF countindf1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf1_1[l]))(0) ELSE BEGIN
;                             IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.679*rsun2cm
;                             IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf1_2[l]))(0) ELSE BEGIN
;                             IF lumclassf1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 7.02e3
;                             IF lumclassf1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf1(l) EQ 'VIII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1  
                    ENDFOR
                    k+=nlmf1        
                ENDIF
                
                
                
                IF countindf2 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F2'+lumclassf2(l)+'_stellar_population'
                        IF countindf2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf2_1[l]))(0) ELSE BEGIN
;                             IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.622*rsun2cm
;                             IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf2_2[l]))(0) ELSE BEGIN
;                             IF lumclassf2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.820e3
;                             IF lumclassf2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf2_4[l]))(0) ELSE comp_pop(k+i+l).nstars =  stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmf2        
                ENDIF
                
                
                
                IF countindf3 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F3'+lumclassf3(l)+'_stellar_population'
                        IF countindf3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf3_1[l]))(0) ELSE BEGIN
;                             IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.578*rsun2cm
;                             IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf3_2[l]))(0) ELSE BEGIN
;                             IF lumclassf3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.75e3
;                             IF lumclassf3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmf3         
                ENDIF
            
                IF countindf4 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F4'+lumclassf4(l)+'_stellar_population'
                        IF countindf4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf4_1[l]))(0) ELSE BEGIN
;                             IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.533*rsun2cm
;                             IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf4_2[l]))(0) ELSE BEGIN
;                             IF lumclassf4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.67e3
;                             IF lumclassf4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmf4          
                ENDIF
                
                
                IF countindf5 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F5'+lumclassf5(l)+'_stellar_population'
                        IF countindf5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf5_1[l]))(0) ELSE BEGIN
;                             IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.473*rsun2cm
;                             IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf5_2[l]))(0) ELSE BEGIN
;                             IF lumclassf5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.55e3
;                             IF lumclassf5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1
                    ENDFOR
                    k+=nlmf5          
                ENDIF
        
                
                IF countindf6 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F6'+lumclassf6(l)+'_stellar_population'
                        IF countindf6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf6_1[l]))(0) ELSE BEGIN
;                             IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.359*rsun2cm
;                             IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countindf6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf6_2[l]))(0) ELSE BEGIN
;                             IF lumclassf6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.35e3
;                             IF lumclassf6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmf6           
                ENDIF
        
                
                IF countindf7 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F7'+lumclassf7(l)+'_stellar_population'
                        IF countindf7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf7_1[l]))(0) ELSE BEGIN
;                             IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.324*rsun2cm
;                             IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf7_2[l]))(0) ELSE BEGIN
;                             IF lumclassf7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf7(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.28e3
;                             IF lumclassf7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindf7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmf7          
                ENDIF
                    
                
                IF countindf8 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F8'+lumclassf8(l)+'_stellar_population'
                        IF countindf8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf8_1[l]))(0) ELSE BEGIN
;                             IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.221*rsun2cm
;                             IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf8_2[l]))(0) ELSE BEGIN
;                             IF lumclassf8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.18e3
;                             IF lumclassf8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf8(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =   
                        ENDELSE
                        IF countindf8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1
                    ENDFOR
                    k+=nlmf8           
                ENDIF
        
                
                IF countindf9 NE 0 THEN BEGIN
                    FOR l=0L,nlmaf9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'F9'+lumclassf9(l)+'_stellar_population'
                        IF countindf9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indf9_1[l]))(0) ELSE BEGIN
;                             IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.167*rsun2cm
;                             IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindf9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indf9_2[l]))(0) ELSE BEGIN
;                             IF lumclassf9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassf9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 6.05e3
;                             IF lumclassf9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassf9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =    
                        ENDELSE
                        IF countindf9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indf9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindf9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indf9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmf9          
                ENDIF
                                    
                                        
            ENDFOR
                                                        
            countf=0.  
        i+=k-1
        ENDIF
         
                                                                    
    ;============================================================================================== 
                            
        IF countg NE 0 THEN BEGIN ; Filling the structure of the G STELLAR POPULATION(S)
                    
            FOR k=0L+i,countg-1+i DO BEGIN
                
                IF countindg0 NE 0 THEN BEGIN
                    FOR l=0L,nlmg0-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G0'+lumclassg0(l)+'_stellar_population'
                        IF countindg0_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg0_1[l]))(0) ELSE BEGIN
;                             IF lumclassg0(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg0(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.1*rsun2cm
;                             IF lumclassg0(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg0(l) EQ 'VII' THEN comp_pop(k+i+l).radius =

                        ENDELSE
                        IF countindg0_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg0_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg0(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg0(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.93e3
;                             IF lumclassfg0(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg0(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg0_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg0_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg0_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg0_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR  
                    k+=nlmg0      
                ENDIF
                
                
                
                IF countindg1 NE 0 THEN BEGIN
                    FOR l=0L,nlmg1-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G1'+lumclassg1(l)+'_stellar_population'
                        IF countindg1_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg1_1[l]))(0) ELSE BEGIN
;                             IF lumclassg1(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg1(l) EQ 'V' THEN omp_pop(k+i+l).radius = 1.06*rsun2cm
;                             IF lumclassg1(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg1(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg1_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg1_2[l]))(0) ELSE begin
;                             IF lumclassfg1(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg1(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.86e3
;                             IF lumclassfg1(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg1(l) EQ 'VII' THEN comp_pop(k+i+l).temperature = 
                        ENDELSE
                        IF countindg1_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg1_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg1_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg1_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                    ;K+=1 
                    ENDFOR
                    k+=nlmg1
                ENDIF
                
                
                
                IF countindg2 NE 0 THEN BEGIN
                    FOR l=0L,nlmg2-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G2'+lumclassg2(l)+'_stellar_population'
                        IF countindg2_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg2_1[l]))(0) ELSE BEGIN
;                             IF lumclassg2(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg2(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.012*rsun2cm
;                             IF lumclassg2(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg2(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg2_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg2_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg2(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg2(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.77e3
;                             IF lumclassfg2(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg2(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg2_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg2_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg2_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg2_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg2         
                ENDIF
                
                
                
                IF countindg3 NE 0 THEN BEGIN
                    FOR l=0L,nlmg3-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G3'+lumclassg3(l)+'_stellar_population'
                        IF countindg3_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg3_1[l]))(0) ELSE BEGIN
;                             IF lumclassg3(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg3(l) EQ 'V' THEN comp_pop(k+i+l).radius = 1.002*rsun2cm
;                             IF lumclassg3(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg3(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg3_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg3_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg3(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg3(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.72e3
;                             IF lumclassfg3(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg3(l) EQ 'VII' THEN comp_pop(k+i+l).temperature 
                        ENDELSE
                        IF countindg3_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg3_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg3_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg3_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg3
                ENDIF
            
                IF countindg4 NE 0 THEN BEGIN
                    FOR l=0L,nlmg4-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G4'+lumclassg4(l)+'_stellar_population'
                        IF countindg4_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg4_1[l]))(0) ELSE BEGIN
;                             IF lumclassg4(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg4(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.991*rsun2cm
;                             IF lumclassg4(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg4(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg4_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg4_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg4(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg4(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.68e3
;                             IF lumclassfg4(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg4(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg4_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg4_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg4_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg4_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1
                    ENDFOR
                    k+=nlmg4 
                ENDIF
                
                
                IF countindg5 NE 0 THEN BEGIN
                    FOR l=0L,nlmg5-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G5'+lumclassg5(l)+'_stellar_population'
                        IF countindg5_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg5_1[l]))(0) ELSE BEGIN
;                             IF lumclassg5(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg5(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.977*rsun2cm
;                             IF lumclassg5(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg5(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg5_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg5_2[l]))(0) ELSE BEGIn
;                             IF lumclassfg5(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg5(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.66e3
;                             IF lumclassfg5(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg5(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg5_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg5_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg5_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg5_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg5       
                ENDIF
        
                
                IF countindg6 NE 0 THEN BEGIN
                    FOR l=0L,nlmg6-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G6'+lumclassg6(l)+'_stellar_population'
                        IF countindg6_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg6_1[l]))(0) ELSE BEGIN
;                             IF lumclassg6(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg6(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.949*rsun2cm
;                             IF lumclassg6(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg6(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                         ENDELSE
                        IF countindg6_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg6_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg6(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg6(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.6e3
;                             IF lumclassfg6(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg6(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg6_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg6_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg6_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg6_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg6         
                ENDIF
        
                
                IF countindg7 NE 0 THEN BEGIN
                    FOR l=0L,nlmg7-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G7'+lumclassg7(l)+'_stellar_population'
                        IF countindg7_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg7_1[l]))(0) ELSE BEGIN
;                             IF lumclassg7(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg7(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.927*rsun2cm
;                             IF lumclassg7(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg7(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg7_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg7_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg7(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg7(l) EQ 'V' THEN ccomp_pop(k+i+l).temperature = 5.55e3
;                             IF lumclassfg7(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg7(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg7_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg7_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg7_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg7_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg7     
                ENDIF
                    
                
                IF countindg8 NE 0 THEN BEGIN
                    FOR l=0L,nlmg8-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G8'+lumclassg8(l)+'_stellar_population'
                        IF countindg8_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg8_1[l]))(0) ELSE BEGIN
;                             IF lumclassg8(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg8(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.914*rsun2cm
;                             IF lumclassg8(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg8(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg8_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg8_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg8(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg8(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.48e3
;                             IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg8(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg8_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg8_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg8_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg8_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance
                        ;K+=1 
                    ENDFOR
                    k+=nlmg8  
                ENDIF
        
                
                IF countindg9 NE 0 THEN BEGIN
                    FOR l=0L,nlmg9-1 DO BEGIN
                        comp_pop(k+i+l).popid = 'G9'+lumclassg9(l)+'_stellar_population'
                        IF countindg9_1[l] NE 0 THEN comp_pop(k+i+l).radius = (val(indg9_1[l]))(0) ELSE BEGIN
;                             IF lumclassg9(l) EQ 'IA+' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IA' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IAB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IB' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'II' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'III' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'IV' THEN comp_pop(k+i+l).radius =
                            IF lumclassg9(l) EQ 'V' THEN comp_pop(k+i+l).radius = 0.853*rsun2cm
;                             IF lumclassg9(l) EQ 'VI' THEN comp_pop(k+i+l).radius =
;                             IF lumclassg9(l) EQ 'VII' THEN comp_pop(k+i+l).radius =
                        ENDELSE
                        IF countindg9_2[l] NE 0 THEN comp_pop(k+i+l).temperature = (val(indg9_2[l]))(0) ELSE BEGIN
;                             IF lumclassfg9(l) EQ 'IA+' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IA' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IAB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IB' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'II' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'III' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'IV' THEN comp_pop(k+i+l).temperature =
                            IF lumclassfg9(l) EQ 'V' THEN comp_pop(k+i+l).temperature = 5.38e3
;                             IF lumclassfg9(l) EQ 'VI' THEN comp_pop(k+i+l).temperature =
;                             IF lumclassfg9(l) EQ 'VII' THEN comp_pop(k+i+l).temperature =
                        ENDELSE
                        IF countindg9_3[l] NE 0 THEN comp_pop(k+i+l).distance = (val(indg9_3[l]))(0) ELSE comp_pop(k+i+l).distance = 10.0
                        IF countindg9_4[l] NE 0 THEN comp_pop(k+i+l).nstars = (val(indg9_4[l]))(0) ELSE comp_pop(k+i+l).nstars = stellar_density*(4.*!pi/3)*comp_pop(k+i+l).distance 
                        ;K+=1 
                    ENDFOR 
                    k+=nlmg9 
                ENDIF
           
            ENDFOR
    
            countg=0.  
        i+=k-1
        ENDIF 
 
    
    ;==============================================================================================    
    
    ENDFOR
;============================================================================================== 

;========================================================NOTA BENE============================================================================
;THIS PROCEDURE DEVIDES BY THE VALUE OF G0. THE WRAPPER USES G0 AND GAS.G0. PLEASE LOCATE IT IN THE LINES BELOW AND CHANGE G0 TO THE ONE YOU'RE USING!!!!
;=============================================================================================================================================

st=((*!dustem_params).isrf)
;stop ;to check if the structure is indeed what we need. 
c2a = 3e18 ;speed of light in ansgtroms/s (because of the Astron's PLANCK function)
pc2cm = 3.086e18 ;cm (cgs)

wave_angstrom = st.lambisrf*1.e4 ;mic to Angstrom (Astron Planck's function uses wavelengths in Angstroms)

stellar_component=fltarr(n_elements(st)) ; array of zeros to contain the new ISRF values. 

;storing the mathis isrf in variable mathis_isrf

ma_isrf_dir=!dustem_soft_dir+'data/ISRF_MATHIS.DAT'
ma_isrf=dustem_read_isrf(ma_isrf_dir)
    
IF !ismathis THEN Ncomhead=4 ELSE Ncomhead=3 

Ncomments = n_elements(comp_pop.popid)*3+Ncomhead
c = strarr(Ncomments)


;First and last lines of the new composite ISRF.DAT file
c(0)='# DUSTEM: exciting radiation field featuring'
IF !ismathis THEN c(1)='# Mathis ISRF'
c(Ncomments-2)='# Nbr of points'
c(Ncomments-1)='# wave (microns), 4*pi*Inu (erg/cm2/s/Hz)'

FOR i=0L,n_elements(comp_pop.popid)-1 DO BEGIN ; Looping over all the stellar populations
    
    ;The initial procedure had omega multiplied by a !pi factor. Its presence in the Planck (Astron) procedure makes for a good reason to discuss this with J.P.  
    
    omega =  ((comp_pop.radius)[i]/((comp_pop.distance)[i]*pc2cm))^2 ; Dilution factor of a stellar population
        
    Inu = planck(wave_angstrom,(comp_pop.temperature)[i])/(4.*!pi)*(wave_angstrom)^2/c2a ; ergs/cm2/s/Hz/sr
    
    stellar_component=stellar_component+(comp_pop.nstars)[i]*omega*Inu
    
    ;Rest of the lines of the new composite ISRF.DAT file
    
    IF !ismathis THEN BEGIN
        c(3*i+2) = '#'+(comp_pop.popid)[i]   
        c(3*i+3) = '# Blackbody with     T='+string((comp_pop.temperature)[i])  
        c(3*i+4) = '# dilution factor wdil='+string(omega)
    ENDIF ELSE BEGIN    
              c(3*i+1) = '#'+(comp_pop.popid)[i]   
              c(3*i+2) = '# Blackbody with     T='+string((comp_pop.temperature)[i])  
              c(3*i+3) = '# dilution factor wdil='+string(omega)
          ENDELSE     
ENDFOR

  
IF !ismathis THEN st.isrf=ma_isrf.isrf+stellar_component/(st.gas.G0) ELSE st.isrf=stellar_component;/((*!dustem_params).gas.G0) 

;don't mind my tests I'm just making sure the ISRF file changes at all
print,'stellar_component is:'

print, stellar_component

print, 'isrf is:'
print, st.isrf
  
    
file=!dustem_dat+'data/ISRF.DAT'  
openw,unit,file,/get_lun
    
FOR i=0,Ncomments-1 DO BEGIN
    printf,unit,c(i)
ENDFOR

n_waves=n_elements(st)
printf,unit,n_waves

FOR i=0L,n_waves-1 DO BEGIN
    printf,unit,st(i).lambisrf,st(i).isrf
ENDFOR

close,unit
free_lun,unit 

out=st.isrf     
;============This block creates a composite (9V) stellar population structure for when the function isn't used as a plugin=================== 
ENDIF ELSE BEGIN 

;IF NOT keyword_set(scope) AND NOT keyword_set(val) THEN BEGIN ;I need this condition because I don't want the accidental definition of the system variable (@the end.) that is actually tied to any parameters outside this routine.

    
    popnumber = 5.
    comp_pop = replicate(one_pop,popnumber)

    
    ;###BY DEFAULT ALL STELLAR POPULATIONS ARE ON THE MS###
    ;BECAUSE LESS MASSIVE (COLDER) STARS ARE MORE ABUNDANT, THEY WILL BE CHOSEN TO BUILD THE COMPOSITE STELLAR STRUCTURE
    ;THIS MEANS THAT THE CHOSEN SPECTRAL TYPE IS 9V (MAIN SEQUENCE)

    ;CHOSEN STELLAR POPULATIONS
    ;O9V
    ;B9V
    ;A9V
    ;F9V
    ;G9V
    
    comp_pop(0).popid = 'O9V_stellar_population'
    comp_pop(0).radius = 7.51*rsun2cm 
    comp_pop(0).temperature = 33.3e3
    comp_pop(0).distance = 10.0
    comp_pop(0).nstars = stellar_density*(4.*!pi/3)*comp_pop(0).distance
    
    comp_pop(1).popid = 'B9V_stellar_population'
    comp_pop(1).radius = 2.49*rsun2cm  
    comp_pop(1).temperature = 10.7e3 
    comp_pop(1).distance = 10.0
    comp_pop(1).nstars = stellar_density*(4.*!pi/3)*comp_pop(1).distance
    
    comp_pop(2).popid = 'A9V_stellar_population'
    comp_pop(2).radius = 1.747*rsun2cm
    comp_pop(2).temperature = 7.4e3
    comp_pop(2).distance = 10.0
    comp_pop(2).nstars = stellar_density*(4.*!pi/3)*comp_pop(2).distance
    
    comp_pop(3).popid = 'F9V_stellar_population'
    comp_pop(3).radius = 1.167*rsun2cm
    comp_pop(3).temperature = 6.05e3
    comp_pop(3).distance = 10.0
    comp_pop(3).nstars = stellar_density*(4.*!pi/3)*comp_pop(3).distance
    
    comp_pop(4).popid = 'G9V_stellar_population'
    comp_pop(4).radius = 0.853*rsun2cm 
    comp_pop(4).temperature = 5.38e3
    comp_pop(4).distance = 10.0
    comp_pop(4).nstars = stellar_density*(4.*!pi/3)*comp_pop(4).distance
    
    out=0.
;ENDIF 

ENDELSE

if keyword_set(key) then begin
print, 'comp_pop is:'
print, comp_pop
endif

;integrating the mathis isrf
ma_isrf_dat=!dustem_soft_dir+'data/ISRF_MATHIS.DAT'
ma_isrf=dustem_read_isrf(ma_isrf_dat)
un=uniq(ma_isrf.isrf)

int_mathis=INT_TABULATED((ma_isrf.lambisrf)[un],(ma_isrf.isrf)[un])


;integrating the composite isrf
int_isrf=INT_TABULATED((ma_isrf.lambisrf)[un],(st.isrf)[un])
print, 'G0_stellar_population='
print, int_isrf/int_mathis
;stop
   
the_end:

return, out
end