dustem_myisrf_example.pro
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
PRO dustem_myisrf_example,model=model $
,sed_file=sed_file $
,isrf_file=isrf_file $
,Nitermax=Nitermax $
,postscript=postscript $
,fits_save_and_restore=fits_save_and_restore $
,wait=wait $
,noobj=noobj $
,verbose=verbose $
,help=help
;+
; NAME:
; dustem_myisrf_example
;
; PURPOSE:
; This routine is an example of how to generate an alternative ISRF
; and then fit an observational SED (StokesI only) with DustEM and
; DustEMWrap using this non-default ISRF. The objective is to
; illustrate how to use dustem_plugin_modify_isrf and not to do
; science -- the fit obtained by running this example is likely to be
; poor.
;
; For this example, the code uses the SED in the file example_SED_1.xcat,
; which is distributed in the Data/EXAMPLE_OBSDATA/ directory
;
; CATEGORY:
; DustEMWrap, Distributed, High-Level, User Example
;
; CALLING SEQUENCE:
; dustem_myisrf_example[,model=][,sed_file=][,isrf_file=][,postscript=][,Nitermax=][,fits_save_and_restore=][,/help,/wait,/verbose]
;
; INPUTS:
;
; OPTIONAL INPUT PARAMETERS:
; None
;
; OUTPUTS:
; None
;
; OPTIONAL OUTPUT PARAMETERS:
; Plots, results structure in binary FITS table format
;
; ACCEPTED KEY-WORDS:
; model = specifies the interstellar dust mixture used by DustEM
; 'MC10' model from Compiegne et al 2010
; 'DBP90' model from Desert et al 1990
; 'DL01' model from Draine & Li 2001
; 'WD01_RV5p5B' model from Weingartner & Draine 2002 with Rv=5.5
; 'DL07' model from Draine & Li 2007
; 'J13' model from Jones et al 2013, as updated in
; Koehler et al 2014
; 'G17_ModelA' model A from Guillet et al (2018). Includes
; polarisation. See Tables 2 and 3 of that paper for details.
; 'G17_ModelB' model B from Guillet et al (2018)
; 'G17_ModelC' model C from Guillet et al (2018)
; 'G17_ModelD' model A from Guillet et al (2018)
; sed_file = string naming the path to text file in .xcat format that
; describes the observational SED. If not set, the file
; 'Data/EXAMPLE_OBSDATA/example_SED_1.xcat' is used.
; isrf_file = text file describing ISRF
; postscript = if set, final plot is saved as postscript in the
; current working directory
; Nitermax = maximum number of fit iterations. Default is 5.
; fits_save_and_restore = if set, save the fit results in a binary
; FITS file. The code then restore this file and plots
; the results using the saved results information.
; help = if set, print this help
; wait = if set, wait this many seconds between each step of
; the code (for illustration purposes)
; verbose = if set, subroutines will run in verbose mode
; noobj = if set, runs with no object graphics
;
; COMMON BLOCKS:
; None
;
; SIDE EFFECTS:
; None
;
; RESTRICTIONS:
; The DustEM fortran code must be installed
; The DustEMWrap IDL code must be installed
;
; PROCEDURES AND SUBROUTINES USED:
;
;
; EXAMPLES
; dustem_myisrf_example,isrf_file='my_isrf.xcat',nitermax=10,fits_save_and_restore='/tmp/mysavefile.fits'
;
; MODIFICATION HISTORY:
; Evolution details on the DustEMWrap gitlab.
; See http://dustemwrap.irap.omp.eu/ for FAQ and help.
;-
IF keyword_set(help) THEN BEGIN
doc_library,'dustem_myisrf_example'
goto,the_end
END
IF keyword_set(model) THEN BEGIN
use_model=strupcase(model)
ENDIF ELSE BEGIN
use_model='DBP90' ;default dust model for this example
ENDELSE
use_verbose=0
use_polarization=0 ; initialize Dustemwrap in no polarization mode
use_window=2 ; default graphics window number to use for plotting the results
if keyword_set(verbose) then use_verbose=1
use_Nitermax=5 ; maximum number of iterations for the fit
IF keyword_set(Nitermax) THEN use_Nitermax=Nitermax
dustem_define_la_common
;=== Set the (model-dependent) parameters that you want to fit
;=== Refer to the DustEM and DustEMWrap userguides for an explanation
; of the different grain types
;=== AN EXAMPLE FOR DBP90
;=== Here we fit the PAH abundance of the model, and the amplitude
;=== of a user-supplied ISRF. A synchrotron component is included
;=== The other grain parameters are fixed to their default values.
;=== The free parameters are all lower-bounded at zero.
;=== Note that if '(*!dustem_params).G0' is not set explicitly as a fixed parameter, then
;=== the ISRF used by DustEM will include a standard Mathis field with
;=== amplitude, G0=1.
use_model='DBP90' ; you should specify this above, or in the command line
pd = [ $
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'dustem_plugin_modify_isrf_1', $ ; Amplitude of user-defined ISRF
'dustem_plugin_synchrotron_2'] ;Synchrotron amplitude at 10 mm
iv = [5.4e-4, 0.1, 0.01]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(1.e-15,Npar)
; To suppress the Mathis field altogether
;fpd=['(*!dustem_params).G0']
;fiv=[1.e-12]
;; ;=== AN EXAMPLE FOR DL07
;; ;=== Here we fit the PAH abundances of the model, and the amplitude
;; ;=== of a user-supplied ISRF. A synchrotron component is included
;; ;=== The other grain parameters are fixed to their default values.
;; ;=== The free parameters are all lower-bounded at zero.
;; use_model='DL07' ; you should specify this above, or in the command line
;; pd = [ $
;; '(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
;; '(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
;; 'dustem_plugin_modify_isrf_1', $ ; Ampitude of user-defined ISRF
;; 'dustem_plugin_synchrotron_2'] ;Synchrotron amplitude at 10 mm
;; iv = [5.4e-4, 5.4e-4, 0.1, 0.01]
;; Npar=n_elements(pd)
;; ulimed=replicate(0,Npar)
;; llimed=replicate(1,Npar)
;; llims=replicate(1.e-15,Npar)
;; ; To suppress the Mathis field altogether
;; ;fpd=['(*!dustem_params).gas.G0']
;; ;fiv=[1.e-12]
if keyword_set(wait) then begin
message,'Finished setting dust model and plug-in parameters: '+use_model,/info
wait,wait
end
dustem_init,model=use_model,polarization=use_polarization
!dustem_nocatch=1
!dustem_verbose=use_verbose
IF keyword_set(noobj) THEN !dustem_noobj=1
;== Fill a structure with default inputs to the model. This
;== includes the default ISRF, which we want here just for plotting a
;comparison to the ISRF that we construct.
dir_in=!dustem_soft_dir
st_model=dustem_read_all(dir_in)
;=== CREATE A DIFFERENT ISRF USING DUSTEM_CREATE_RFIELD AND OUTPUT TO FILE
if not keyword_set(isrf_file) then begin
mywaves=[]
my_isrf_file='./myisrf_3bb_8000K.dat'
myisrf=dustem_create_rfield([8000,8000,8000],wdil=[1.d-11,1.d-11,1.d-11],isrf=0,fname=my_isrf_file,x=mywaves)
;myisrf=dustem_create_rfield([3500,4000,5500,6500,8000],wdil=[1.d-13,1.d-13,1.d-13,1.d-13,1.d-13],isrf=1,fname='./myisrf_mathis_5bb.dat',x=mywaves)
;myisrf=dustem_create_rfield([3500,4000,5500,6500,8000],wdil=[1.d-13,1.d-13,1.d-13,1.d-13,1.d-13],isrf=2,fname='./myisrf_habing_5bb.dat',x=mywaves)
;myisrf=dustem_create_rfield([3500,4000,5500,6500,8000],wdil=[1.d-13,1.d-13,1.d-13,1.d-13,1.d-13],isrf=0,fname='./myisrf_5bb.dat',x=mywaves)
isrf_file=my_isrf_file
endif
;=== PLOT AS A SANITY CHECK
xtit=textoidl('\lambda (\mum)')
ytit=textoidl('log ISRF [4 \pi I_\nu (erg/cm^2/s/Hz)]')
tit='DUSTEM MYISRF EXAMPLE'
yr=[min(st_model.isrf.isrf) < min(myisrf),5.*(max(st_model.isrf.isrf)>max(myisrf))]
xr=[0.001,1e6]
window,use_window,xs=600,ys=400,tit=tit & use_window=use_window+2
cgplot,st_model.isrf.lambisrf,st_model.isrf.isrf $
,yr=yr,/ysty,xr=xr,/xsty,/xlog,/ylog $
,title=tit,xtit=xtit,ytit=ytit,color=cgcolor('black'),/nodata
oplot,st_model.isrf.lambisrf,st_model.isrf.isrf,col=cgcolor('black'),thick=2
oplot,mywaves,myisrf,col=cgcolor('red'),thick=2
al_legend,/top,/right,clear=0,box=0 $
,['default ISRF','my ISRF'] $
,linsize=0.5,lines=0 $
,color=[cgcolor('black'),cgcolor('red')] $
,thick=2,charsize=1.3
;=== READ THE ISRF
if keyword_set(isrf_file) then begin
message,'Setting ISRF component from file: '+isrf_file,/info
!dustem_isrf_file=ptr_new(isrf_file)
end
;=== READ EXAMPLE SED DATA:
dir=!dustem_wrap_soft_dir+'/Data/EXAMPLE_OBSDATA/'
file=dir+'example_SED_1.xcat'
IF keyword_set(sed_file) THEN file=sed_file
sed=read_xcat(file,/silent)
if keyword_set(wait) then begin
message,'Finished reading SED data: '+file,/info
wait,wait
end
;== SET THE OBSERVATIONAL STRUCTURE
;== sed is passed twice -- the first occurrence is the SED that you
;== wish to fit, the second occurrence is the SED that you wish to visualise.
dustem_set_data,sed,sed
; ;== SET INITIAL VALUES AND LIMITS OF THE PARAMETERS THAT WILL BE
; ;== ADJUSTED DURING THE FIT
dustem_init_params,use_model,pd,iv,fpd=fpd,fiv=fiv,ulimed=ulimed,llimed=llimed,ulims=ulims,llims=llims
if keyword_set(wait) then begin
message,'Finished initializing DustEMWrap, including plugins and fixed parameters',/info
wait,wait
end
;== RUN THE FIT
tol=1.e-16
use_Nitermax=5 ;maximum number of iterations.
IF keyword_set(Nitermax) THEN use_Nitermax=Nitermax
xr = [1.,5e5]
yr = [5e-8,1.00e6]
tit='MYISRF EXAMPLE'
ytit=textoidl('I_\nu (MJy/sr) for N_H=10^{20} H/cm^2')
xtit=textoidl('\lambda (\mum)')
t1=systime(0,/sec)
res=dustem_mpfit_data(tol=tol,Nitermax=use_Nitermax,gtol=gtol $
,/xlog,/ylog,xr=xr,yr=yr,xtit=xtit,ytit=ytit,title=tit $
,legend_xpos=legend_xpos,legend_ypos=legend_ypos $
,errors=errors,chi2=chi2,rchi2=rchi2,show_plot=show_plot)
t2=systime(0,/sec)
if keyword_set(wait) then begin
message,'Finished running DustEMWrap, using Niters: '+strtrim(string(use_Nitermax),2),/info
message,'Time taken [sec]: '+sigfig(t2-t1,2,/sci),/info
wait,wait
end
;=== MAKE THE FINAL PLOT
IF keyword_set(postscript) THEN BEGIN
dir_ps='./'
set_plot,'PS'
ps_file=dir_ps+postscript
device,filename=ps_file,/color
ENDIF
IF !dustem_noobj THEN BEGIN
dustemwrap_plot_noobj,*(*!dustem_fit).CURRENT_PARAM_VALUES,dummy,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (Final fit)'
ENDIF ELSE BEGIN
dustemwrap_plot,*(*!dustem_fit).CURRENT_PARAM_VALUES,dummy,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (Final fit)'
ENDELSE
IF keyword_set(postscript) THEN BEGIN
set_plot,'X'
device,/close
message,'Wrote '+ps_file,/info
ENDIF
if keyword_set(wait) then begin
message,'Made the plot of the final results',/info
wait,wait
end
IF keyword_set(fits_save_and_restore) THEN BEGIN
message,'Writing out results structure: '+fits_save_and_restore,/info
dustem_write_fits_table,filename=fits_save_and_restore,help=help
;=== At this point, you could erase all dustem system variables, or exit idl... all the
;=== information needed to recover the results and remake the plots has been saved in the FITS table
;stop
dustem_read_fits_table,filename=fits_save_and_restore,dustem_st=dustem_spectra_st
;==== plot result taken from the saved fits table
res=*(*!dustem_fit).CURRENT_PARAM_VALUES
IF !dustem_noobj THEN BEGIN
dustemwrap_plot_noobj,res,dustem_spectra_st,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (From Saved FITS file)'
ENDIF ELSE BEGIN
dustemwrap_plot,res,dustem_spectra_st,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (From Saved FITS file)'
ENDELSE
IF keyword_set(wait) THEN BEGIN
message,'Saved the results as FITS in the file: '+fits_save_and_restore+', and made a plot using the data in this file',/info
wait,wait
ENDIF
ENDIF
message,'Finished dustem_myisrf_example',/info
the_end:
END