dustem_brute_force_fit.pro
10.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
FUNCTION dustem_brute_force_fit,sed $
,table_name $
,filters $
,fixed_parameters_description=fixed_parameters_description $
,fixed_parameters_values=fixed_parameters_values $
,normalize=normalize $
,params_hit=params_hit $
,params_uncertainties=params_uncertainties $
,params_min=params_min $
,params_max=params_max $
,fact=fact $
,chi2=chi2 $
,rchi2=rchi2 $
,best_sed=best_sed $
,best_grid_sed=best_grid_sed $
,show_sed=show_sed $
,nostop=nostop $
,reset=reset $
,weighted_params=weighted_params $
,weighted_sed=weighted_sed $
,weighted_chi2=weighted_chi2 $
,rweighted_chi2=rweighted_chi2 $
,all_chi2s=all_chi2s $
,weightning=weightning $
,marginalize_method=marginalize_method $
,status=status $
,print_results=print_results
;+
; NAME:
; dustem_brute_force_fit
; PURPOSE:
; does brut force fit from a pre-computed model grid
; CATEGORY:
; DustEM
; CALLING SEQUENCE:
; res=dustem_brute_force_fit(sed,table_name,filters[,/normalize][,fact=][,chi2=][,rchi2=][rchi2][best_sed=][,/show_sed][,/nostop][,/reset])
; INPUTS:
; sed = sed to be fit. Should contain all filters provided to the routine trhough input variable filter
; table_name = name of the fits file to be used as a grid (see dustem_make_sed_table.pro for creation)
; filters = filters to be used in the grid table (only used if !dustem_grid does not exist or if /reset)
; OPTIONAL INPUT PARAMETERS:
; fixed_parameters_description = if set, describes parameters of the table that should be considered fixed.
; fixed_parameters_values = values of parameters of the table that should be considered fixed.
; OUTPUTS:
; res = best values of the free parameters. Not that linear parameters to the sed should be multiplied by fact.
; OPTIONAL OUTPUT PARAMETERS:
; fact = best scaling factor. Such that best_sed*fact is for NH=1.e20 H/cm2 (as in the grid). IF sed is already normalized to NH=1e20 H/cm2, no need to set /normalize
; chi2 = chi2 of the best fit
; rchi2 = reduced chi2 of the best fit
; best_grid_sed = best SED found in the grid
; best_sed = best fit SED matching input SED (such that best_sed=best_grid_sed*fact)
; params_hit= 1 if parameter hits the top, -1 if hits the bottom, 0 otherwise
; params_uncertainties = 90% confidence level uncertainty on parameters
; params_min = 90% lower limit of parameters
; params_max = 90% upper limit of parameters
; weighted_params = likelyhood exp(-chi2/2) weighted best parameter values
; weighted_sed = likelyhood exp(-chi2/2) weighted best sed
; ACCEPTED KEY-WORDS:
; help = if set, print this help
; normalize = if set, the best match is done based on the shape of the SEDs only, instead of their absolute values. fact will be computed.
; show_sed = if set, plot the seds
; nostop = if set, do not stop
; COMMON BLOCKS:
; None
; SIDE EFFECTS:
; None
; RESTRICTIONS:
; The DustEMWrap IDL code must be installed
; PROCEDURE:
; Scans the grid SEDs to find the best fit (lowest chi2)
; EXAMPLES
;
; MODIFICATION HISTORY:
; Written by JPB Jan 2024
; Evolution details on the DustEMWrap gitlab.
; See http://dustemwrap.irap.omp.eu/ for FAQ and help.
;-
IF keyword_set(help) THEN BEGIN
doc_library,'dustem_brute_force_fit'
params=0.
goto,the_end
ENDIF
;stop
;sed must be normalized to NH=1e20 H/cm2
;==== test for the existence of a loaded grid and initialize if needed.
;==== only filters contained in the filters variable are kept in the grid, and the sum of grid seds are recomputed accordingly
defsysv,'!dustem_grid',0,exist=exist
IF exist EQ 0 or keyword_set(reset)THEN BEGIN
dustem_define_grid,table_name,filters=filters,status=status
IF status NE 1 THEN BEGIN
params=-1
goto,the_end
ENDIF
ENDIF
;seds=!dustem_grid.seds
seds=(*!dustem_grid).st_seds
params=(*!dustem_grid).st_params
totals=(*!dustem_grid).sed_totals
Nseds=(*!dustem_grid).Nsed
Nfilters=(*!dustem_grid).Nfilters
Nparams=(*!dustem_grid).Nparams
table_params=(*!dustem_grid).params
table_pmins=(*!dustem_grid).pmin_values
table_pmaxs=(*!dustem_grid).pmax_values
use_weightning='rellikelyhood'
IF keyword_set(weightning) THEN BEGIN
use_weightning=weightning
ENDIF
;=== marginalize table for fixed parameters, if any
;stop
use_marginalize_method='NEAREST'
IF keyword_set(marginalize_method) THEN use_marginalize_method=marginalize_method
IF keyword_set(fixed_parameters_description) THEN BEGIN
dustem_marginalize_grid,fixed_parameters_description,fixed_parameters_values,seds,Nseds,params,Nparams,table_params,table_pmins,table_pmaxs,method=use_marginalize_method
ENDIF
;help,seds,Nseds,params,Nparams,table_params,table_pmins,table_pmaxs
;SEDS STRUCT = -> <Anonymous> Array[400]
;NSEDS LONG = 400
;PARAMS STRUCT = -> <Anonymous> Array[400]
;NPARAMS LONG = 3
;TABLE_PARAMS STRING = Array[3]
;TABLE_PMINS DOUBLE = Array[3]
;TABLE_PMAXS DOUBLE = Array[3]
;stop
;=== These are the full arrays needed for calculations
chi2s=dblarr(Nseds)
grid_seds=dblarr(Nseds,Nfilters)
total_seds=dblarr(Nseds)
grid_param_values=dblarr(Nseds,Nparams)
;=== compute sed grid Array
FOR i=0L,Nseds-1 DO BEGIN
FOR j=0L,Nfilters-1 DO BEGIN
;grid_seds[i,j]=seds[i].(j+Nparams)
grid_seds[i,j]=seds[i].(j)
ENDFOR
;total_seds[i]=seds[i].total
total_seds[i]=totals[i]
ENDFOR
;=== compute the parameter values Array
FOR i=0L,Nseds-1 DO BEGIN
FOR j=0L,Nparams-1 DO BEGIN
;grid_param_values[i,j]=seds[i].(j)
grid_param_values[i,j]=params[i].(j)
ENDFOR
ENDFOR
;stop
;=== loop over grid lines to compute chi2s
;we do actually store the total of grid sed for each grid sed into the grid fits file
;we could also store the total of observed seds in the observed sed save fits file (!)
facts=dblarr(Nseds)
facts[*]=1.d0
;stop
IF keyword_set(normalize) THEN BEGIN
FOR i=0L,Nseds-1 DO BEGIN
ref_sed=reform(grid_seds[i,*])
;total_ref_sed1=total_seds[i]
total_ref_sed2=total(ref_sed)
;diff=abs(total_ref_sed1-total_ref_sed2)
;print,diff
;total_ref_sed=total_ref_sed1 ;This does not work. I'm not sure why, as it is supposed to be the same pre-computed ...
total_ref_sed=total_ref_sed2 ;This does !!
;IF diff GT 0.1 THEN stop
facts[i]=total(sed.stokesI)/total_ref_sed
this_ref_sed=ref_sed*facts[i]
this_sed=sed.stokesI
this_var=sed.sigmaII
;this_sed=sed.stokesI/facts[i]
;this_var=sed.sigmaII/facts[i]^2
;chi2s[i]=total((sed.stokesI-grid_seds[i,*])^2/sed.sigmaII)
chi2s[i]=total((this_sed-this_ref_sed)^2/this_var)
ENDFOR
ENDIF ELSE BEGIN
FOR i=0L,Nseds-1 DO BEGIN
chi2s[i]=total((sed.stokesI-grid_seds[i,*])^2/sed.sigmaII)
ENDFOR
ENDELSE
all_chi2s=chi2s
chi2=min(chi2s)
ind_best=where(chi2s EQ chi2,count_best) ;this is the best SED in the grid
;stop
;print,facts[14406],facts[ind_best[0]]
;print,chi2s[14406],chi2s[ind_best[0]]
params=reform(grid_param_values[ind_best[0],*]) ;these are the best fit parameters
fact=facts[ind_best[0]] ; This is the corresponding scaling factor
Nfreedom=Nfilters-Nparams-1 ;This is the degree of freedom
rchi2=chi2/Nfreedom ;This is the reduced chi2
best_grid_sed=reform(grid_seds[ind_best[0],*]) ;This is the best SED fround in the grid.
best_sed=best_grid_sed*fact ;This is the best scaled grid SED matching the input SED.
;=== compute Likelyhood weighted params values
epsilon=1.d-20
weighted_params=dblarr(Nparams)
CASE use_weightning OF
'1/chi2' :weights=1.d0/(chi2s+epsilon)
'1/sqrt(chi2)':weights=1.d0/sqrt(chi2s+epsilon)
'likelyhood' :weights=exp(-1.d0*chi2s/2.)
'rellikelyhood':weights=exp(-1.d0*(chi2s/chi2)/2.)
ENDCASE
;weights=1.d0/(chi2s+epsilon)
;weights=1.d0/sqrt(chi2s+epsilon)
;IF use_weightning EQ 'likelyhood' THEN weights=exp(-1.d0*chi2s/2.) ;This is the likelyhood
tot_weights=total(weights)
;stop
FOR i=0L,Nparams-1 DO BEGIN
;weighted_params[i]=total(reform(1.d0*grid_param_values[*,i])*weights)/tot_weights
;Trying a log approach
logweighted_param=total(reform(1.d0*alog10(grid_param_values[*,i])*weights))/tot_weights
weighted_params[i]=10^logweighted_param
ENDFOR
;===compute best weighted SED
weighted_sed=fltarr(Nfilters)
FOR i=0L,Nfilters-1 DO BEGIN
weighted_sed[i]=total(grid_seds[*,i]*weights)/tot_weights
ENDFOR
;=== computed weighted chi2
weighted_chi2=total((sed.stokesI-weighted_sed)^2/sed.sigmaII)
rweighted_chi2=weighted_chi2/Nfreedom
;stop
;stop
;==== Check bumping to table edges.
params_hit=intarr(Nparams)
FOR i=0L,Nparams-1 DO BEGIN
diff_min=abs(params[i]-table_pmins[i])/table_pmins[i]*100.
diff_max=abs(params[i]-table_pmaxs[i])/table_pmaxs[i]*100.
IF diff_min LE 1. THEN params_hit[i]=-1
IF diff_max LE 1. THEN params_hit[i]=1
;IF params[i] LE table_pmins[i] THEN params_hit[i]=-1
;IF params[i] GE table_pmaxs[i] THEN params_hit[i]=1
ENDFOR
;==== Compute parameter uncertainties
;stop
conf_level=90./100.
;print,Nfreedom,conf_level
IF Nfreedom NE 0. THEN BEGIN
dchi2=delta_chi2(Nfreedom,conf_level)
ENDIF ELSE BEGIN
message,'Nfreedom = 0. Beware of meaningless fit',/continue
stop
message,'seting Nfreedom = 1. Beware of meaningless fit',/continue
dchi2=delta_chi2(1.,conf_level)
ENDELSE
ind=where(chi2s LE chi2+dchi2,count)
params_min=fltarr(Nparams)
params_max=fltarr(Nparams)
FOR i=0L,Nparams-1 DO BEGIN
params_min[i]=min(grid_param_values[ind[0],i])
params_max[i]=max(grid_param_values[ind[0],i])
ENDFOR
params_uncertainties=params_max-params_min
IF keyword_set(show_sed) THEN BEGIN
xtit='Wavelength [mic]'
ytit='SED (model=red,data=blue)'
;should also plot uncertainties
minv=la_min([sed.stokesI,best_sed])
maxv=la_max([sed.stokesI,best_sed])
cgplot,sed.wave,sed.stokesI,psym='Filled Circle',color='blue',/ylog,/ysty,xtit=xtit,ytit=ytit,/xlog,yrange=[minv,maxv]
cgoplot,sed.wave,best_sed,psym='Filled Square',color='red'
IF not keyword_set(nostop) THEN stop
ENDIF
IF keyword_set(print_results) THEN BEGIN
message,'=============================================',/continue
message,'best fit parameters',/continue
print,params
message,'best fit reduced chi2 '+strtrim(rchi2,2),/continue
message,'best fit weighted parameters',/continue
print,weighted_params
message,'best fit weighted reduced chi2 '+strtrim(rweighted_chi2,2),/continue
;stop
ENDIF
the_end:
RETURN,params
END