dustem_fit_intensity_example.pro
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
PRO dustem_fit_intensity_example,model=model $
,sed_file=sed_file $
,Nitermax=Nitermax $
,fits_save=fits_save $
,help=help $
,wait=wait $
,noobj=noobj $
,verbose=verbose
;+
; NAME:
; dustem_fit_intensity_example
;
; PURPOSE:
; This routine is an example of how to fit an observational SED
; (StokesI only) with DustEM and DustEMWrap. The objective is to
; illustrate how to use DustEMWrap and not to do science -- the fit
; obtained by running this example is likely to be poor.
;
; For this example, the code uses the SED in the file example_SED_1.xcat,
; which is distributed in the Data/EXAMPLE_OBSDATA/ directory
;
; The example SED has Stokes I photometric data points from
; IRAC, MIPS and IRAS. Examples illustrating running DustEMWrap to
; fit spectral data, polarisation data and extinction data
; are provided in other _example routines in the src/idl/
; directory. See the DustEMWrap User Guide for more information.
;
; CATEGORY:
; DustEMWrap, Distributed, High-Level, User Example
;
; CALLING SEQUENCE:
; dustem_fit_intensity_example[,model=][sed_file=][,Nitermax=][,fits_save=][,/help,/wait,/verbose]
;
; INPUTS:
; None
;
; OPTIONAL INPUT PARAMETERS:
; None
;
; OUTPUTS:
; None
;
; OPTIONAL OUTPUT PARAMETERS:
; Plots, results structure in binary FITS table format
;
; ACCEPTED KEY-WORDS
; model = specifies the interstellar dust mixture used by
; DustEM. See userguide or dustem_test_model_exists.pro
; for more details about available models in current release.
; sed_file = string naming the path to text file in .xcat format that
; describes the observational SED. If not set, the file
; 'Data/EXAMPLE_OBSDATA/example_SED_1.xcat' is used.
; Nitermax = maximum number of fit iterations. Default is 5.
; fits_save = if set, save the DustEMWrap fitting results in a binary
; FITS file.
; help = if set, print this help
; wait = if set, wait this many seconds between each step of
; the code (for illustration purposes)
; verbose = if set, subroutines will run in verbose mode
; noobj = if set, runs with no object graphics
;
; COMMON BLOCKS:
; None
;
; SIDE EFFECTS:
; None
;
; RESTRICTIONS:
; The DustEM fortran code must be installed
; The DustEMWrap IDL code must be installed
;
; PROCEDURES AND SUBROUTINES USED:
;
; EXAMPLES
; dustem_fit_intensity_example
; dustem_fit_intensity_example,Nitermax=1,fits_save='/tmp/mysavefile.fits'
; dustem_fit_intensity_example,model='DBP90'
;
; MODIFICATION HISTORY:
; Written by JPB Apr-2011
; Evolution details on the DustEMWrap gitlab.
; See http://dustemwrap.irap.omp.eu/ for FAQ and help.
;-
IF keyword_set(help) THEN BEGIN
doc_library,'dustem_fit_intensity_example'
goto,the_end
END
;; ;===================================
;; ;=== SET THE DUST MODEL HERE
;; ;===================================
IF keyword_set(model) THEN BEGIN
use_model=strupcase(model)
ENDIF ELSE BEGIN
use_model='DBP90' ;Example with default keywords uses the DBP90 model
ENDELSE
use_polarization=0 ; here we initialize DustEMWrap in no polarization mode since we are only fitting Stokes I
exists=dustem_test_model_exists(use_model,/silent)
if exists ne 1 then $
message,'Unknown dust model'
;; ;===================================
;; ;=== PARSE OTHER INPUTS AND SET SOME BASIC RUN PARAMETERS
;; ;===================================
use_verbose=0
if keyword_set(verbose) then use_verbose=1
use_Nitermax=5 ; maximum number of iterations for the fit
IF keyword_set(Nitermax) THEN use_Nitermax=Nitermax
use_window=0 ; default graphics window number to use for plotting the results
dustem_define_la_common
;=== Set the (model-dependent) parameters that you want to fit (pd),
;=== their initial values (iv)
;=== and whether they are bounded (ulimed,llimed,llims,ulims).
;=== Fixed parameters (fpd) and their values (fiv) are also set here.
;=== Refer to the DustEM and DustEMWrap User guides for an explanation
;=== of the physical meaning of dust model and plug-in parameters, and
;=== how to specify them.
;=== Examples are provided for some of the dust models.
;=== To try them, uncomment the model that you want to try and re-run
;; ;===================================
;; ;=== AN EXAMPLE FOR DBP90
;; ;===================================
;=== Here we fit the dust abundances of the DBP90 model, the
;=== intensity of the dust-heating radiation field. We also invoke a plug-in
;=== for that fits parameters of synchrotron emission
;=== The free parameters are all lower-bounded at zero.
;=== use_model='DBP90' ; you should specify this above (line 93)
;=== pd is the structure of free parameters
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;VSG mass fraction
'(*!dustem_params).grains(2).mdust_o_mh'];,$ ;BG mass fraction
; 'dustem_plugin_synchrotron_1', $ ;Spectral index of CREs
; 'dustem_plugin_synchrotron_2'] ;Synchrotron amplitude at 10 mm
;=== iv is the vector of initial values for the free parameters
;=== following lines are for a run without fitting the synchrotron
;=== i.e. [ initial values for G0,PAH0,VSG,BG]
iv = [1.6, 2.2e-4, 5.7e-4, 3.4e-3]
; initial values vector for run including the synchrotron plugin
; [G0,PAH0,VSG,BG,alpha_CR,Amp_syn]
;iv = [1.6, 2.2e-4, 5.7e-4, 3.4e-3, 2.7,0.01]
; initial values vector for run including the synchrotron plugin and
; fixing the G0 and BB continuum parameters (see below)
; [PAH0,VSG,BG,alpha_CR,Amp_syn]
;iv = [2.2e-4, 5.7e-4, 3.4e-3, 2.7,0.01]
Npar=n_elements(pd)
ulimed=replicate(0,Npar) ; flag ON=1, OFF=0
llimed=replicate(1,Npar) ; flag ON=1, OFF=0
llims=replicate(1.e-15,Npar) ; lower limit value for each free parameter
; ulims=replicate(1.e15,Npar) ; upper limit value for each free parameter
fpd=[] & fiv=[]
; example using fixed parameters (ISRF and a NIR continuum)
; Uncomment the following lines to include these fixed parameters
;fpd = ['(*!dustem_params).G0', $ ;G0
; 'dustem_plugin_continuum_1', $ ;Temperature of a BB
; 'dustem_plugin_continuum_2'] ;Peak amplitude of a BB
; fixed values vector
; [G0,T_BB,Amp_BB]
;fiv=[0.5,750,1.e-2]
;; ;==================================
;; ;=== EXAMPLES FOR OTHER PHYSICAL DUST MODELS
;; ;=== START BELOW HERE
;; ;==================================
;; ;===================================
;; ;=== AN EXAMPLE FOR DL07
;; ;===================================
;; ;=== Here we fit the dust abundances of the model and the
;; ;=== intensity of the ISRF (via gas.G0 since the model
;; ;=== includes spinning dust)
;; ;=== The free parameters are all lower-bounded at zero.
;; ;=== use_model='DL07' ; you should specify this above (line 93), or in the command line when you run the example
;; pd = [ '(*!dustem_params).gas.G0'], $ ;G0
;; '(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
;; '(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
;; '(*!dustem_params).grains(2).mdust_o_mh', $ ;Gra
;; '(*!dustem_params).grains(3).mdust_o_mh', $ ;Gra
;; '(*!dustem_params).grains(4).mdust_o_mh'] ;aSil
;; iv = [1.5 ,5.4e-4, 5.4e-4,1.8e-4,2.33e-3,8.27e-3]
;;
;; ;=== Uncomment the following lines if you want to fix the ISRF instead of leaving it as a free parameter
;; ;pd = ['(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
;; ; '(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
;; ; '(*!dustem_params).grains(2).mdust_o_mh', $ ;Gra
;; ; '(*!dustem_params).grains(3).mdust_o_mh', $ ;Gra
;; ; '(*!dustem_params).grains(4).mdust_o_mh'] ;aSil
;; ;iv = [5.4e-4, 5.4e-4,1.8e-4,2.33e-3,8.27e-3]
;; ;fpd=['(*!dustem_params).gas.G0']
;; ;fiv=[2.]
;;
;; Npar=n_elements(pd)
;; ulimed=replicate(0,Npar)
;; llimed=replicate(1,Npar)
;; llims=replicate(1.e-15,Npar)
;; ;===================================
;; ;=== AN EXAMPLE FOR MC10
;; ;===================================
;; ;; ;=== Here we fit the dust abundances of the MC10 model, the
;; ;; ;=== intensity of the dust-heating radiation field as well as a plug-in:
;; ;; ;=== (i) continuum due to a blackbody
;; ;; ;=== The intensity of the dust-heating radiation field is fixed to
;; ;; ;=== 1.5*G0 and the tmperature of the blackbody is fixed to 1200K
;; ;; ;=== The free parameters in the fit are lower-bounded at zero.
;; ;; ;=== use_model='MC10' ; you should specify this above, or in the command line
;; pd = [ $
;; '(*!dustem_params).grains(0).mdust_o_mh'$ ;PAH0 mass fraction
;; ,'(*!dustem_params).grains(1).mdust_o_mh' $ ;PAH1 mass fraction
;; ,'(*!dustem_params).grains(2).mdust_o_mh' $ ;amCBEx
;; ,'(*!dustem_params).grains(3).mdust_o_mh' $ ;amCBEx
;; ,'(*!dustem_params).grains(4).mdust_o_mh' $ ;aSilx
;; ,'dustem_plugin_continuum_2' $ ;Intensity at peak of the continuum
;; ]
;; iv = [ 7.8e-4, 7.8e-4, 1.65e-4, 1.45e-3, 6.7e-3, 0.003]
;; Npar=n_elements(pd)
;; ulimed=replicate(0,Npar)
;; llimed=replicate(1,Npar)
;; llims=replicate(1.e-15,Npar)
;; fpd=[ $
;; '(*!dustem_params).G0' $ ; ISRF intensity
;; ,'dustem_plugin_continuum_1' $ ;temperature of blackbody the produces the continuum
;; ]
;; fiv=[1.5, 1200.]
;; ;===================================
;; ;=== AN EXAMPLE FOR J13
;; ;===================================
;; ;=== Here we fit the dust abundances of the J13 model, the
;; ;=== intensity of the dust-heating radiation field as well as the free
;; ;=== parameters of two plug-ins:
;; ;=== (i) free-free emission
;; ;=== (ii)continuum due to a blackbody
;; ;=== The temperature of the blackbody is fixed to 1000K
;; ;=== The free parameters in the fit are all lower-bounded at zero.
;; ;=== use_model='J13' ; you should specify this above, or in the command line
;; pd = [ $
;; '(*!dustem_params).G0' $ ;G0
;; ,'(*!dustem_params).grains(0).mdust_o_mh'$ ;CM20 -- power law size distribution
;; ,'(*!dustem_params).grains(1).mdust_o_mh'$ ;CM20 -- logN size distribution
;; ,'(*!dustem_params).grains(2).mdust_o_mh' $ ;aPyM5
;; ,'(*!dustem_params).grains(3).mdust_o_mh' $ ;aOlM5
;; ,'dustem_plugin_freefree_1' $ ;ionized gas temperature
;; ,'dustem_plugin_freefree_2' $ ;free-free amplitude
;; ,'dustem_plugin_continuum_2'] ;intensity at peak of the BB continuum
;; iv = [1.2,1.7e-3, 6.3e-4, 2.55e-3, 2.55e-3, 7500., 0.4, 0.001]
;; fpd=[ 'dustem_plugin_continuum_1'] ; Temperature of the BB
;; fiv=[1000.]
;; Npar=n_elements(pd)
;; ulimed=replicate(0,Npar)
;; llimed=replicate(1,Npar)
;; llims=replicate(1.e-15,Npar)
;;===================================
;;=== INITIALISE DUSTEM
;;===================================
dustem_init,model=use_model,polarization=use_polarization
!dustem_nocatch=1
!dustem_verbose=use_verbose
IF keyword_set(noobj) THEN !dustem_noobj=1
!EXCEPT=2 ; for debugging
;;===================================
;;=== READ EXAMPLE SED DATA
;;===================================
dir=!dustem_wrap_soft_dir+'/Data/EXAMPLE_OBSDATA/'
file=dir+'example_SED_1.xcat'
IF keyword_set(sed_file) THEN file=sed_file
sed=read_xcat(file,/silent)
if keyword_set(wait) then begin
message,'Finished reading SED data: '+file,/info
wait,wait
end
;;===================================
;;=== ADJUST THE UNCERTAINTIES FROM WITHIN THE CODE (FOR ILLUSTRATION)
;;===================================
ind=where(sed.sigmaII LT (0.2*sed.StokesI)^2,count)
IF count NE 0 THEN sed[ind].sigmaII=(0.2*sed[ind].StokesI)^2
;;===================================
;=== SET THE OBSERVATIONAL STRUCTURE
;;===================================
;== sed is passed twice in the call -- the first occurrence (m_sed) is the SED that you
;== wish to fit, the second occurrence (m_show) is the SED that you wish to visualise.
dustem_set_data,m_fit=sed,m_show=sed
;;===================================
;=== INITIALISE DUSTEM WITH INITIAL VALUES AND LIMITS OF ALL PARAMETERS
;;===================================
dustem_init_params,use_model,pd,iv,fpd=fpd,fiv=fiv,ulimed=ulimed,llimed=llimed,ulims=ulims,llims=llims
if keyword_set(wait) then begin
message,'Finished initializing DustEMWrap, including plugins and fixed parameters',/info
wait,wait
end
;;===================================
;;=== INFORMATION TO RUN THE FIT
;;===================================
tol=1.e-16 ;fit tolerence
;;===================================
;;=== INFORMATION TO MAKE THE PLOT
;;===================================
yr=[1.00e-4,1.00E2] ; y-axis limits
xr=[1.00E0,6.00e4] ; x-axis limits
tit='FIT INTENSITY EXAMPLE' ; plot title
ytit=textoidl('I_\nu (MJy/sr) for N_H=10^{20} H/cm^2') ; y-axis title
xtit=textoidl('\lambda (\mum)') ; x-axis title
;;===================================
;;=== RUN THE FIT
;;===================================
t1=systime(0,/sec)
res=dustem_mpfit_data(tol=tol,Nitermax=use_Nitermax,gtol=gtol $
,/xlog,/ylog,xr=xr,yr=yr,xtit=xtit,ytit=ytit,title=tit $
,legend_xpos=legend_xpos,legend_ypos=legend_ypos $
,errors=errors,chi2=chi2,rchi2=rchi2,show_plot=show_plot)
t2=systime(0,/sec)
if keyword_set(wait) then begin
message,'Finished running DustEMWrap, using Niters: '+strtrim(string(use_Nitermax),2),/info
message,'Time taken [sec]: '+sigfig(t2-t1,2,/sci),/info
wait,wait
end
;;===================================
;;=== MAKE THE FINAL PLOT
;;===================================
IF !dustem_noobj THEN BEGIN
dustem_plot_noobj,*(*!dustem_fit).CURRENT_PARAM_VALUES,st=dummy,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (Final fit)'
ENDIF ELSE BEGIN
dustemwrap_plot,*(*!dustem_fit).CURRENT_PARAM_VALUES,st=dummy,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (Final fit)'
ENDELSE
if keyword_set(wait) then begin
message,'Made the plot of the final results',/info
wait,wait
end
;;===================================
;;=== WRITE OUT THE DUSTEMWRAP FITTING RESULTS IN A BINARY FITS FILE
;;===================================
IF keyword_set(fits_save) THEN BEGIN
message,'Writing out results structure: '+fits_save,/info
dustem_write_fits_table,filename=fits_save,help=help
;=== At this point, you could erase all dustem system variables, or exit IDL... all the
;=== information needed to recover the fitting results and remake any plots has been saved in the FITS table
IF keyword_set(wait) THEN BEGIN
message,'Saved the results as FITS in the file: '+fits_save,/info
wait,wait
ENDIF
ENDIF
the_end:
message,'Finished dustem_fit_intensity_example',/info
END