tnmin.pro
70.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
;+
; NAME:
; TNMIN
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Performs function minimization (Truncated-Newton Method)
;
; MAJOR TOPICS:
; Optimization and Minimization
;
; CALLING SEQUENCE:
; parms = TNMIN(MYFUNCT, X, FUNCTARGS=fcnargs, NFEV=nfev,
; MAXITER=maxiter, ERRMSG=errmsg, NPRINT=nprint,
; QUIET=quiet, XTOL=xtol, STATUS=status,
; FGUESS=fguess, PARINFO=parinfo, BESTMIN=bestmin,
; ITERPROC=iterproc, ITERARGS=iterargs, niter=niter)
;
; DESCRIPTION:
;
; TNMIN uses the Truncated-Newton method to minimize an arbitrary IDL
; function with respect to a given set of free parameters. The
; user-supplied function must compute the gradient with respect to
; each parameter. TNMIN is based on TN.F (TNBC) by Stephen Nash.
;
; If you want to solve a least-squares problem, to perform *curve*
; *fitting*, then you will probably want to use the routines MPFIT,
; MPFITFUN and MPFITEXPR. Those routines are specifically optimized
; for the least-squares problem. TNMIN is suitable for constrained
; and unconstrained optimization problems with a medium number of
; variables. Function *maximization* can be performed using the
; MAXIMIZE keyword.
;
; TNMIN is similar to MPFIT in that it allows parameters to be fixed,
; simple bounding limits to be placed on parameter values, and
; parameters to be tied to other parameters. One major difference
; between MPFIT and TNMIN is that TNMIN does not compute derivatives
; automatically by default. See PARINFO and AUTODERIVATIVE below for
; more discussion and examples.
;
; USER FUNCTION
;
; The user must define an IDL function which returns the desired
; value as a single scalar. The IDL function must accept a list of
; numerical parameters, P. Additionally, keyword parameters may be
; used to pass more data or information to the user function, via the
; FUNCTARGS keyword.
;
; The user function should be declared in the following way:
;
; FUNCTION MYFUNCT, p, dp [, keywords permitted ]
; ; Parameter values are passed in "p"
; f = .... ; Compute function value
; dp = .... ; Compute partial derivatives (optional)
; return, f
; END
;
; The function *must* accept at least one argument, the parameter
; list P. The vector P is implicitly assumed to be a one-dimensional
; array. Users may pass additional information to the function by
; composing and _EXTRA structure and passing it in the FUNCTARGS
; keyword.
;
; User functions may also indicate a fatal error condition using the
; ERROR_CODE common block variable, as described below under the
; TNMIN_ERROR common block definition (by setting ERROR_CODE to a
; number between -15 and -1).
;
; EXPLICIT vs. NUMERICAL DERIVATIVES
;
; By default, the user must compute the function gradient components
; explicitly using AUTODERIVATIVE=0. As explained below, numerical
; derivatives can also be calculated using AUTODERIVATIVE=1.
;
; For explicit derivatives, the user should call TNMIN using the
; default keyword value AUTODERIVATIVE=0. [ This is different
; behavior from MPFIT, where AUTODERIVATIVE=1 is the default. ] The
; IDL user routine should compute the gradient of the function as a
; one-dimensional array of values, one for each of the parameters.
; They are passed back to TNMIN via "dp" as shown above.
;
; The derivatives with respect to fixed parameters are ignored; zero
; is an appropriate value to insert for those derivatives. Upon
; input to the user function, DP is set to a vector with the same
; length as P, with a value of 1 for a parameter which is free, and a
; value of zero for a parameter which is fixed (and hence no
; derivative needs to be calculated). This input vector may be
; overwritten as needed.
;
; For numerical derivatives, a finite differencing approximation is
; used to estimate the gradient values. Users can activate this
; feature by passing the keyword AUTODERIVATIVE=1. Fine control over
; this behavior can be achieved using the STEP, RELSTEP and TNSIDE
; fields of the PARINFO structure.
;
; When finite differencing is used for computing derivatives (ie,
; when AUTODERIVATIVE=1), the parameter DP is not passed. Therefore
; functions can use N_PARAMS() to indicate whether they must compute
; the derivatives or not. However there is no penalty (other than
; computation time) for computing the gradient values and users may
; switch between AUTODERIVATIVE=0 or =1 in order to test both
; scenarios.
;
; CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD
;
; The behavior of TNMIN can be modified with respect to each
; parameter to be optimized. A parameter value can be fixed; simple
; boundary constraints can be imposed; limitations on the parameter
; changes can be imposed; properties of the automatic derivative can
; be modified; and parameters can be tied to one another.
;
; These properties are governed by the PARINFO structure, which is
; passed as a keyword parameter to TNMIN.
;
; PARINFO should be an array of structures, one for each parameter.
; Each parameter is associated with one element of the array, in
; numerical order. The structure can have the following entries
; (none are required):
;
; .VALUE - the starting parameter value (but see the START_PARAMS
; parameter for more information).
;
; .FIXED - a boolean value, whether the parameter is to be held
; fixed or not. Fixed parameters are not varied by
; TNMIN, but are passed on to MYFUNCT for evaluation.
;
; .LIMITED - a two-element boolean array. If the first/second
; element is set, then the parameter is bounded on the
; lower/upper side. A parameter can be bounded on both
; sides. Both LIMITED and LIMITS must be given
; together.
;
; .LIMITS - a two-element float or double array. Gives the
; parameter limits on the lower and upper sides,
; respectively. Zero, one or two of these values can be
; set, depending on the values of LIMITED. Both LIMITED
; and LIMITS must be given together.
;
; .PARNAME - a string, giving the name of the parameter. The
; fitting code of TNMIN does not use this tag in any
; way.
;
; .STEP - the step size to be used in calculating the numerical
; derivatives. If set to zero, then the step size is
; computed automatically. Ignored when AUTODERIVATIVE=0.
;
; .TNSIDE - the sidedness of the finite difference when computing
; numerical derivatives. This field can take four
; values:
;
; 0 - one-sided derivative computed automatically
; 1 - one-sided derivative (f(x+h) - f(x) )/h
; -1 - one-sided derivative (f(x) - f(x-h))/h
; 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h)
;
; Where H is the STEP parameter described above. The
; "automatic" one-sided derivative method will chose a
; direction for the finite difference which does not
; violate any constraints. The other methods do not
; perform this check. The two-sided method is in
; principle more precise, but requires twice as many
; function evaluations. Default: 0.
;
; .TIED - a string expression which "ties" the parameter to other
; free or fixed parameters. Any expression involving
; constants and the parameter array P are permitted.
; Example: if parameter 2 is always to be twice parameter
; 1 then use the following: parinfo(2).tied = '2 * P(1)'.
; Since they are totally constrained, tied parameters are
; considered to be fixed; no errors are computed for them.
; [ NOTE: the PARNAME can't be used in expressions. ]
;
; Future modifications to the PARINFO structure, if any, will involve
; adding structure tags beginning with the two letters "MP" or "TN".
; Therefore programmers are urged to avoid using tags starting with
; these two combinations of letters; otherwise they are free to
; include their own fields within the PARINFO structure, and they
; will be ignored.
;
; PARINFO Example:
; parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
; limits:[0.D,0]}, 5)
; parinfo(0).fixed = 1
; parinfo(4).limited(0) = 1
; parinfo(4).limits(0) = 50.D
; parinfo(*).value = [5.7D, 2.2, 500., 1.5, 2000.]
;
; A total of 5 parameters, with starting values of 5.7,
; 2.2, 500, 1.5, and 2000 are given. The first parameter
; is fixed at a value of 5.7, and the last parameter is
; constrained to be above 50.
;
;
; INPUTS:
;
; MYFUNCT - a string variable containing the name of the function to
; be minimized (see USER FUNCTION above). The IDL routine
; should return the value of the function and optionally
; its gradients.
;
; X - An array of starting values for each of the parameters of the
; model.
;
; This parameter is optional if the PARINFO keyword is used.
; See above. The PARINFO keyword provides a mechanism to fix or
; constrain individual parameters. If both X and PARINFO are
; passed, then the starting *value* is taken from X, but the
; *constraints* are taken from PARINFO.
;
;
; RETURNS:
;
; Returns the array of best-fit parameters.
;
;
; KEYWORD PARAMETERS:
;
; AUTODERIVATIVE - If this is set, derivatives of the function will
; be computed automatically via a finite
; differencing procedure. If not set, then MYFUNCT
; must provide the (explicit) derivatives.
; Default: 0 (explicit derivatives required)
;
; BESTMIN - upon return, the best minimum function value that TNMIN
; could find.
;
; EPSABS - a nonnegative real variable. Termination occurs when the
; absolute error between consecutive iterates is at most
; EPSABS. Note that using EPSREL is normally preferable
; over EPSABS, except in cases where ABS(F) is much larger
; than 1 at the optimal point. A value of zero indicates
; the absolute error test is not applied. If EPSABS is
; specified, then both EPSREL and EPSABS tests are applied;
; if either succeeds then termination occurs.
; Default: 0 (i.e., only EPSREL is applied).
;
; EPSREL - a nonnegative input variable. Termination occurs when the
; relative error between two consecutive iterates is at
; most EPSREL. Therefore, EPSREL measures the relative
; error desired in the function. An additional, more
; lenient, stopping condition can be applied by specifying
; the EPSABS keyword.
; Default: 100 * Machine Precision
;
; ERRMSG - a string error or warning message is returned.
;
; FGUESS - provides the routine a guess to the minimum value.
; Default: 0
;
; FUNCTARGS - A structure which contains the parameters to be passed
; to the user-supplied function specified by MYFUNCT via
; the _EXTRA mechanism. This is the way you can pass
; additional data to your user-supplied function without
; using common blocks.
;
; Consider the following example:
; if FUNCTARGS = { XVAL:[1.D,2,3], YVAL:[1.D,4,9]}
; then the user supplied function should be declared
; like this:
; FUNCTION MYFUNCT, P, XVAL=x, YVAL=y
;
; By default, no extra parameters are passed to the
; user-supplied function.
;
; ITERARGS - The keyword arguments to be passed to ITERPROC via the
; _EXTRA mechanism. This should be a structure, and is
; similar in operation to FUNCTARGS.
; Default: no arguments are passed.
;
; ITERDERIV - Intended to print function gradient information. If
; set, then the ITERDERIV keyword is set in each call to
; ITERPROC. In the default ITERPROC, parameter values
; and gradient information are both printed when this
; keyword is set.
;
; ITERPROC - The name of a procedure to be called upon each NPRINT
; iteration of the TNMIN routine. It should be declared
; in the following way:
;
; PRO ITERPROC, MYFUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
; PARINFO=parinfo, QUIET=quiet, _EXTRA=extra
; ; perform custom iteration update
; END
;
; ITERPROC must accept the _EXTRA keyword, in case of
; future changes to the calling procedure.
;
; MYFUNCT is the user-supplied function to be minimized,
; P is the current set of model parameters, ITER is the
; iteration number, and FUNCTARGS are the arguments to be
; passed to MYFUNCT. FNORM is should be the function
; value. QUIET is set when no textual output should be
; printed. See below for documentation of PARINFO.
;
; In implementation, ITERPROC can perform updates to the
; terminal or graphical user interface, to provide
; feedback while the fit proceeds. If the fit is to be
; stopped for any reason, then ITERPROC should set the
; common block variable ERROR_CODE to negative value
; between -15 and -1 (see TNMIN_ERROR common block
; below). In principle, ITERPROC should probably not
; modify the parameter values, because it may interfere
; with the algorithm's stability. In practice it is
; allowed.
;
; Default: an internal routine is used to print the
; parameter values.
;
; MAXITER - The maximum number of iterations to perform. If the
; number is exceeded, then the STATUS value is set to 5
; and TNMIN returns.
; Default: 200 iterations
;
; MAXIMIZE - If set, the function is maximized instead of
; minimized.
;
; MAXNFEV - The maximum number of function evaluations to perform.
; If the number is exceeded, then the STATUS value is set
; to -17 and TNMIN returns. A value of zero indicates no
; maximum.
; Default: 0 (no maximum)
;
; NFEV - upon return, the number of MYFUNCT function evaluations
; performed.
;
; NITER - upon return, number of iterations completed.
;
; NPRINT - The frequency with which ITERPROC is called. A value of
; 1 indicates that ITERPROC is called with every iteration,
; while 2 indicates every other iteration, etc.
; Default value: 1
;
; PARINFO - Provides a mechanism for more sophisticated constraints
; to be placed on parameter values. When PARINFO is not
; passed, then it is assumed that all parameters are free
; and unconstrained. Values in PARINFO are never modified
; during a call to TNMIN.
;
; See description above for the structure of PARINFO.
;
; Default value: all parameters are free and unconstrained.
;
; QUIET - set this keyword when no textual output should be printed
; by TNMIN
;
; STATUS - an integer status code is returned. All values greater
; than zero can represent success (however STATUS EQ 5 may
; indicate failure to converge). Gaps in the numbering
; system below are to maintain compatibility with MPFIT.
; Upon return, STATUS can have one of the following values:
;
; -18 a fatal internal error occurred during optimization.
;
; -17 the maximum number of function evaluations has been
; reached without convergence.
;
; -16 a parameter or function value has become infinite or an
; undefined number. This is usually a consequence of
; numerical overflow in the user's function, which must be
; avoided.
;
; -15 to -1
; these are error codes that either MYFUNCT or ITERPROC
; may return to terminate the fitting process (see
; description of TNMIN_ERROR common below). If either
; MYFUNCT or ITERPROC set ERROR_CODE to a negative number,
; then that number is returned in STATUS. Values from -15
; to -1 are reserved for the user functions and will not
; clash with TNMIN.
;
; 0 improper input parameters.
;
; 1 convergence was reached.
;
; 2-4 (RESERVED)
;
; 5 the maximum number of iterations has been reached
;
; 6-8 (RESERVED)
;
;
; EXAMPLE:
;
; FUNCTION F, X, DF, _EXTRA=extra ;; *** MUST ACCEPT KEYWORDS
; F = (X(0)-1)^2 + (X(1)+7)^2
; DF = [ 2D * (X(0)-1), 2D * (X(1)+7) ] ; Gradient
; RETURN, F
; END
;
; P = TNMIN('F', [0D, 0D], BESTMIN=F0)
; Minimizes the function F(x0,x1) = (x0-1)^2 + (x1+7)^2.
;
;
; COMMON BLOCKS:
;
; COMMON TNMIN_ERROR, ERROR_CODE
;
; User routines may stop the fitting process at any time by
; setting an error condition. This condition may be set in either
; the user's model computation routine (MYFUNCT), or in the
; iteration procedure (ITERPROC).
;
; To stop the fitting, the above common block must be declared,
; and ERROR_CODE must be set to a negative number. After the user
; procedure or function returns, TNMIN checks the value of this
; common block variable and exits immediately if the error
; condition has been set. By default the value of ERROR_CODE is
; zero, indicating a successful function/procedure call.
;
;
; REFERENCES:
;
; TRUNCATED-NEWTON METHOD, TN.F
; Stephen G. Nash, Operations Research and Applied Statistics
; Department
; http://www.netlib.org/opt/tn
;
; Nash, S. G. 1984, "Newton-Type Minimization via the Lanczos
; Method," SIAM J. Numerical Analysis, 21, p. 770-778
;
;
; MODIFICATION HISTORY:
; Derived from TN.F by Stephen Nash with many changes and additions,
; to conform to MPFIT paradigm, 19 Jan 1999, CM
; Changed web address to COW, 25 Sep 1999, CM
; Alphabetized documented keyword parameters, 02 Oct 1999, CM
; Changed to ERROR_CODE for error condition, 28 Jan 2000, CM
; Continued and fairly major improvements (CM, 08 Jan 2001):
; - calling of user procedure is now concentrated in TNMIN_CALL,
; and arguments are reduced by storing a large number of them
; in common blocks;
; - finite differencing is done within TNMIN_CALL; added
; AUTODERIVATIVE=1 so that finite differencing can be enabled,
; both one and two sided;
; - a new procedure to parse PARINFO fields, borrowed from MPFIT;
; brought PARINFO keywords up to date with MPFIT;
; - go through and check for float vs. double discrepancies;
; - add explicit MAXIMIZE keyword, and support in TNMIN_CALL and
; TNMIN_DEFITER to print the correct values in that case;
; TNMIN_DEFITER now prints function gradient values if
; requested;
; - convert to common-based system of MPFIT for storing machine
; constants; revert TNMIN_ENORM to simple sum of squares, at
; least for now;
; - remove limit on number of function evaluations, at least for
; now, and until I can understand what happens when we do
; numerical derivatives.
; Further changes: more float vs double; disable TNMINSTEP for now;
; experimented with convergence test in case of function
; maximization, 11 Jan 2001, CM
; TNMINSTEP is parsed but not enabled, 13 Mar 2001
; Major code cleanups; internal docs; reduced commons, CM, 08 Apr
; 2001
; Continued code cleanups; documentation; the STATUS keyword
; actually means something, CM, 10 Apr 2001
; Added reference to Nash paper, CM, 08 Feb 2002
; Fixed 16-bit loop indices, D. Schelgel, 22 Apr 2003
; Changed parens to square brackets because of conflicts with
; limits function. K. Tolbert, 23 Feb 2005
; Some documentation clarifications, CM, 09 Nov 2007
; Ensure that MY_FUNCT returns a scalar; make it more likely that
; error messages get back out to the user; fatal CATCH'd error
; now returns STATUS = -18, CM, 17 Sep 2008
; Fix TNMIN_CALL when parameters are TIEd (thanks to Alfred de
; Wijn), CM, 22 Nov 2009
; Remember to TIE the parameters before final return (thanks to
; Michael Smith), CM, 20 Jan 2010
;
; TODO
; - scale derivatives semi-automatically;
; - ability to scale and offset parameters;
;
; $Id: tnmin.pro,v 1.20 2016/05/19 16:08:08 cmarkwar Exp $
;-
; Copyright (C) 1998-2001,2002,2003,2007,2008,2009 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy and distribute unmodified copies for
; non-commercial purposes, and to modify and use for personal or
; internal use, is granted. All other rights are reserved.
;-
;%% TRUNCATED-NEWTON METHOD: SUBROUTINES
; FOR OTHER MACHINES, MODIFY ROUTINE MCHPR1 (MACHINE EPSILON)
; WRITTEN BY: STEPHEN G. NASH
; OPERATIONS RESEARCH AND APPLIED STATISTICS DEPT.
; GEORGE MASON UNIVERSITY
; FAIRFAX, VA 22030
;******************************************************************
;; Routine which declares functions and common blocks
pro tnmin_dummy
forward_function tnmin_enorm, tnmin_step1, tnmin
forward_function tnmin_call, tnmin_autoder
common tnmin_error, error_code
common tnmin_machar, tnmin_machar_vals
common tnmin_config, tnmin_tnconfig
common tnmin_fcnargs, tnmin_tnfcnargs
common tnmin_work, lsk, lyk, ldiagb, lsr, lyr
a = 1
return
end
;; Following are machine constants that can be loaded once. I have
;; found that bizarre underflow messages can be produced in each call
;; to MACHAR(), so this structure minimizes the number of calls to
;; one.
pro tnmin_setmachar, double=isdouble
common tnmin_machar, tnmin_machar_vals
;; In earlier versions of IDL, MACHAR itself could produce a load of
;; error messages. We try to mask some of that out here.
if (!version.release) LT 5 then dummy = check_math(1, 1)
mch = 0.
mch = machar(double=keyword_set(isdouble))
dmachep = mch.eps
dmaxnum = mch.xmax
dminnum = mch.xmin
dmaxlog = alog(mch.xmax)
dminlog = alog(mch.xmin)
if keyword_set(isdouble) then $
dmaxgam = 171.624376956302725D $
else $
dmaxgam = 171.624376956302725
drdwarf = sqrt(dminnum*1.5) * 10
drgiant = sqrt(dmaxnum) * 0.1
tnmin_machar_vals = {machep: dmachep, maxnum: dmaxnum, minnum: dminnum, $
maxlog: dmaxlog, minlog: dminlog, maxgam: dmaxgam, $
rdwarf: drdwarf, rgiant: drgiant}
if (!version.release) LT 5 then dummy = check_math(0, 0)
return
end
;; Procedure to parse the parameter values in PARINFO
pro tnmin_parinfo, parinfo, tnames, tag, values, default=def, status=status, $
n_param=n
status = 0
if n_elements(n) EQ 0 then n = n_elements(parinfo)
if n EQ 0 then begin
if n_elements(def) EQ 0 then return
values = def
status = 1
return
endif
if n_elements(parinfo) EQ 0 then goto, DO_DEFAULT
if n_elements(tnames) EQ 0 then tnames = tag_names(parinfo)
wh = where(tnames EQ tag, ct)
if ct EQ 0 then begin
DO_DEFAULT:
if n_elements(def) EQ 0 then return
values = make_array(n, value=def(0))
values(0) = def
endif else begin
values = parinfo.(wh(0))
endelse
status = 1
return
end
;; Procedure to tie one parameter to another.
pro tnmin_tie, p, _ptied
_wh = where(_ptied NE '', _ct)
if _ct EQ 0 then return
for _i = 0L, _ct-1 do begin
_cmd = 'p('+strtrim(_wh(_i),2)+') = '+_ptied(_wh(_i))
_err = execute(_cmd)
if _err EQ 0 then begin
message, 'ERROR: Tied expression "'+_cmd+'" failed.'
return
endif
endfor
end
function tnmin_autoder, fcn, x, dx, dside=dside
common tnmin_machar, machvals
common tnmin_config, tnconfig
MACHEP0 = machvals.machep
DWARF = machvals.minnum
if n_elements(dside) NE n_elements(x) then dside = tnconfig.dside
eps = sqrt(MACHEP0)
h = eps * (1. + abs(x))
;; if STEP is given, use that
wh = where(tnconfig.step GT 0, ct)
if ct GT 0 then h(wh) = tnconfig.step(wh)
;; if relative step is given, use that
wh = where(tnconfig.dstep GT 0, ct)
if ct GT 0 then h(wh) = abs(tnconfig.dstep(wh)*x(wh))
;; In case any of the step values are zero
wh = where(h EQ 0, ct)
if ct GT 0 then h(wh) = eps
;; Reverse the sign of the step if we are up against the parameter
;; limit, or if the user requested it.
mask = (dside EQ -1 OR (tnconfig.ulimited AND (x GT tnconfig.ulimit-h)))
wh = where(mask, ct)
if ct GT 0 then h(wh) = -h(wh)
dx = x * 0.
f = tnmin_call(fcn, x)
for i = 0L, n_elements(x)-1 do begin
if tnconfig.pfixed(i) EQ 1 then goto, NEXT_PAR
hh = h(i)
RESTART_PAR:
xp = x
xp(i) = xp(i) + hh
fp = tnmin_call(fcn, xp)
if abs(dside(i)) LE 1 then begin
;; COMPUTE THE ONE-SIDED DERIVATIVE
dx(i) = (fp-f)/hh
endif else begin
;; COMPUTE THE TWO-SIDED DERIVATIVE
xp(i) = x(i) - hh
fm = tnmin_call(fcn, xp)
dx(i) = (fp-fm)/(2*hh)
endelse
NEXT_PAR:
endfor
return, f
end
;; Call user function or procedure, with _EXTRA or not, with
;; derivatives or not.
function tnmin_call, fcn, x1, dx, fullparam_=xall
; on_error, 2
common tnmin_config, tnconfig
common tnmin_fcnargs, fcnargs
ifree = tnconfig.ifree
;; Following promotes the byte array to a floating point array so
;; that users who simply re-fill the array aren't surprised when
;; their gradient comes out as bytes. :-)
dx = tnconfig.pfixed + x1(0)*0.
if n_elements(xall) GT 0 then begin
x = xall
x(ifree) = x1
endif else begin
x = x1
endelse
;; Enforce TIEd parameters
if keyword_set(tnconfig.qanytied) then tnmin_tie, x, tnconfig.ptied
;; Decide whether we are calling a procedure or function
if tnconfig.proc then proc = 1 else proc = 0
tnconfig.nfev = tnconfig.nfev + 1
if n_params() EQ 3 then begin
if tnconfig.autoderiv then $
f = tnmin_autoder(fcn, x, dx) $
else if n_elements(fcnargs) GT 0 then $
f = call_function(fcn, x, dx, _EXTRA=fcnargs) $
else $
f = call_function(fcn, x, dx)
dx = dx(ifree)
if tnconfig.max then begin
dx = -dx
f = -f
endif
endif else begin
if n_elements(fcnargs) GT 0 then $
f = call_function(fcn, x, _EXTRA=fcnargs) $
else $
f = call_function(fcn, x)
if n_elements(f) NE 1 then begin
message, 'ERROR: function "'+fcn+'" returned a vector when '+$
'a scalar was expected.'
endif
endelse
if n_elements(f) GT 1 then return, f $
else return, f(0)
end
function tnmin_enorm, vec
common tnmin_config, tnconfig
;; Very simple-minded sum-of-squares
if n_elements(tnconfig) GT 0 then if tnconfig.fastnorm then begin
ans = sqrt(total(vec^2,1))
goto, TERMINATE
endif
common tnmin_machar, machvals
agiant = machvals.rgiant / n_elements(vec)
adwarf = machvals.rdwarf * n_elements(vec)
;; This is hopefully a compromise between speed and robustness.
;; Need to do this because of the possibility of over- or underflow.
mx = max(vec, min=mn)
mx = max(abs([mx,mn]))
if mx EQ 0 then return, vec(0)* 0.
if mx GT agiant OR mx LT adwarf then ans = mx * sqrt(total((vec/mx)^2)) $
else ans = sqrt( total(vec^2) )
TERMINATE:
return, ans
end
;
; ROUTINES TO INITIALIZE PRECONDITIONER
;
pro tnmin_initpc, diagb, emat, n, upd1, yksk, gsk, yrsr, lreset
;; Rename common variables as they appear in INITP3. Those
;; indicated in all caps are not used or renamed here.
; common tnmin_work, lsk, lyk, ldiagb, lsr, lyr
common tnmin_work, sk, yk, LDIAGB, sr, yr
; I I I I
;; From INITP3
if keyword_set(upd1) then begin
EMAT = DIAGB
endif else if keyword_set(lreset) then begin
BSK = DIAGB*SK
SDS = TOTAL(SK*BSK)
EMAT = DIAGB - DIAGB*DIAGB*SK*SK/SDS + YK*YK/YKSK
endif else begin
BSK = DIAGB * SR
SDS = TOTAL(SR*BSK)
SRDS = TOTAL(SK*BSK)
YRSK = TOTAL(YR*SK)
BSK = DIAGB*SK - BSK*SRDS/SDS+YR*YRSK/YRSR
EMAT = DIAGB-DIAGB*DIAGB*SR*SR/SDS+YR*YR/YRSR
SDS = TOTAL(SK*BSK)
EMAT = EMAT - BSK*BSK/SDS+YK*YK/YKSK
endelse
return
end
pro tnmin_ssbfgs, n, gamma, sj, yj, hjv, hjyj, yjsj, yjhyj, $
vsj, vhyj, hjp1v
;
; SELF-SCALED BFGS
;
DELTA = (1. + GAMMA*YJHYJ/YJSJ)*VSJ/YJSJ - GAMMA*VHYJ/YJSJ
BETA = -GAMMA*VSJ/YJSJ
HJP1V = GAMMA*HJV + DELTA*SJ + BETA*HJYJ
RETURN
end
;
; THIS ROUTINE ACTS AS A PRECONDITIONING STEP FOR THE
; LINEAR CONJUGATE-GRADIENT ROUTINE. IT IS ALSO THE
; METHOD OF COMPUTING THE SEARCH DIRECTION FROM THE
; GRADIENT FOR THE NON-LINEAR CONJUGATE-GRADIENT CODE.
; IT REPRESENTS A TWO-STEP SELF-SCALED BFGS FORMULA.
;
pro tnmin_msolve, g, y, n, upd1, yksk, gsk, yrsr, lreset, first, $
hyr, hyk, ykhyk, yrhyr
;; Rename common variables as they appear in MSLV
; common tnmin_work, lsk, lyk, ldiagb, lsr, lyr
common tnmin_work, sk, yk, diagb, sr, yr
; I I I I I
;; From MSLV
if keyword_set(UPD1) then begin
Y = G / DIAGB
RETURN
endif
ONE = G(0)*0 + 1.
GSK = TOTAL(G*SK)
if keyword_set(lreset) then begin
;
; COMPUTE GH AND HY WHERE H IS THE INVERSE OF THE DIAGONALS
;
HG = G/DIAGB
if keyword_set(FIRST) then begin
HYK = YK/DIAGB
YKHYK = TOTAL(YK*HYK)
endif
GHYK = TOTAL(G*HYK)
TNMIN_SSBFGS,N,ONE,SK,YK,HG,HYK,YKSK, YKHYK,GSK,GHYK,Y
RETURN
endif
;
; COMPUTE HG AND HY WHERE H IS THE INVERSE OF THE DIAGONALS
;
HG = G/DIAGB
if keyword_set(FIRST) then begin
HYK = YK/DIAGB
HYR = YR/DIAGB
YKSR = TOTAL(YK*SR)
YKHYR = TOTAL(YK*HYR)
endif
GSR = TOTAL(G*SR)
GHYR = TOTAL(G*HYR)
if keyword_set(FIRST) then begin
YRHYR = TOTAL(YR*HYR)
endif
TNMIN_SSBFGS,N,ONE,SR,YR,HG,HYR,YRSR, YRHYR,GSR,GHYR,HG
if keyword_set(FIRST) then begin
TNMIN_SSBFGS,N,ONE,SR,YR,HYK,HYR,YRSR, YRHYR,YKSR,YKHYR,HYK
endif
YKHYK = TOTAL(HYK*YK)
GHYK = TOTAL(HYK*G)
TNMIN_SSBFGS,N,ONE,SK,YK,HG,HYK,YKSK, YKHYK,GSK,GHYK,Y
RETURN
end
;
; THIS ROUTINE COMPUTES THE PRODUCT OF THE MATRIX G TIMES THE VECTOR
; V AND STORES THE RESULT IN THE VECTOR GV (FINITE-DIFFERENCE VERSION)
;
pro tnmin_gtims, v, gv, n, x, g, fcn, first, delta, accrcy, xnorm, $
xnew
IF keyword_set(FIRST) THEN BEGIN
;; Extra factor of ten is to avoid clashing with the finite
;; difference scheme which computes the derivatives
DELTA = SQRT(100*ACCRCY)*(1.+XNORM) ;; XXX diff than TN.F
; DELTA = SQRT(ACCRCY)*(1.+XNORM)
FIRST = 0
ENDIF
DINV = 1. /DELTA
F = tnmin_call(FCN, X + DELTA*V, GV, fullparam_=xnew)
GV = (GV-G)*DINV
return
end
;
; UPDATE THE PRECONDITIOING MATRIX BASED ON A DIAGONAL VERSION
; OF THE BFGS QUASI-NEWTON UPDATE.
;
pro tnmin_ndia3, n, e, v, gv, r, vgv
VR = TOTAL(V*R)
E = E - R*R/VR + GV*GV/VGV
wh = where(e LE 1D-6, ct)
if ct GT 0 then e(wh) = 1
return
end
pro tnmin_fix, whlpeg, whupeg, z
if whlpeg(0) NE -1 then z(whlpeg) = 0
if whupeg(0) NE -1 then z(whupeg) = 0
end
;
; THIS ROUTINE PERFORMS A PRECONDITIONED CONJUGATE-GRADIENT
; ITERATION IN ORDER TO SOLVE THE NEWTON EQUATIONS FOR A SEARCH
; DIRECTION FOR A TRUNCATED-NEWTON ALGORITHM. WHEN THE VALUE OF THE
; QUADRATIC MODEL IS SUFFICIENTLY REDUCED,
; THE ITERATION IS TERMINATED.
;
; PARAMETERS
;
; ZSOL - COMPUTED SEARCH DIRECTION
; G - CURRENT GRADIENT
; GV,GZ1,V - SCRATCH VECTORS
; R - RESIDUAL
; DIAGB,EMAT - DIAGONAL PRECONDITONING MATRIX
; NITER - NONLINEAR ITERATION #
; FEVAL - VALUE OF QUADRATIC FUNCTION
pro tnmin_modlnp, zsol, gv, r, v, diagb, emat, $
x, g, zk, n, niter, maxit, nmodif, nlincg, $
upd1, yksk, gsk, yrsr, lreset, fcn, whlpeg, whupeg, $
accrcy, gtp, gnorm, xnorm, xnew
;
; GENERAL INITIALIZATION
;
zero = x(0)* 0.
one = zero + 1
IF (MAXIT EQ 0) THEN RETURN
FIRST = 1
RHSNRM = GNORM
TOL = zero + 1.E-12
QOLD = zero
;
; INITIALIZATION FOR PRECONDITIONED CONJUGATE-GRADIENT ALGORITHM
;
tnmin_initpc, diagb, emat, n, upd1, yksk, gsk, yrsr, lreset
R = -G
V = G*0.
ZSOL = V
;
; ************************************************************
; MAIN ITERATION
; ************************************************************
;
FOR K = 1L, MAXIT DO BEGIN
NLINCG = NLINCG + 1
;
; CG ITERATION TO SOLVE SYSTEM OF EQUATIONS
;
tnmin_fix, whlpeg, whupeg, r
TNMIN_MSOLVE, R, ZK, N, UPD1, YKSK, GSK, YRSR, LRESET, FIRST, $
HYR, HYK, YKHYK, YRHYR
tnmin_fix, whlpeg, whupeg, zk
RZ = TOTAL(R*ZK)
IF (RZ/RHSNRM LT TOL) THEN GOTO, MODLNP_80
IF (K EQ 1) THEN BETA = ZERO $
ELSE BETA = RZ/RZOLD
V = ZK + BETA*V
tnmin_fix, whlpeg, whupeg, v
TNMIN_GTIMS, V, GV, N, X, G, FCN, FIRST, DELTA, ACCRCY, XNORM, XNEW
tnmin_fix, whlpeg, whupeg, gv
VGV = TOTAL(V*GV)
IF (VGV/RHSNRM LT TOL) THEN GOTO, MODLNP_50
TNMIN_NDIA3, N,EMAT,V,GV,R,VGV
;
; COMPUTE LINEAR STEP LENGTH
;
ALPHA = RZ / VGV
;
; COMPUTE CURRENT SOLUTION AND RELATED VECTORS
;
ZSOL = ZSOL + ALPHA*V
R = R - ALPHA*GV
;
; TEST FOR CONVERGENCE
;
GTP = TOTAL(ZSOL*G)
PR = TOTAL(R*ZSOL)
QNEW = 5.E-1 * (GTP + PR)
QTEST = K * (1.E0 - QOLD/QNEW)
IF (QTEST LT 0.D0) THEN GOTO, MODLNP_70
QOLD = QNEW
IF (QTEST LE 5.D-1) THEN GOTO, MODLNP_70
;
; PERFORM CAUTIONARY TEST
;
IF (GTP GT 0) THEN GOTO, MODLNP_40
RZOLD = RZ
ENDFOR
;
; TERMINATE ALGORITHM
;
K = K-1
goto, MODLNP_70
MODLNP_40:
ZSOL = ZSOL - ALPHA*V
GTP = TOTAL(ZSOL*G)
goto, MODLNP_90
MODLNP_50:
;; printed output
MODLNP_60:
IF (K GT 1) THEN GOTO, MODLNP_70
TNMIN_MSOLVE,G,ZSOL,N,UPD1,YKSK,GSK,YRSR,LRESET,FIRST, $
HYR, HYK, YKHYK, YRHYR
ZSOL = -ZSOL
tnmin_fix, whlpeg, whupeg, zsol
GTP = TOTAL(ZSOL*G)
MODLNP_70:
goto, MODLNP_90
MODLNP_80:
IF (K GT 1) THEN GOTO, MODLNP_70
ZSOL = -G
tnmin_fix, whlpeg, whupeg, zsol
GTP = TOTAL(ZSOL*G)
goto, MODLNP_70
;
; STORE (OR RESTORE) DIAGONAL PRECONDITIONING
;
MODLNP_90:
diagb = emat
return
end
function tnmin_step1, fnew, fm, gtp, smax, epsmch
; ********************************************************
; STEP1 RETURNS THE LENGTH OF THE INITIAL STEP TO BE TAKEN ALONG THE
; VECTOR P IN THE NEXT LINEAR SEARCH.
; ********************************************************
D = ABS(FNEW-FM)
ALPHA = FNEW(0)*0 + 1.
IF (2.D0*D LE (-GTP) AND D GE EPSMCH) THEN $
ALPHA = -2.*D/GTP
IF (ALPHA GE SMAX) THEN ALPHA = SMAX
return, alpha
end
;
; ************************************************************
; GETPTC, AN ALGORITHM FOR FINDING A STEPLENGTH, CALLED REPEATEDLY BY
; ROUTINES WHICH REQUIRE A STEP LENGTH TO BE COMPUTED USING CUBIC
; INTERPOLATION. THE PARAMETERS CONTAIN INFORMATION ABOUT THE INTERVAL
; IN WHICH A LOWER POINT IS TO BE FOUND AND FROM THIS GETPTC COMPUTES A
; POINT AT WHICH THE FUNCTION CAN BE EVALUATED BY THE CALLING PROGRAM.
; THE VALUE OF THE INTEGER PARAMETERS IENTRY DETERMINES THE PATH TAKEN
; THROUGH THE CODE.
; ************************************************************
pro tnmin_getptc, big, small, rtsmll, reltol, abstol, tnytol, $
fpresn, eta, rmu, xbnd, u, fu, gu, xmin, fmin, gmin, $
xw, fw, gw, a, b, oldf, b1, scxbnd, e, step, factor, $
braktd, gtest1, gtest2, tol, ientry, itest
;; This chicanery is so that we get the data types right
ZERO = fu(0)* 0.
; a1 = zero & scale = zero & chordm = zero
; chordu = zero & d1 = zero & d2 = zero
; denom = zero
POINT1 = ZERO + 0.1
HALF = ZERO + 0.5
ONE = ZERO + 1
THREE = ZERO + 3
FIVE = ZERO + 5
ELEVEN = ZERO + 11
if ientry EQ 1 then begin ;; else clause = 20 (OK)
;
; IENTRY=1
; CHECK INPUT PARAMETERS
;
;; GETPTC_10:
ITEST = 2
IF (U LE ZERO OR XBND LE TNYTOL OR GU GT ZERO) THEN RETURN
ITEST = 1
IF (XBND LT ABSTOL) THEN ABSTOL = XBND
TOL = ABSTOL
TWOTOL = TOL + TOL
;
; A AND B DEFINE THE INTERVAL OF UNCERTAINTY, X AND XW ARE POINTS
; WITH LOWEST AND SECOND LOWEST FUNCTION VALUES SO FAR OBTAINED.
; INITIALIZE A,SMIN,XW AT ORIGIN AND CORRESPONDING VALUES OF
; FUNCTION AND PROJECTION OF THE GRADIENT ALONG DIRECTION OF SEARCH
; AT VALUES FOR LATEST ESTIMATE AT MINIMUM.
;
A = ZERO
XW = ZERO
XMIN = ZERO
OLDF = FU
FMIN = FU
FW = FU
GW = GU
GMIN = GU
STEP = U
FACTOR = FIVE
;
; THE MINIMUM HAS NOT YET BEEN BRACKETED.
;
BRAKTD = 0
;
; SET UP XBND AS A BOUND ON THE STEP TO BE TAKEN. (XBND IS NOT COMPUTED
; EXPLICITLY BUT SCXBND IS ITS SCALED VALUE.) SET THE UPPER BOUND
; ON THE INTERVAL OF UNCERTAINTY INITIALLY TO XBND + TOL(XBND).
;
SCXBND = XBND
B = SCXBND + RELTOL*ABS(SCXBND) + ABSTOL
E = B + B
B1 = B
;
; COMPUTE THE CONSTANTS REQUIRED FOR THE TWO CONVERGENCE CRITERIA.
;
GTEST1 = -RMU*GU
GTEST2 = -ETA*GU
;
; SET IENTRY TO INDICATE THAT THIS IS THE FIRST ITERATION
;
IENTRY = 2
goto, GETPTC_210
endif
;
; IENTRY = 2
;
; UPDATE A,B,XW, AND XMIN
;
;; GETPTC_20:
IF (FU GT FMIN) THEN GOTO, GETPTC_60
;
; IF FUNCTION VALUE NOT INCREASED, NEW POINT BECOMES NEXT
; ORIGIN AND OTHER POINTS ARE SCALED ACCORDINGLY.
;
CHORDU = OLDF - (XMIN + U)*GTEST1
if NOT (FU LE CHORDU) then begin
;
; THE NEW FUNCTION VALUE DOES NOT SATISFY THE SUFFICIENT DECREASE
; CRITERION. PREPARE TO MOVE THE UPPER BOUND TO THIS POINT AND
; FORCE THE INTERPOLATION SCHEME TO EITHER BISECT THE INTERVAL OF
; UNCERTAINTY OR TAKE THE LINEAR INTERPOLATION STEP WHICH ESTIMATES
; THE ROOT OF F(ALPHA)=CHORD(ALPHA).
;
CHORDM = OLDF - XMIN*GTEST1
GU = -GMIN
DENOM = CHORDM-FMIN
IF (ABS(DENOM) LT 1.D-15) THEN BEGIN
DENOM = ZERO + 1.E-15
IF (CHORDM-FMIN LT 0.D0) THEN DENOM = -DENOM
ENDIF
IF (XMIN NE ZERO) THEN GU = GMIN*(CHORDU-FU)/DENOM
FU = (HALF*U*(GMIN+GU) + FMIN) > FMIN
;
; IF FUNCTION VALUE INCREASED, ORIGIN REMAINS UNCHANGED
; BUT NEW POINT MAY NOW QUALIFY AS W.
;
GETPTC_60:
IF (U GE ZERO) THEN BEGIN
B = U
BRAKTD = 1
ENDIF ELSE BEGIN
A = U
ENDELSE
XW = U
FW = FU
GW = GU
endif else begin
;; GETPTC_30:
FW = FMIN
FMIN = FU
GW = GMIN
GMIN = GU
XMIN = XMIN + U
A = A-U
B = B-U
XW = -U
SCXBND = SCXBND - U
IF (GU GT ZERO) THEN BEGIN
B = ZERO
BRAKTD = 1
ENDIF ELSE BEGIN
A = ZERO
ENDELSE
TOL = ABS(XMIN)*RELTOL + ABSTOL
endelse
TWOTOL = TOL + TOL
XMIDPT = HALF*(A + B)
;
; CHECK TERMINATION CRITERIA
;
CONVRG = ABS(XMIDPT) LE TWOTOL - HALF*(B-A) OR $
ABS(GMIN) LE GTEST2 AND FMIN LT OLDF AND $
(ABS(XMIN - XBND) GT TOL OR NOT BRAKTD)
IF CONVRG THEN BEGIN
ITEST = 0
IF (XMIN NE ZERO) THEN RETURN
;
; IF THE FUNCTION HAS NOT BEEN REDUCED, CHECK TO SEE THAT THE RELATIVE
; CHANGE IN F(X) IS CONSISTENT WITH THE ESTIMATE OF THE DELTA-
; UNIMODALITY CONSTANT, TOL. IF THE CHANGE IN F(X) IS LARGER THAN
; EXPECTED, REDUCE THE VALUE OF TOL.
;
ITEST = 3
IF (ABS(OLDF-FW) LE FPRESN*(ONE + ABS(OLDF))) THEN RETURN
TOL = POINT1*TOL
IF (TOL LT TNYTOL) THEN RETURN
RELTOL = POINT1*RELTOL
ABSTOL = POINT1*ABSTOL
TWOTOL = POINT1*TWOTOL
endif
;
; CONTINUE WITH THE COMPUTATION OF A TRIAL STEP LENGTH
;
;; GETPTC_100:
R = ZERO
Q = ZERO
S = ZERO
IF (ABS(E) GT TOL) THEN BEGIN
;
; FIT CUBIC THROUGH XMIN AND XW
;
R = THREE*(FMIN-FW)/XW + GMIN + GW
ABSR = ABS(R)
Q = ABSR
IF (GW EQ ZERO OR GMIN EQ ZERO) EQ 0 THEN BEGIN ;; else clause = 140 (OK)
;
; COMPUTE THE SQUARE ROOT OF (R*R - GMIN*GW) IN A WAY
; WHICH AVOIDS UNDERFLOW AND OVERFLOW.
;
ABGW = ABS(GW)
ABGMIN = ABS(GMIN)
S = SQRT(ABGMIN)*SQRT(ABGW)
IF ((GW/ABGW)*GMIN LE ZERO) THEN BEGIN
;
; COMPUTE THE SQUARE ROOT OF R*R + S*S.
;
SUMSQ = ONE
P = ZERO
IF (ABSR LT S) THEN BEGIN ;; else clause = 110 (OK)
;
; THERE IS A POSSIBILITY OF OVERFLOW.
;
IF (S GT RTSMLL) THEN P = S*RTSMLL
IF (ABSR GE P) THEN SUMSQ = ONE +(ABSR/S)^2
SCALE = S
endif else begin ;; flow to 120 (OK)
;
; THERE IS A POSSIBILITY OF UNDERFLOW.
;
;; GETPTC_110:
IF (ABSR GT RTSMLL) THEN P = ABSR*RTSMLL
IF (S GE P) THEN SUMSQ = ONE + (S/ABSR)^2
SCALE = ABSR
ENDELSE ;; flow to 120 (OK)
;; GETPTC_120:
SUMSQ = SQRT(SUMSQ)
Q = BIG
IF (SCALE LT BIG/SUMSQ) THEN Q = SCALE*SUMSQ
endif else begin ;; flow to 140
;
; COMPUTE THE SQUARE ROOT OF R*R - S*S
;
;; GETPTC_130:
Q = SQRT(ABS(R+S))*SQRT(ABS(R-S))
IF (R GE S OR R LE (-S)) EQ 0 THEN BEGIN
R = ZERO
Q = ZERO
goto, GETPTC_150
endif
endelse
endif
;
; COMPUTE THE MINIMUM OF FITTED CUBIC
;
;; GETPTC_140:
IF (XW LT ZERO) THEN Q = -Q
S = XW*(GMIN - R - Q)
Q = GW - GMIN + Q + Q
IF (Q GT ZERO) THEN S = -S
IF (Q LE ZERO) THEN Q = -Q
R = E
IF (B1 NE STEP OR BRAKTD) THEN E = STEP
endif
;
; CONSTRUCT AN ARTIFICIAL BOUND ON THE ESTIMATED STEPLENGTH
;
GETPTC_150:
A1 = A
B1 = B
STEP = XMIDPT
IF (BRAKTD) EQ 0 THEN BEGIN ;; else flow to 160 (OK)
STEP = -FACTOR*XW
IF (STEP GT SCXBND) THEN STEP = SCXBND
IF (STEP NE SCXBND) THEN FACTOR = FIVE*FACTOR
;; flow to 170 (OK)
endif else begin
;
; IF THE MINIMUM IS BRACKETED BY 0 AND XW THE STEP MUST LIE
; WITHIN (A,B).
;
;; GETPTC_160:
if (a NE zero OR xw GE zero) AND (b NE zero OR xw LE zero) then $
goto, GETPTC_180
;
; IF THE MINIMUM IS NOT BRACKETED BY 0 AND XW THE STEP MUST LIE
; WITHIN (A1,B1).
;
D1 = XW
D2 = A
IF (A EQ ZERO) THEN D2 = B
; THIS LINE MIGHT BE
; IF (A EQ ZERO) THEN D2 = E
U = - D1/D2
STEP = FIVE*D2*(POINT1 + ONE/U)/ELEVEN
IF (U LT ONE) THEN STEP = HALF*D2*SQRT(U)
endelse
;; GETPTC_170:
IF (STEP LE ZERO) THEN A1 = STEP
IF (STEP GT ZERO) THEN B1 = STEP
;
; REJECT THE STEP OBTAINED BY INTERPOLATION IF IT LIES OUTSIDE THE
; REQUIRED INTERVAL OR IT IS GREATER THAN HALF THE STEP OBTAINED
; DURING THE LAST-BUT-ONE ITERATION.
;
GETPTC_180:
if NOT (abs(s) LE abs(half*q*r) OR s LE q*a1 OR s GE q*b1) then begin
;; else clause = 200 (OK)
;
; A CUBIC INTERPOLATION STEP
;
STEP = S/Q
;
; THE FUNCTION MUST NOT BE EVALUTATED TOO CLOSE TO A OR B.
;
if NOT (step - a GE twotol AND b - step GE twotol) then begin
;; else clause = 210 (OK)
IF (XMIDPT LE ZERO) THEN STEP = -TOL ELSE STEP = TOL
endif ;; flow to 210 (OK)
endif else begin
;; GETPTC_200:
E = B-A
endelse
;
; IF THE STEP IS TOO LARGE, REPLACE BY THE SCALED BOUND (SO AS TO
; COMPUTE THE NEW POINT ON THE BOUNDARY).
;
GETPTC_210:
if (step GE scxbnd) then begin ;; else clause = 220 (OK)
STEP = SCXBND
;
; MOVE SXBD TO THE LEFT SO THAT SBND + TOL(XBND) = XBND.
;
SCXBND = SCXBND - (RELTOL*ABS(XBND)+ABSTOL)/(ONE + RELTOL)
endif
;; GETPTC_220:
U = STEP
IF (ABS(STEP) LT TOL AND STEP LT ZERO) THEN U = -TOL
IF (ABS(STEP) LT TOL AND STEP GE ZERO) THEN U = TOL
ITEST = 1
RETURN
end
;
; LINE SEARCH ALGORITHMS OF GILL AND MURRAY
;
pro tnmin_linder, n, fcn, small, epsmch, reltol, abstol, $
tnytol, eta, sftbnd, xbnd, p, gtp, x, f, alpha, g, $
iflag, xnew
zero = f(0) * 0.
one = zero + 1.
LSPRNT = 0L
NPRNT = 10000L
RTSMLL = SQRT(SMALL)
BIG = 1./SMALL
ITCNT = 0L
;
; SET THE ESTIMATED RELATIVE PRECISION IN F(X).
;
FPRESN = 10.*EPSMCH
U = ALPHA
FU = F
FMIN = F
GU = GTP
RMU = zero + 1E-4
;
; FIRST ENTRY SETS UP THE INITIAL INTERVAL OF UNCERTAINTY.
;
IENTRY = 1L
LINDER_10:
;
; TEST FOR TOO MANY ITERATIONS
;
ITCNT = ITCNT + 1
IF (ITCNT GT 30) THEN BEGIN
;; deviation from Nash: allow optimization to continue in outer
;; loop even if we fail to converge, if IFLAG EQ 0. A value of
;; 1 indicates failure. I believe that I tried IFLAG=0 once and
;; there was some problem, but I forget what it was.
IFLAG = 1
F = FMIN
ALPHA = XMIN
X = X + ALPHA*P
RETURN
ENDIF
IFLAG = 0
TNMIN_GETPTC,BIG,SMALL,RTSMLL,RELTOL,ABSTOL,TNYTOL, $
FPRESN,ETA,RMU,XBND,U,FU,GU,XMIN,FMIN,GMIN, $
XW,FW,GW,A,B,OLDF,B1,SCXBND,E,STEP,FACTOR, $
BRAKTD,GTEST1,GTEST2,TOL,IENTRY,ITEST
;
; IF ITEST=1, THE ALGORITHM REQUIRES THE FUNCTION VALUE TO BE
; CALCULATED.
;
IF (ITEST EQ 1) THEN BEGIN
UALPHA = XMIN + U
FU = TNMIN_CALL(FCN, X + UALPHA*P, LG, fullparam_=xnew)
GU = TOTAL(LG*P)
;
; THE GRADIENT VECTOR CORRESPONDING TO THE BEST POINT IS
; OVERWRITTEN IF FU IS LESS THAN FMIN AND FU IS SUFFICIENTLY
; LOWER THAN F AT THE ORIGIN.
;
IF (FU LE FMIN AND FU LE OLDF-UALPHA*GTEST1) THEN $
G = LG
; print, 'fu = ', fu
GOTO, LINDER_10
ENDIF
;
; IF ITEST=2 OR 3 A LOWER POINT COULD NOT BE FOUND
;
IFLAG = 1
IF (ITEST NE 0) THEN RETURN
;
; IF ITEST=0 A SUCCESSFUL SEARCH HAS BEEN MADE
;
; print, 'itcnt = ', itcnt
IFLAG = 0
F = FMIN
ALPHA = XMIN
X = X + ALPHA*P
RETURN
END
pro tnmin_defiter, fcn, x, iter, fnorm, fmt=fmt, FUNCTARGS=fcnargs, $
quiet=quiet, deriv=df, dprint=dprint, pfixed=pfixed, $
maximize=maximize, _EXTRA=iterargs
if keyword_set(quiet) then return
if n_params() EQ 3 then begin
fnorm = tnmin_call(fcn, x, df)
endif
if keyword_set(maximize) then f = -fnorm else f = fnorm
print, iter, f, format='("Iter ",I6," FUNCTION = ",G20.8)'
if n_elements(fmt) GT 0 then begin
print, x, format=fmt
endif else begin
n = n_elements(x)
ii = lindgen(n)
p = ' P('+strtrim(ii,2)+') = '+string(x,format='(G)')
if keyword_set(dprint) then begin
p1 = strarr(n)
wh = where(pfixed EQ 0, ct)
if ct GT 0 AND n_elements(df) GE ct then begin
if keyword_set(maximize) then df1 = -df else df1 = df
p1(wh) = string(df1, format='(G)')
endif
wh = where(pfixed EQ 1, ct)
if ct GT 0 then $
p1(wh) = ' (FIXED)'
p = p + ' : DF/DP('+strtrim(ii,2)+') = '+p1
endif
print, p, format='(A)'
endelse
return
end
; SUBROUTINE TNBC (IERROR, N, X, F, G, W, LW, SFUN, LOW, UP, IPIVOT)
; IMPLICIT DOUBLE PRECISION (A-H,O-Z)
; INTEGER IERROR, N, LW, IPIVOT(N)
; DOUBLE PRECISION X(N), G(N), F, W(LW), LOW(N), UP(N)
;
; THIS ROUTINE SOLVES THE OPTIMIZATION PROBLEM
;
; MINIMIZE F(X)
; X
; SUBJECT TO LOW <= X <= UP
;
; WHERE X IS A VECTOR OF N REAL VARIABLES. THE METHOD USED IS
; A TRUNCATED-NEWTON ALGORITHM (SEE "NEWTON-TYPE MINIMIZATION VIA
; THE LANCZOS ALGORITHM" BY S.G. NASH (TECHNICAL REPORT 378, MATH.
; THE LANCZOS METHOD" BY S.G. NASH (SIAM J. NUMER. ANAL. 21 (1984),
; PP. 770-778). THIS ALGORITHM FINDS A LOCAL MINIMUM OF F(X). IT DOES
; NOT ASSUME THAT THE FUNCTION F IS CONVEX (AND SO CANNOT GUARANTEE A
; GLOBAL SOLUTION), BUT DOES ASSUME THAT THE FUNCTION IS BOUNDED BELOW.
; IT CAN SOLVE PROBLEMS HAVING ANY NUMBER OF VARIABLES, BUT IT IS
; ESPECIALLY USEFUL WHEN THE NUMBER OF VARIABLES (N) IS LARGE.
;
; SUBROUTINE PARAMETERS:
;
; IERROR - (INTEGER) ERROR CODE
; ( 0 => NORMAL RETURN
; ( 2 => MORE THAN MAXFUN EVALUATIONS
; ( 3 => LINE SEARCH FAILED TO FIND LOWER
; ( POINT (MAY NOT BE SERIOUS)
; (-1 => ERROR IN INPUT PARAMETERS
; N - (INTEGER) NUMBER OF VARIABLES
; X - (REAL*8) VECTOR OF LENGTH AT LEAST N; ON INPUT, AN INITIAL
; ESTIMATE OF THE SOLUTION; ON OUTPUT, THE COMPUTED SOLUTION.
; G - (REAL*8) VECTOR OF LENGTH AT LEAST N; ON OUTPUT, THE FINAL
; VALUE OF THE GRADIENT
; F - (REAL*8) ON INPUT, A ROUGH ESTIMATE OF THE VALUE OF THE
; OBJECTIVE FUNCTION AT THE SOLUTION; ON OUTPUT, THE VALUE
; OF THE OBJECTIVE FUNCTION AT THE SOLUTION
; W - (REAL*8) WORK VECTOR OF LENGTH AT LEAST 14*N
; LW - (INTEGER) THE DECLARED DIMENSION OF W
; SFUN - A USER-SPECIFIED SUBROUTINE THAT COMPUTES THE FUNCTION
; AND GRADIENT OF THE OBJECTIVE FUNCTION. IT MUST HAVE
; THE CALLING SEQUENCE
; SUBROUTINE SFUN (N, X, F, G)
; INTEGER N
; DOUBLE PRECISION X(N), G(N), F
; LOW, UP - (REAL*8) VECTORS OF LENGTH AT LEAST N CONTAINING
; THE LOWER AND UPPER BOUNDS ON THE VARIABLES. IF
; THERE ARE NO BOUNDS ON A PARTICULAR VARIABLE, SET
; THE BOUNDS TO -1.D38 AND 1.D38, RESPECTIVELY.
; IPIVOT - (INTEGER) WORK VECTOR OF LENGTH AT LEAST N, USED
; TO RECORD WHICH VARIABLES ARE AT THEIR BOUNDS.
;
; THIS IS AN EASY-TO-USE DRIVER FOR THE MAIN OPTIMIZATION ROUTINE
; LMQNBC. MORE EXPERIENCED USERS WHO WISH TO CUSTOMIZE PERFORMANCE
; OF THIS ALGORITHM SHOULD CALL LMQBC DIRECTLY.
;
;----------------------------------------------------------------------
; THIS ROUTINE SETS UP ALL THE PARAMETERS FOR THE TRUNCATED-NEWTON
; ALGORITHM. THE PARAMETERS ARE:
;
; ETA - SEVERITY OF THE LINESEARCH
; MAXFUN - MAXIMUM ALLOWABLE NUMBER OF FUNCTION EVALUATIONS
; XTOL - DESIRED ACCURACY FOR THE SOLUTION X*
; STEPMX - MAXIMUM ALLOWABLE STEP IN THE LINESEARCH
; ACCRCY - ACCURACY OF COMPUTED FUNCTION VALUES
; MSGLVL - CONTROLS QUANTITY OF PRINTED OUTPUT
; 0 = NONE, 1 = ONE LINE PER MAJOR ITERATION.
; MAXIT - MAXIMUM NUMBER OF INNER ITERATIONS PER STEP
;
function tnmin, fcn, xall, fguess=fguess, functargs=fcnargs, parinfo=parinfo, $
epsrel=epsrel0, epsabs=epsabs0, fastnorm=fastnorm, $
nfev=nfev, maxiter=maxiter0, maxnfev=maxfun0, maximize=fmax, $
errmsg=errmsg, nprint=nprint, status=status, nocatch=nocatch, $
iterproc=iterproc, iterargs=iterargs, niter=niter,quiet=quiet,$
autoderivative=autoderiv, iterderiv=iterderiv, bestmin=f
if n_elements(nprint) EQ 0 then nprint = 1
if n_elements(iterproc) EQ 0 then iterproc = 'TNMIN_DEFITER'
if n_elements(autoderiv) EQ 0 then autoderiv = 0
if n_elements(msglvl) EQ 0 then msglvl = 0
if n_params() EQ 0 then begin
message, "USAGE: PARMS = TNMIN('MYFUNCT', START_PARAMS, ... )", /info
return, !values.d_nan
endif
iterd = keyword_set(iterderiv)
maximize = keyword_set(fmax)
status = 0L
nfev = 0L
errmsg = ''
catch_msg = 'in TNMIN'
common tnmin_config, tnconfig
tnconfig = {fastnorm: keyword_set(fastnorm), proc: 0, nfev: 0L, $
autoderiv: keyword_set(autoderiv), max: maximize}
;; Handle error conditions gracefully
if NOT keyword_set(nocatch) then begin
catch, catcherror
if catcherror NE 0 then begin
catch, /cancel
err_string = ''+!error_state.msg
message, /cont, 'Error detected while '+catch_msg+':'
message, /cont, err_string
message, /cont, 'Error condition detected. Returning to MAIN level.'
if errmsg EQ '' then $
errmsg = 'Error detected while '+catch_msg+': '+err_string
if status EQ 0 then status = -18
return, !values.d_nan
endif
endif
;; Parinfo:
;; --------------- STARTING/CONFIG INFO (passed in to routine, not changed)
;; .value - starting value for parameter
;; .fixed - parameter is fixed
;; .limited - a two-element array, if parameter is bounded on
;; lower/upper side
;; .limits - a two-element array, lower/upper parameter bounds, if
;; limited vale is set
;; .step - step size in Jacobian calc, if greater than zero
catch_msg = 'parsing input parameters'
;; Parameters can either be stored in parinfo, or x. Parinfo takes
;; precedence if it exists.
if n_elements(xall) EQ 0 AND n_elements(parinfo) EQ 0 then begin
errmsg = 'ERROR: must pass parameters in X or PARINFO'
goto, TERMINATE
endif
;; Be sure that PARINFO is of the right type
if n_elements(parinfo) GT 0 then begin
parinfo_size = size(parinfo)
if parinfo_size(parinfo_size(0)+1) NE 8 then begin
errmsg = 'ERROR: PARINFO must be a structure.'
goto, TERMINATE
endif
if n_elements(xall) GT 0 AND n_elements(xall) NE n_elements(parinfo) $
then begin
errmsg = 'ERROR: number of elements in PARINFO and X must agree'
goto, TERMINATE
endif
endif
;; If the parameters were not specified at the command line, then
;; extract them from PARINFO
if n_elements(xall) EQ 0 then begin
tnmin_parinfo, parinfo, tagnames, 'VALUE', xall, status=stx
if stx EQ 0 then begin
errmsg = 'ERROR: either X or PARINFO(*).VALUE must be supplied.'
goto, TERMINATE
endif
sz = size(xall)
;; Convert to double if parameters are not float or double
if sz(sz(0)+1) NE 4 AND sz(sz(0)+1) NE 5 then $
xall = double(xall)
endif
npar = n_elements(xall)
zero = xall(0) * 0.
one = zero + 1
ten = zero + 10
twothird = (zero+2)/(zero+3)
quarter = zero + 0.25
half = zero + 0.5
;; Extract machine parameters
sz = size(xall)
tp = sz(sz(0)+1)
if tp NE 4 AND tp NE 5 then begin
if NOT keyword_set(quiet) then begin
message, 'WARNING: input parameters must be at least FLOAT', /info
message, ' (converting parameters to FLOAT)', /info
endif
xall = float(xall)
sz = size(xall)
endif
isdouble = (sz(sz(0)+1) EQ 5)
common tnmin_machar, machvals
tnmin_setmachar, double=isdouble
MCHPR1 = machvals.machep
;; TIED parameters?
tnmin_parinfo, parinfo, tagnames, 'TIED', ptied, default='', n=npar
ptied = strtrim(ptied, 2)
wh = where(ptied NE '', qanytied)
qanytied = qanytied GT 0
tnconfig = create_struct(tnconfig, 'QANYTIED', qanytied, 'PTIED', ptied)
;; FIXED parameters ?
tnmin_parinfo, parinfo, tagnames, 'FIXED', pfixed, default=0, n=npar
pfixed = pfixed EQ 1
pfixed = pfixed OR (ptied NE '') ;; Tied parameters are also effectively fixed
;; Finite differencing step, absolute and relative, and sidedness of derivative
tnmin_parinfo, parinfo, tagnames, 'STEP', step, default=zero, n=npar
tnmin_parinfo, parinfo, tagnames, 'RELSTEP', dstep, default=zero, n=npar
tnmin_parinfo, parinfo, tagnames, 'TNSIDE', dside, default=2, n=npar
;; Maximum and minimum steps allowed to be taken in one iteration
tnmin_parinfo, parinfo, tagnames, 'TNMAXSTEP', maxstep, default=zero, n=npar
tnmin_parinfo, parinfo, tagnames, 'TNMINSTEP', minstep, default=zero, n=npar
qmin = minstep * 0 ;; Disable minstep for now
qmax = maxstep NE 0
wh = where(qmin AND qmax AND maxstep LT minstep, ct)
if ct GT 0 then begin
errmsg = 'ERROR: TNMINSTEP is greater than TNMAXSTEP'
goto, TERMINATE
endif
wh = where(qmin AND qmax, ct)
qminmax = ct GT 0
;; Finish up the free parameters
ifree = where(pfixed NE 1, ct)
if ct EQ 0 then begin
errmsg = 'ERROR: no free parameters'
goto, TERMINATE
endif
;; Compose only VARYING parameters
xnew = xall ;; xnew is the set of parameters to be returned
x = xnew(ifree) ;; x is the set of free parameters
;; LIMITED parameters ?
tnmin_parinfo, parinfo, tagnames, 'LIMITED', limited, status=st1
tnmin_parinfo, parinfo, tagnames, 'LIMITS', limits, status=st2
if st1 EQ 1 AND st2 EQ 1 then begin
;; Error checking on limits in parinfo
wh = where((limited[0,*] AND xall LT limits[0,*]) OR $
(limited[1,*] AND xall GT limits[1,*]), ct)
if ct GT 0 then begin
errmsg = 'ERROR: parameters are not within PARINFO limits'
goto, TERMINATE
endif
wh = where(limited[0,*] AND limited[1,*] AND $
limits[0,*] GE limits[1,*] AND pfixed EQ 0, ct)
if ct GT 0 then begin
errmsg = 'ERROR: PARINFO parameter limits are not consistent'
goto, TERMINATE
endif
;; Transfer structure values to local variables
qulim = limited[1, ifree]
ulim = limits [1, ifree]
qllim = limited[0, ifree]
llim = limits [0, ifree]
wh = where(qulim OR qllim, ct)
if ct GT 0 then qanylim = 1 else qanylim = 0
endif else begin
;; Fill in local variables with dummy values
qulim = lonarr(n_elements(ifree))
ulim = x * 0.
qllim = qulim
llim = x * 0.
qanylim = 0
endelse
tnconfig = create_struct(tnconfig, $
'PFIXED', pfixed, 'IFREE', ifree, $
'STEP', step, 'DSTEP', dstep, 'DSIDE', dside, $
'ULIMITED', qulim, 'ULIMIT', ulim)
common tnmin_fcnargs, tnfcnargs
tnfcnargs = 0 & dummy = temporary(tnfcnargs)
if n_elements(fcnargs) GT 0 then tnfcnargs = fcnargs
;; SET UP CUSTOMIZING PARAMETERS
;; ETA - SEVERITY OF THE LINESEARCH
;; MAXFUN - MAXIMUM ALLOWABLE NUMBER OF FUNCTION EVALUATIONS
;; XTOL - DESIRED ACCURACY FOR THE SOLUTION X*
;; STEPMX - MAXIMUM ALLOWABLE STEP IN THE LINESEARCH
;; ACCRCY - ACCURACY OF COMPUTED FUNCTION VALUES
;; MSGLVL - DETERMINES QUANTITY OF PRINTED OUTPUT
;; 0 = NONE, 1 = ONE LINE PER MAJOR ITERATION.
;; MAXIT - MAXIMUM NUMBER OF INNER ITERATIONS PER STEP
n = n_elements(x)
if n_elements(maxit) EQ 0 then begin
maxit = (n/2) < 50 > 2 ;; XXX diff than TN.F
endif
if n_elements(maxfun0) EQ 0 then $
maxfun = 0L $
else $
maxfun = floor(maxfun0(0)) > 1
; maxfun = 150L*n
; if keyword_set(autoderiv) then $
; maxfun = maxfun*(1L + round(total(abs(dside)> 1 < 2)))
eta = zero + 0.25
stepmx = zero + 10
if n_elements(maxiter0) EQ 0 then $
maxiter = 200L $
else $
maxiter = floor(maxiter0(0)) > 1
g = replicate(x(0)* 0., n)
;; call minimizer
;
; THIS ROUTINE IS A BOUNDS-CONSTRAINED TRUNCATED-NEWTON METHOD.
; THE TRUNCATED-NEWTON METHOD IS PRECONDITIONED BY A LIMITED-MEMORY
; QUASI-NEWTON METHOD (THIS PRECONDITIONING STRATEGY IS DEVELOPED
; IN THIS ROUTINE) WITH A FURTHER DIAGONAL SCALING (SEE ROUTINE NDIA3).
; FOR FURTHER DETAILS ON THE PARAMETERS, SEE ROUTINE TNBC.
;
;
; initialize variables
;
common tnmin_work, lsk, lyk, ldiagb, lsr, lyr
; I/O I/O I/O I/O I/O
lsk = 0 & lyk = 0 & ldiagb = 0 & lsr = 0 & lyr = 0
zero = x(0)* 0.
one = zero + 1
if n_elements(fguess) EQ 0 then fguess = one
if maximize then f = -fguess else f = fguess
conv = 0 & lreset = 0 & upd1 = 0 & newcon = 0
gsk = zero & yksk = zero & gtp = zero & gtpnew = zero & yrsr = zero
upd1 = 1
ireset = 0L
nmodif = 0L
nlincg = 0L
fstop = f
conv = 0
nm1 = n - 1
;; From CHKUCP
;
; CHECKS PARAMETERS AND SETS CONSTANTS WHICH ARE COMMON TO BOTH
; DERIVATIVE AND NON-DERIVATIVE ALGORITHMS
;
EPSMCH = MCHPR1
SMALL = EPSMCH*EPSMCH
TINY = SMALL
NWHY = -1L
;
; SET CONSTANTS FOR LATER
;
;; Some of these constants have been moved around for clarity (!)
if n_elements(epsrel0) EQ 0 then epsrel = 100*MCHPR1 $
else epsrel = epsrel0(0)+0.
if n_elements(epsabs0) EQ 0 then epsabs = zero $
else epsabs = abs(epsabs0(0))+0.
ACCRCY = epsrel
XTOL = sqrt(ACCRCY)
RTEPS = SQRT(EPSMCH)
RTOL = XTOL
IF (ABS(RTOL) LT ACCRCY) THEN RTOL = 10. *RTEPS
FTOL2 = 0
FTOL1 = RTOL^2 + EPSMCH ;; For func chg convergence test (U1a)
if epsabs NE 0 then $
FTOL2 = EPSABS + EPSMCH ;; For absolute func convergence test (U1b)
PTOL = RTOL + RTEPS ;; For parm chg convergence test (U2)
GTOL1 = ACCRCY^TWOTHIRD ;; For gradient convergence test (U3, squared)
GTOL2 = (1D-2*XTOL)^2 ;; For gradient convergence test (U4, squared)
;
; CHECK FOR ERRORS IN THE INPUT PARAMETERS
;
IF (ETA LT 0.D0 OR STEPMX LT RTOL) THEN BEGIN
errmsg = 'ERROR: input keywords are inconsistent'
goto, TERMINATE
endif
;; Check input parameters for errors
if (n LE 0) OR (xtol LE 0) OR (maxit LE 0) then begin
errmsg = 'ERROR: input keywords are inconsistent'
goto, TERMINATE
endif
NWHY = 0L
XNORM = TNMIN_ENORM(X)
ALPHA = zero
TEST = zero
; From SETUCR
;
; CHECK INPUT PARAMETERS, COMPUTE THE INITIAL FUNCTION VALUE, SET
; CONSTANTS FOR THE SUBSEQUENT MINIMIZATION
;
fm = f
;
; COMPUTE THE INITIAL FUNCTION VALUE
;
catch_msg = 'calling TNMIN_CALL'
fnew = tnmin_call(fcn, x, g, fullparam_=xnew)
;
; SET CONSTANTS FOR LATER
;
NITER = 0L
OLDF = FNEW
GTG = TOTAL(G*G)
common tnmin_error, tnerr
if nprint GT 0 AND iterproc NE '' then begin
iflag = 0L
if (niter-1) MOD nprint EQ 0 then begin
catch_msg = 'calling '+iterproc
tnerr = 0
call_procedure, iterproc, fcn, xnew, niter, fnew, $
FUNCTARGS=fcnargs, parinfo=parinfo, quiet=quiet, $
dprint=iterd, deriv=g, pfixed=pfixed, maximize=maximize, $
_EXTRA=iterargs
iflag = tnerr
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by "'+iterproc+'"'
nwhy = 4L
goto, CLEANUP
endif
endif
endif
fold = fnew
flast = fnew
; From LMQNBC
;
; TEST THE LAGRANGE MULTIPLIERS TO SEE IF THEY ARE NON-NEGATIVE.
; BECAUSE THE CONSTRAINTS ARE ONLY LOWER BOUNDS, THE COMPONENTS
; OF THE GRADIENT CORRESPONDING TO THE ACTIVE CONSTRAINTS ARE THE
; LAGRANGE MULTIPLIERS. AFTERWORDS, THE PROJECTED GRADIENT IS FORMED.
;
catch_msg = 'zeroing derivatives of pegged parameters'
lmask = qllim AND (x EQ llim) AND (g GE 0)
umask = qulim AND (x EQ ulim) AND (g LE 0)
whlpeg = where(lmask, nlpeg)
whupeg = where(umask, nupeg)
tnmin_fix, whlpeg, whupeg, g
GTG = TOTAL(G*G)
;
; CHECK IF THE INITIAL POINT IS A LOCAL MINIMUM.
;
FTEST = ONE + ABS(FNEW)
IF (GTG LT GTOL2*FTEST*FTEST) THEN GOTO, CLEANUP
;
; SET INITIAL VALUES TO OTHER PARAMETERS
;
ICYCLE = NM1
GNORM = SQRT(GTG)
DIFNEW = ZERO
EPSRED = HALF/TEN
FKEEP = FNEW
;
; SET THE DIAGONAL OF THE APPROXIMATE HESSIAN TO UNITY.
;
LDIAGB = replicate(one, n)
;
; ..................START OF MAIN ITERATIVE LOOP..........
;
; COMPUTE THE NEW SEARCH DIRECTION
;
catch_msg = 'calling TNMIN_MODLNP'
tnmin_modlnp, lpk, lgv, lz1, lv, ldiagb, lemat, $
x, g, lzk, n, niter, maxit, nmodif, nlincg, upd1, yksk, $
gsk, yrsr, lreset, fcn, whlpeg, whupeg, accrcy, gtpnew, gnorm, xnorm, $
xnew
ITER_LOOP:
catch_msg = 'computing step length'
LOLDG = G
PNORM = tnmin_enorm(LPK)
OLDF = FNEW
OLDGTP = GTPNEW
;
; PREPARE TO COMPUTE THE STEP LENGTH
;
PE = PNORM + EPSMCH
;
; COMPUTE THE ABSOLUTE AND RELATIVE TOLERANCES FOR THE LINEAR SEARCH
;
RELTOL = RTEPS*(XNORM + ONE)/PE
ABSTOL = - EPSMCH*FTEST/(OLDGTP - EPSMCH)
;
; COMPUTE THE SMALLEST ALLOWABLE SPACING BETWEEN POINTS IN
; THE LINEAR SEARCH
;
TNYTOL = EPSMCH*(XNORM + ONE)/PE
;; From STPMAX
SPE = STEPMX/PE
mmask = (NOT lmask AND NOT umask)
wh = where(mmask AND (lpk GT 0) AND qulim AND (ulim - x LT spe*lpk), ct)
if ct GT 0 then begin
spe = min( (ulim(wh)-x(wh)) / lpk(wh))
endif
wh = where(mmask AND (lpk LT 0) AND qllim AND (llim - x GT spe*lpk), ct)
if ct GT 0 then begin
spe = min( (llim(wh)-x(wh)) / lpk(wh))
endif
;; From LMQNBC
;
; SET THE INITIAL STEP LENGTH.
;
ALPHA = TNMIN_STEP1(FNEW,FM,OLDGTP,SPE, epsmch)
;
; PERFORM THE LINEAR SEARCH
;
catch_msg = 'performing linear search'
tnmin_linder, n, fcn, small, epsmch, reltol, abstol, tnytol, $
eta, zero, spe, lpk, oldgtp, x, fnew, alpha, g, nwhy, xnew
NEWCON = 0
IF (ABS(ALPHA-SPE) GT 1.D1*EPSMCH) EQ 0 THEN BEGIN
NEWCON = 1
NWHY = 0L
;; From MODZ
mmask = (NOT lmask AND NOT umask)
wh = where(mmask AND (lpk LT 0) AND qllim $
AND (x-llim LE 10*epsmch*(abs(llim)+one)),ct)
if ct GT 0 then begin
flast = fnew
lmask(wh) = 1
x(wh) = llim(wh)
whlpeg = where(lmask, nlpeg)
endif
wh = where(mmask AND (lpk GT 0) AND qulim $
AND (ulim-x LE 10*epsmch*(abs(ulim)+one)),ct)
if ct GT 0 then begin
flast = fnew
umask(wh) = 1
x(wh) = ulim(wh)
whupeg = where(umask, nupeg)
endif
xnew(ifree) = x
;; From LMQNBC
FLAST = FNEW
endif
FOLD = FNEW
NITER = NITER + 1
;
; IF REQUIRED, PRINT THE DETAILS OF THIS ITERATION
;
if nprint GT 0 AND iterproc NE '' then begin
iflag = 0L
xx = xnew
xx(ifree) = x
if (niter-1) MOD nprint EQ 0 then begin
catch_msg = 'calling '+iterproc
tnerr = 0
call_procedure, iterproc, fcn, xx, niter, fnew, $
FUNCTARGS=fcnargs, parinfo=parinfo, quiet=quiet, $
dprint=iterd, deriv=g, pfixed=pfixed, maximize=maximize, $
_EXTRA=iterargs
iflag = tnerr
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by "'+iterproc+'"'
nwhy = 4L
goto, CLEANUP
endif
endif
endif
catch_msg = 'testing for convergence'
IF (NWHY LT 0) THEN BEGIN
NWHY = -2L
goto, CLEANUP
ENDIF
IF (NWHY NE 0 AND NWHY NE 2) THEN BEGIN
;; THE LINEAR SEARCH HAS FAILED TO FIND A LOWER POINT
NWHY = 3L
goto, CLEANUP
endif
if nwhy GT 1 then begin
fnew = tnmin_call(fcn, x, g, fullparam_=xnew)
endif
wh = where(finite(x) EQ 0, ct)
if ct GT 0 OR finite(fnew) EQ 0 then begin
nwhy = -3L
goto, CLEANUP
endif
;
; TERMINATE IF MORE THAN MAXFUN EVALUATIONS HAVE BEEN MADE
;
NWHY = 2L
if maxfun GT 0 AND tnconfig.nfev GT maxfun then goto, CLEANUP
if niter GT maxiter then goto, CLEANUP
NWHY = 0L
;
; SET UP PARAMETERS USED IN CONVERGENCE AND RESETTING TESTS
;
DIFOLD = DIFNEW
DIFNEW = OLDF - FNEW
;
; IF THIS IS THE FIRST ITERATION OF A NEW CYCLE, COMPUTE THE
; PERCENTAGE REDUCTION FACTOR FOR THE RESETTING TEST.
;
IF (ICYCLE EQ 1) THEN BEGIN
IF (DIFNEW GT 2.D0*DIFOLD) THEN EPSRED = EPSRED + EPSRED
IF (DIFNEW LT 5.0D-1*DIFOLD) THEN EPSRED = HALF*EPSRED
ENDIF
LGV = G
tnmin_fix, whlpeg, whupeg, lgv
GTG = TOTAL(LGV*LGV)
GNORM = SQRT(GTG)
FTEST = ONE + ABS(FNEW)
XNORM = tnmin_enorm(X)
;; From CNVTST
LTEST = (FLAST - FNEW) LE (-5.D-1*GTPNEW)
wh = where((lmask AND g LT 0) OR (umask AND g GT 0), ct)
if ct GT 0 then begin
conv = 0
if NOT ltest then begin
mx = max(abs(g(wh)), wh2)
lmask(wh(wh2)) = 0 & umask(wh(wh2)) = 0
FLAST = FNEW
goto, CNVTST_DONE
endif
endif
;; Gill Murray and Wright tests are listed to the right.
;; Modifications due to absolute function value test are done here.
fconv = abs(DIFNEW) LT FTOL1*FTEST ;; U1a
if ftol2 EQ 0 then begin
pconv = ALPHA*PNORM LT PTOL*(ONE + XNORM) ;; U2
gconv = GTG LT GTOL1*FTEST*FTEST ;; U3
endif else begin
;; Absolute tolerance implies a loser constraint on parameters
fconv = fconv OR (abs(difnew) LT ftol2) ;; U1b
acc2 = (FTOL2/FTEST + EPSMCH)
pconv = ALPHA*PNORM LT SQRT(acc2)*(ONE + XNORM) ;; U2
gconv = GTG LT (acc2^twothird)*FTEST*FTEST ;; U3
endelse
IF ((PCONV AND FCONV AND GCONV) $ ;; U1 + U2 + U3
OR (GTG LT GTOL2*FTEST*FTEST)) THEN BEGIN ;; U4
CONV = 1
ENDIF ELSE BEGIN
;; Convergence failed
CONV = 0
ENDELSE
;
; FOR DETAILS, SEE GILL, MURRAY, AND WRIGHT (1981, P. 308) AND
; FLETCHER (1981, P. 116). THE MULTIPLIER TESTS (HERE, TESTING
; THE SIGN OF THE COMPONENTS OF THE GRADIENT) MAY STILL NEED TO
; MODIFIED TO INCORPORATE TOLERANCES FOR ZERO.
;
CNVTST_DONE:
;; From LMQNBC
IF (CONV) THEN GOTO, CLEANUP
tnmin_fix, whlpeg, whupeg, g
;
; COMPUTE THE CHANGE IN THE ITERATES AND THE CORRESPONDING CHANGE
; IN THE GRADIENTS
;
IF NEWCON EQ 0 THEN BEGIN
LYK = G - LOLDG
LSK = ALPHA*LPK
;
; SET UP PARAMETERS USED IN UPDATING THE PRECONDITIONING STRATEGY.
;
YKSK = TOTAL(LYK*LSK)
LRESET = 0
IF (ICYCLE EQ NM1 OR DIFNEW LT EPSRED*(FKEEP-FNEW)) THEN LRESET = 1
IF (LRESET EQ 0) THEN BEGIN
YRSR = TOTAL(LYR*LSR)
IF (YRSR LE ZERO) THEN LRESET = 1
ENDIF
UPD1 = 0
ENDIF
;
; COMPUTE THE NEW SEARCH DIRECTION
;
;; TNMIN_90:
catch_msg = 'calling TNMIN_MODLNP'
tnmin_modlnp, lpk, lgv, lz1, lv, ldiagb, lemat, $
x, g, lzk, n, niter, maxit, nmodif, nlincg, upd1, yksk, $
gsk, yrsr, lreset, fcn, whlpeg, whupeg, accrcy, gtpnew, gnorm, xnorm, $
xnew
IF (NEWCON) THEN GOTO, ITER_LOOP
; IF (NOT LRESET) OR ICYCLE EQ 1 AND n_elements(LSR) GT 0 THEN BEGIN ;; For testing
IF (LRESET EQ 0) THEN BEGIN
;
; COMPUTE THE ACCUMULATED STEP AND ITS CORRESPONDING
; GRADIENT DIFFERENCE.
;
LSR = LSR + LSK
LYR = LYR + LYK
ICYCLE = ICYCLE + 1
goto, ITER_LOOP
ENDIF
;
; RESET
;
;; TNMIN_110:
IRESET = IRESET + 1
;
; INITIALIZE THE SUM OF ALL THE CHANGES IN X.
;
LSR = LSK
LYR = LYK
FKEEP = FNEW
ICYCLE = 1L
goto, ITER_LOOP
;
; ...............END OF MAIN ITERATION.......................
;
CLEANUP:
nfev = tnconfig.nfev
tnfcnargs = 0
catch, /cancel
case NWHY of
-3: begin
;; INDEFINITE VALUE
status = -16L
if errmsg EQ '' then $
errmsg = ('ERROR: parameter or function value(s) have become '+$
'infinite; check model function for over- '+$
'and underflow')
return, !values.d_nan
end
-2: begin
;; INTERNAL ERROR IN LINE SEARCH
status = -18L
if errmsg EQ '' then $
errmsg = 'ERROR: Fatal error during line search'
return, !values.d_nan
end
-1: begin
TERMINATE:
;; FATAL TERMINATION
status = 0L
if errmsg EQ '' then errmsg = 'ERROR: Invalid inputs'
return, !values.d_nan
end
0: begin
CONVERGED:
status = 1L
end
2: begin
;; MAXIMUM NUMBER of FUNC EVALS or ITERATIONS REACHED
if maxfun GT 0 AND nfev GT maxfun then begin
status = -17L
if errmsg EQ '' then $
errmsg = ('WARNING: no convergence within maximum '+$
'number of function calls')
endif else begin
status = 5L
if errmsg EQ '' then $
errmsg = ('WARNING: no convergence within maximum '+$
'number of iterations')
endelse
FNEW = OLDF
end
3: begin
status = -18L
if errmsg EQ '' then errmsg = 'ERROR: Line search failed to converge'
end
4: begin
;; ABNORMAL TERMINATION BY USER ROUTINE
status = iflag
end
endcase
;; Successful return
F = FNEW
xnew(ifree) = x
if keyword_set(tnconfig.qanytied) then tnmin_tie, xnew, tnconfig.ptied
return, xnew
end