cubeterp.pro
7.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
;+
; NAME:
; CUBETERP
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Cubic spline interpolation with known derivatives
;
; MAJOR TOPICS:
; Interpolation
;
; CALLING SEQUENCE:
; CUBETERP, XTAB, YTAB, YPTAB, XINT, YINT, YPINT=, YPPINT=, EXTRAP_ORDER=
;
; DESCRIPTION:
;
; CUBETERP performs cubic spline interpolation of a function. This
; routine is different from the many other spline interpolation
; functions for IDL in that it allows you to choose the slope of the
; spline at each control point. I.e. it is not forced to be a
; "natural" spline.
;
; The user provides a tabulated set of data, whose (X,Y) positions
; are (XTAB, YTAB), and whose derivatives are YPTAB. The user also
; provides a set of desired "X" abcissae for which interpolants are
; requested. The interpolated spline values are returned in YINT.
; The interpolated curve will smoothly pass through the control
; points, and have the requested slopes at those points.
;
; The user may also optionally request the first and second
; derivatives of the function with the YPINT and YPPINT keywords.
;
; INPUTS:
;
; XTAB - tabulated X values. Must be sorted in increasing order.
;
; YTAB - tabulated Y values.
;
; YPTAB - tabulated derivatives ( = dY/dX, evaluated at XTAB).
;
; XINT - X values of desired interpolants.
;
; OUTPUTS:
;
; YINT - Y values of desired interpolants.
;
; OPTIONAL KEYWORDS:
;
; YPINT - upon return, the slope (first derivative) at the
; interpolated positions.
;
; YPPINT - upon return, the second derivative at the interpolated
; positions.
;
; EXTRAP_ORDER - technique used to extrapolate beyond the tabulated
; values. Allowed values:
; -1 - extrapolated points are set to NaN (not a number)
; 0 - constant extrapolation, equal to the value
; at the nearest tabulated point
; 1 - linear extrapolation, based on slope at
; nearest tabulated value
; 2 - quadratic extrapolation, based on slope and
; second derivative at nearest tabulated value
; 3 - cubic extrapolation.
; DEFAULT: 2 (quadratic extrapolation)
;
;
; EXAMPLE:
;
; ;; Set up some fake data
; xtab = [0D,2,5,10]
; ytab = [2D,4,-3,-5]
; yptab = [-1D,0.5,2.3,-4]
;
; ;; Interpolate to a finer grid
; xint = dindgen(1001)/100
; cubeterp, xtab, ytab, yptab, xint, yint
;
; ;; Plot it
; plot, xint, yint
; oplot, xtab, ytab, psym=1, symsize=2
; for i = 0, n_elements(xtab)-1 do $ ;; Also plot slopes
; oplot, xtab(i)+[-0.5,0.5], ytab(i)+[-0.5,0.5]*yptab(i)
;
;
; MODIFICATION HISTORY:
; Written and documented, CM, July 2003
; Added EXTRAP_ORDER = -1 option, CM, 15 May 2005
; Syntax error fix, CM, 07 Mar 2007
; Clarified documentation a bit, CM, 12 Nov 2007
; Small documentation changes, CM, 16 Apr 2009
;
; $Id: cubeterp.pro,v 1.8 2009/05/05 04:59:57 craigm Exp $
;
;-
; Copyright (C) 2003, 2005, 2007, 2009, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
; Cubic interpolation with known slopes
pro cubeterp, xtab, ytab, yptab, xint, yint, $
extrap_order=extr0, $
ypint=ypint, yppint=yppint
ntab = n_elements(xtab)
if n_elements(extr0) EQ 0 then extr = 2 else extr = round(extr0(0))
if n_elements(xtab) EQ 0 OR n_elements(ytab) EQ 0 then begin
message, 'ERROR: XTAB and YTAB must be passed'
endif
if (n_elements(xtab) NE n_elements(ytab) OR $
n_elements(xtab) NE n_elements(yptab)) then begin
message, 'ERROR: Number of elements of XTAB, YTAB and YPTAB must agree'
endif
if n_elements(xint) EQ 0 then begin
message, 'ERROR: XINT must be passed'
endif
;; Locate previous tabulated value
ii = value_locate(xtab, xint)
;; Here we make a safety check, in case the desired point(s) is
;; above or below the interior of the interpolation range. In that
;; case, we will need to extrapolate, based on the next nearest
;; interval.
iis = ii
whll = where(ii LT 0, ctll)
if ctll GT 0 then iis(whll) = iis(whll) + 1
whgg = where(ii GE (ntab-1), ctgg)
if ctgg GT 0 then iis(whgg) = iis(whgg) - 1
;; Distance from interpolated abcissae to previous tabulated abcissa
dx = (xint - xtab(iis))
;; Distance between adjoining tabulated abcissae and ordinates
xs = xtab(iis+1) - xtab(iis)
ys = ytab(iis+1) - ytab(iis)
;; Rescale or pull out quantities of interest
dx = dx/xs ;; Rescale DX
y0 = ytab(iis) ;; No rescaling of Y - start of interval
y1 = ytab(iis+1) ;; No rescaling of Y - end of interval
yp0 = yptab(iis)*xs ;; Rescale tabulated derivatives - start of interval
yp1 = yptab(iis+1)*xs ;; Rescale tabulated derivatives - end of interval
;; Compute polynomial coefficients
a = y0
b = yp0
c = 3*ys - 2*yp0 - yp1
d = yp0 + yp1 - 2*ys
;; Extrapolate only quadratically
if extr EQ 2 then begin
if ctll GT 0 then begin
;; Lower end of extrapolation
d(whll) = 0
endif
if ctgg GT 0 then begin
;; Upper end of extrapolation
dgg = d(whgg)
a(whgg) = a(whgg) + dgg
b(whgg) = b(whgg) - 3*dgg
c(whgg) = c(whgg) + 3*dgg
d(whgg) = 0
endif
endif
;; Extrapolate only linearly
if extr EQ 1 then begin
if ctll GT 0 then begin
;; Lower end of extrapolation
c(whll) = 0
d(whll) = 0
endif
if ctgg GT 0 then begin
;; Upper end of extrapolation
dgg = d(whgg)
cgg = c(whgg)
a(whgg) = a(whgg) - cgg - 2*dgg
b(whgg) = b(whgg) + 2*cgg + 3*dgg
c(whgg) = 0
d(whgg) = 0
endif
endif
if extr EQ 0 then begin
if ctll GT 0 then begin
;; Lower end of extrapolation
b(whll) = 0
c(whll) = 0
d(whll) = 0
endif
if ctgg GT 0 then begin
;; Upper end of extrapolation
a(whgg) = a(whgg) + b(whgg) + c(whgg) + d(whgg)
b(whgg) = 0
c(whgg) = 0
d(whgg) = 0
endif
endif
if extr EQ -1 then begin
sz = size(y0) & tp = sz(sz(0)+1)
if sz EQ 4 OR sz EQ 6 then nanv = !values.f_nan $
else nanv = !values.d_nan
if ctll GT 0 then begin
;; Lower end of extrapolation
a(whll) = nanv
endif
if ctgg GT 0 then begin
;; Upper end of extrapolation
a(whgg) = nanv
endif
endif
yint = a + dx*(b + dx*(c + dx*d))
;; Compute derivatives if requested
if arg_present(ypint) then ypint = (b + dx*(2*c + dx*3*d))/xs
if arg_present(yppint) then yppint = (2*c + 6*d*dx)/xs^2
return
end