dustem_mpfit.pro
144 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
;+
; NAME:
; MPFIT
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Perform Levenberg-Marquardt least-squares minimization (MINPACK-1)
;
; MAJOR TOPICS:
; Curve and Surface Fitting
;
; CALLING SEQUENCE:
; parms = MPFIT(MYFUNCT, start_parms, FUNCTARGS=fcnargs, NFEV=nfev,
; MAXITER=maxiter, ERRMSG=errmsg, NPRINT=nprint, QUIET=quiet,
; FTOL=ftol, XTOL=xtol, GTOL=gtol, NITER=niter,
; STATUS=status, ITERPROC=iterproc, ITERARGS=iterargs,
; COVAR=covar, PERROR=perror, BESTNORM=bestnorm,
; PARINFO=parinfo)
;
; DESCRIPTION:
;
; MPFIT uses the Levenberg-Marquardt technique to solve the
; least-squares problem. In its typical use, MPFIT will be used to
; fit a user-supplied function (the "model") to user-supplied data
; points (the "data") by adjusting a set of parameters. MPFIT is
; based upon MINPACK-1 (LMDIF.F) by More' and collaborators.
;
; For example, a researcher may think that a set of observed data
; points is best modelled with a Gaussian curve. A Gaussian curve is
; parameterized by its mean, standard deviation and normalization.
; MPFIT will, within certain constraints, find the set of parameters
; which best fits the data. The fit is "best" in the least-squares
; sense; that is, the sum of the weighted squared differences between
; the model and data is minimized.
;
; The Levenberg-Marquardt technique is a particular strategy for
; iteratively searching for the best fit. This particular
; implementation is drawn from MINPACK-1 (see NETLIB), and seems to
; be more robust than routines provided with IDL. This version
; allows upper and lower bounding constraints to be placed on each
; parameter, or the parameter can be held fixed.
;
; The IDL user-supplied function should return an array of weighted
; deviations between model and data. In a typical scientific problem
; the residuals should be weighted so that each deviate has a
; gaussian sigma of 1.0. If X represents values of the independent
; variable, Y represents a measurement for each value of X, and ERR
; represents the error in the measurements, then the deviates could
; be calculated as follows:
;
; DEVIATES = (Y - F(X)) / ERR
;
; where F is the function representing the model. You are
; recommended to use the convenience functions MPFITFUN and
; MPFITEXPR, which are driver functions that calculate the deviates
; for you. If ERR are the 1-sigma uncertainties in Y, then
;
; TOTAL( DEVIATES^2 )
;
; will be the total chi-squared value. MPFIT will minimize the
; chi-square value. The values of X, Y and ERR are passed through
; MPFIT to the user-supplied function via the FUNCTARGS keyword.
;
; Simple constraints can be placed on parameter values by using the
; PARINFO keyword to MPFIT. See below for a description of this
; keyword.
;
; MPFIT does not perform more general optimization tasks. See TNMIN
; instead. MPFIT is customized, based on MINPACK-1, to the
; least-squares minimization problem.
;
; USER FUNCTION
;
; The user must define a function which returns the appropriate
; values as specified above. The function should return the weighted
; deviations between the model and the data. For applications which
; use finite-difference derivatives -- the default -- the user
; function should be declared in the following way:
;
; FUNCTION MYFUNCT, p, X=x, Y=y, ERR=err
; ; Parameter values are passed in "p"
; model = F(x, p)
; return, (y-model)/err
; END
;
; See below for applications with explicit derivatives.
;
; The keyword parameters X, Y, and ERR in the example above are
; suggestive but not required. Any parameters can be passed to
; MYFUNCT by using the FUNCTARGS keyword to MPFIT. Use MPFITFUN and
; MPFITEXPR if you need ideas on how to do that. The function *must*
; accept a parameter list, P.
;
; In general there are no restrictions on the number of dimensions in
; X, Y or ERR. However the deviates *must* be returned in a
; one-dimensional array, and must have the same type (float or
; double) as the input arrays.
;
; See below for error reporting mechanisms.
;
;
; CHECKING STATUS AND HANNDLING ERRORS
;
; Upon return, MPFIT will report the status of the fitting operation
; in the STATUS and ERRMSG keywords. The STATUS keyword will contain
; a numerical code which indicates the success or failure status.
; Generally speaking, any value 1 or greater indicates success, while
; a value of 0 or less indicates a possible failure. The ERRMSG
; keyword will contain a text string which should describe the error
; condition more fully.
;
; By default, MPFIT will trap fatal errors and report them to the
; caller gracefully. However, during the debugging process, it is
; often useful to halt execution where the error occurred. When you
; set the NOCATCH keyword, MPFIT will not do any special error
; trapping, and execution will stop whereever the error occurred.
;
; MPFIT does not explicitly change the !ERROR_STATE variable
; (although it may be changed implicitly if MPFIT calls MESSAGE). It
; is the caller's responsibility to call MESSAGE, /RESET to ensure
; that the error state is initialized before calling MPFIT.
;
; User functions may also indicate non-fatal error conditions using
; the ERROR_CODE common block variable, as described below under the
; MPFIT_ERROR common block definition (by setting ERROR_CODE to a
; number between -15 and -1). When the user function sets an error
; condition via ERROR_CODE, MPFIT will gracefully exit immediately
; and report this condition to the caller. The ERROR_CODE is
; returned in the STATUS keyword in that case.
;
;
; EXPLICIT DERIVATIVES
;
; In the search for the best-fit solution, MPFIT by default
; calculates derivatives numerically via a finite difference
; approximation. The user-supplied function need not calculate the
; derivatives explicitly. However, the user function *may* calculate
; the derivatives if desired, but only if the model function is
; declared with an additional position parameter, DP, as described
; below. If the user function does not accept this additional
; parameter, MPFIT will report an error. As a practical matter, it
; is often sufficient and even faster to allow MPFIT to calculate the
; derivatives numerically, but this option is available for users who
; wish more control over the fitting process.
;
; There are two ways to enable explicit derivatives. First, the user
; can set the keyword AUTODERIVATIVE=0, which is a global switch for
; all parameters. In this case, MPFIT will request explicit
; derivatives for every free parameter.
;
; Second, the user may request explicit derivatives for specifically
; selected parameters using the PARINFO.MPSIDE=3 (see "CONSTRAINING
; PARAMETER VALUES WITH THE PARINFO KEYWORD" below). In this
; strategy, the user picks and chooses which parameter derivatives
; are computed explicitly versus numerically. When PARINFO[i].MPSIDE
; EQ 3, then the ith parameter derivative is computed explicitly.
;
; The keyword setting AUTODERIVATIVE=0 always globally overrides the
; individual values of PARINFO.MPSIDE. Setting AUTODERIVATIVE=0 is
; equivalent to resetting PARINFO.MPSIDE=3 for all parameters.
;
; Even if the user requests explicit derivatives for some or all
; parameters, MPFIT will not always request explicit derivatives on
; every user function call.
;
; EXPLICIT DERIVATIVES - CALLING INTERFACE
;
; When AUTODERIVATIVE=0, the user function is responsible for
; calculating the derivatives of the *residuals* with respect to each
; parameter. The user function should be declared as follows:
;
; ;
; ; MYFUNCT - example user function
; ; P - input parameter values (N-element array)
; ; DP - upon input, an N-vector indicating which parameters
; ; to compute derivatives for;
; ; upon output, the user function must return
; ; an ARRAY(M,N) of derivatives in this keyword
; ; (keywords) - any other keywords specified by FUNCTARGS
; ; RETURNS - residual values
; ;
; FUNCTION MYFUNCT, p, dp, X=x, Y=y, ERR=err
; model = F(x, p) ;; Model function
; resid = (y - model)/err ;; Residual calculation (for example)
;
; if n_params() GT 1 then begin
; ; Create derivative and compute derivative array
; requested = dp ; Save original value of DP
; dp = make_array(n_elements(x), n_elements(p), value=x[0]*0)
;
; ; Compute derivative if requested by caller
; for i = 0, n_elements(p)-1 do if requested(i) NE 0 then $
; dp(*,i) = FGRAD(x, p, i) / err
; endif
;
; return, resid
; END
;
; where FGRAD(x, p, i) is a model function which computes the
; derivative of the model F(x,p) with respect to parameter P(i) at X.
;
; A quirk in the implementation leaves a stray negative sign in the
; definition of DP. The derivative of the *residual* should be
; "-FGRAD(x,p,i) / err" because of how the residual is defined
; ("resid = (data - model) / err"). **HOWEVER** because of the
; implementation quirk, MPFIT expects FGRAD(x,p,i)/err instead,
; i.e. the opposite sign of the gradient of RESID.
;
; Derivatives should be returned in the DP array. DP should be an
; ARRAY(m,n) array, where m is the number of data points and n is the
; number of parameters. -DP[i,j] is the derivative of the ith
; residual with respect to the jth parameter (note the minus sign
; due to the quirk described above).
;
; As noted above, MPFIT may not always request derivatives from the
; user function. In those cases, the parameter DP is not passed.
; Therefore functions can use N_PARAMS() to indicate whether they
; must compute the derivatives or not.
;
; The derivatives with respect to fixed parameters are ignored; zero
; is an appropriate value to insert for those derivatives. Upon
; input to the user function, DP is set to a vector with the same
; length as P, with a value of 1 for a parameter which is free, and a
; value of zero for a parameter which is fixed (and hence no
; derivative needs to be calculated). This input vector may be
; overwritten as needed. In the example above, the original DP
; vector is saved to a variable called REQUESTED, and used as a mask
; to calculate only those derivatives that are required.
;
; If the data is higher than one dimensional, then the *last*
; dimension should be the parameter dimension. Example: fitting a
; 50x50 image, "dp" should be 50x50xNPAR.
;
; EXPLICIT DERIVATIVES - TESTING and DEBUGGING
;
; For reasonably complicated user functions, the calculation of
; explicit derivatives of the correct sign and magnitude can be
; difficult to get right. A simple sign error can cause MPFIT to be
; confused. MPFIT has a derivative debugging mode which will compute
; the derivatives *both* numerically and explicitly, and compare the
; results.
;
; It is expected that during production usage, derivative debugging
; should be disabled for all parameters.
;
; In order to enable derivative debugging mode, set the following
; PARINFO members for the ith parameter.
; PARINFO[i].MPSIDE = 3 ; Enable explicit derivatives
; PARINFO[i].MPDERIV_DEBUG = 1 ; Enable derivative debugging mode
; PARINFO[i].MPDERIV_RELTOL = ?? ; Relative tolerance for comparison
; PARINFO[i].MPDERIV_ABSTOL = ?? ; Absolute tolerance for comparison
; Note that these settings are maintained on a parameter-by-parameter
; basis using PARINFO, so the user can choose which parameters
; derivatives will be tested.
;
; When .MPDERIV_DEBUG is set, then MPFIT first computes the
; derivative explicitly by requesting them from the user function.
; Then, it computes the derivatives numerically via finite
; differencing, and compares the two values. If the difference
; exceeds a tolerance threshold, then the values are printed out to
; alert the user. The tolerance level threshold contains both a
; relative and an absolute component, and is expressed as,
;
; ABS(DERIV_U - DERIV_N) GE (ABSTOL + RELTOL*ABS(DERIV_U))
;
; where DERIV_U and DERIV_N are the derivatives computed explicitly
; and numerically, respectively. Appropriate values
; for most users will be:
;
; PARINFO[i].MPDERIV_RELTOL = 1d-3 ;; Suggested relative tolerance
; PARINFO[i].MPDERIV_ABSTOL = 1d-7 ;; Suggested absolute tolerance
;
; although these thresholds may have to be adjusted for a particular
; problem. When the threshold is exceeded, users can expect to see a
; tabular report like this one:
;
; FJAC DEBUG BEGIN
; # IPNT FUNC DERIV_U DERIV_N DIFF_ABS DIFF_REL
; FJAC PARM 2
; 80 -0.7308 0.04233 0.04233 -5.543E-07 -1.309E-05
; 99 1.370 0.01417 0.01417 -5.518E-07 -3.895E-05
; 118 0.07187 -0.01400 -0.01400 -5.566E-07 3.977E-05
; 137 1.844 -0.04216 -0.04216 -5.589E-07 1.326E-05
; FJAC DEBUG END
;
; The report will be bracketed by FJAC DEBUG BEGIN/END statements.
; Each parameter will be delimited by the statement FJAC PARM n,
; where n is the parameter number. The columns are,
;
; IPNT - data point number (0 ... M-1)
; FUNC - function value at that point
; DERIV_U - explicit derivative value at that point
; DERIV_N - numerical derivative estimate at that point
; DIFF_ABS - absolute difference = (DERIV_U - DERIV_N)
; DIFF_REL - relative difference = (DIFF_ABS)/(DERIV_U)
;
; When prints appear in this report, it is most important to check
; that the derivatives computed in two different ways have the same
; numerical sign and the same order of magnitude, since these are the
; most common programming mistakes.
;
; A line of this form may also appear
;
; # FJAC_MASK = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
;
; This line indicates for which parameters explicit derivatives are
; expected. A list of all-1s indicates all explicit derivatives for
; all parameters are requested from the user function.
;
;
; CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD
;
; The behavior of MPFIT can be modified with respect to each
; parameter to be fitted. A parameter value can be fixed; simple
; boundary constraints can be imposed; limitations on the parameter
; changes can be imposed; properties of the automatic derivative can
; be modified; and parameters can be tied to one another.
;
; These properties are governed by the PARINFO structure, which is
; passed as a keyword parameter to MPFIT.
;
; PARINFO should be an array of structures, one for each parameter.
; Each parameter is associated with one element of the array, in
; numerical order. The structure can have the following entries
; (none are required):
;
; .VALUE - the starting parameter value (but see the START_PARAMS
; parameter for more information).
;
; .FIXED - a boolean value, whether the parameter is to be held
; fixed or not. Fixed parameters are not varied by
; MPFIT, but are passed on to MYFUNCT for evaluation.
;
; .LIMITED - a two-element boolean array. If the first/second
; element is set, then the parameter is bounded on the
; lower/upper side. A parameter can be bounded on both
; sides. Both LIMITED and LIMITS must be given
; together.
;
; .LIMITS - a two-element float or double array. Gives the
; parameter limits on the lower and upper sides,
; respectively. Zero, one or two of these values can be
; set, depending on the values of LIMITED. Both LIMITED
; and LIMITS must be given together.
;
; .PARNAME - a string, giving the name of the parameter. The
; fitting code of MPFIT does not use this tag in any
; way. However, the default ITERPROC will print the
; parameter name if available.
;
; .STEP - the step size to be used in calculating the numerical
; derivatives. If set to zero, then the step size is
; computed automatically. Ignored when AUTODERIVATIVE=0.
; This value is superceded by the RELSTEP value.
;
; .RELSTEP - the *relative* step size to be used in calculating
; the numerical derivatives. This number is the
; fractional size of the step, compared to the
; parameter value. This value supercedes the STEP
; setting. If the parameter is zero, then a default
; step size is chosen.
;
; .MPSIDE - selector for type of derivative calculation. This
; field can take one of five possible values:
;
; 0 - one-sided derivative computed automatically
; 1 - one-sided derivative (f(x+h) - f(x) )/h
; -1 - one-sided derivative (f(x) - f(x-h))/h
; 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h)
; 3 - explicit derivative used for this parameter
;
; In the first four cases, the derivative is approximated
; numerically by finite difference, with step size
; H=STEP, where the STEP parameter is defined above. The
; last case, MPSIDE=3, indicates to allow the user
; function to compute the derivative explicitly (see
; section on "EXPLICIT DERIVATIVES"). AUTODERIVATIVE=0
; overrides this setting for all parameters, and is
; equivalent to MPSIDE=3 for all parameters. For
; MPSIDE=0, the "automatic" one-sided derivative method
; will chose a direction for the finite difference which
; does not violate any constraints. The other methods
; (MPSIDE=-1 or MPSIDE=1) do not perform this check. The
; two-sided method is in principle more precise, but
; requires twice as many function evaluations. Default:
; 0.
;
; .MPDERIV_DEBUG - set this value to 1 to enable debugging of
; user-supplied explicit derivatives (see "TESTING and
; DEBUGGING" section above). In addition, the
; user must enable calculation of explicit derivatives by
; either setting AUTODERIVATIVE=0, or MPSIDE=3 for the
; desired parameters. When this option is enabled, a
; report may be printed to the console, depending on the
; MPDERIV_ABSTOL and MPDERIV_RELTOL settings.
; Default: 0 (no debugging)
;
;
; .MPDERIV_ABSTOL, .MPDERIV_RELTOL - tolerance settings for
; print-out of debugging information, for each parameter
; where debugging is enabled. See "TESTING and
; DEBUGGING" section above for the meanings of these two
; fields.
;
;
; .MPMAXSTEP - the maximum change to be made in the parameter
; value. During the fitting process, the parameter
; will never be changed by more than this value in
; one iteration.
;
; A value of 0 indicates no maximum. Default: 0.
;
; .TIED - a string expression which "ties" the parameter to other
; free or fixed parameters as an equality constraint. Any
; expression involving constants and the parameter array P
; are permitted.
; Example: if parameter 2 is always to be twice parameter
; 1 then use the following: parinfo[2].tied = '2 * P[1]'.
; Since they are totally constrained, tied parameters are
; considered to be fixed; no errors are computed for them,
; and any LIMITS are not obeyed.
; [ NOTE: the PARNAME can't be used in a TIED expression. ]
;
; .MPPRINT - if set to 1, then the default ITERPROC will print the
; parameter value. If set to 0, the parameter value
; will not be printed. This tag can be used to
; selectively print only a few parameter values out of
; many. Default: 1 (all parameters printed)
;
; .MPFORMAT - IDL format string to print the parameter within
; ITERPROC. Default: '(G20.6)' (An empty string will
; also use the default.)
;
; Future modifications to the PARINFO structure, if any, will involve
; adding structure tags beginning with the two letters "MP".
; Therefore programmers are urged to avoid using tags starting with
; "MP", but otherwise they are free to include their own fields
; within the PARINFO structure, which will be ignored by MPFIT.
;
; PARINFO Example:
; parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
; limits:[0.D,0]}, 5)
; parinfo[0].fixed = 1
; parinfo[4].limited[0] = 1
; parinfo[4].limits[0] = 50.D
; parinfo[*].value = [5.7D, 2.2, 500., 1.5, 2000.]
;
; A total of 5 parameters, with starting values of 5.7,
; 2.2, 500, 1.5, and 2000 are given. The first parameter
; is fixed at a value of 5.7, and the last parameter is
; constrained to be above 50.
;
;
; RECURSION
;
; Generally, recursion is not allowed. As of version 1.77, MPFIT has
; recursion protection which does not allow a model function to
; itself call MPFIT. Users who wish to perform multi-level
; optimization should investigate the 'EXTERNAL' function evaluation
; methods described below for hard-to-evaluate functions. That
; method places more control in the user's hands. The user can
; design a "recursive" application by taking care.
;
; In most cases the recursion protection should be well-behaved.
; However, if the user is doing debugging, it is possible for the
; protection system to get "stuck." In order to reset it, run the
; procedure:
; MPFIT_RESET_RECURSION
; and the protection system should get "unstuck." It is save to call
; this procedure at any time.
;
;
; COMPATIBILITY
;
; This function is designed to work with IDL 5.0 or greater.
;
; Because TIED parameters and the "(EXTERNAL)" user-model feature use
; the EXECUTE() function, they cannot be used with the free version
; of the IDL Virtual Machine.
;
;
; DETERMINING THE VERSION OF MPFIT
;
; MPFIT is a changing library. Users of MPFIT may also depend on a
; specific version of the library being present. As of version 1.70
; of MPFIT, a VERSION keyword has been added which allows the user to
; query which version is present. The keyword works like this:
;
; RESULT = MPFIT(/query, VERSION=version)
;
; This call uses the /QUERY keyword to query the version number
; without performing any computations. Users of MPFIT can call this
; method to determine which version is in the IDL path before
; actually using MPFIT to do any numerical work. Upon return, the
; VERSION keyword contains the version number of MPFIT, expressed as
; a string of the form 'X.Y' where X and Y are integers.
;
; Users can perform their own version checking, or use the built-in
; error checking of MPFIT. The MIN_VERSION keyword enforces the
; requested minimum version number. For example,
;
; RESULT = MPFIT(/query, VERSION=version, MIN_VERSION='1.70')
;
; will check whether the accessed version is 1.70 or greater, without
; performing any numerical processing.
;
; The VERSION and MIN_VERSION keywords were added in MPFIT
; version 1.70 and later. If the caller attempts to use the VERSION
; or MIN_VERSION keywords, and an *older* version of the code is
; present in the caller's path, then IDL will throw an 'unknown
; keyword' error. Therefore, in order to be robust, the caller, must
; use exception handling. Here is an example demanding at least
; version 1.70.
;
; MPFIT_OK = 0 & VERSION = '<unknown>'
; CATCH, CATCHERR
; IF CATCHERR EQ 0 THEN MPFIT_OK = MPFIT(/query, VERSION=version, $
; MIN_VERSION='1.70')
; CATCH, /CANCEL
;
; IF NOT MPFIT_OK THEN $
; MESSAGE, 'ERROR: you must have MPFIT version 1.70 or higher in '+$
; 'your path (found version '+version+')'
;
; Of course, the caller can also do its own version number
; requirements checking.
;
;
; HARD-TO-COMPUTE FUNCTIONS: "EXTERNAL" EVALUATION
;
; The normal mode of operation for MPFIT is for the user to pass a
; function name, and MPFIT will call the user function multiple times
; as it iterates toward a solution.
;
; Some user functions are particularly hard to compute using the
; standard model of MPFIT. Usually these are functions that depend
; on a large amount of external data, and so it is not feasible, or
; at least highly impractical, to have MPFIT call it. In those cases
; it may be possible to use the "(EXTERNAL)" evaluation option.
;
; In this case the user is responsible for making all function *and
; derivative* evaluations. The function and Jacobian data are passed
; in through the EXTERNAL_FVEC and EXTERNAL_FJAC keywords,
; respectively. The user indicates the selection of this option by
; specifying a function name (MYFUNCT) of "(EXTERNAL)". No
; user-function calls are made when EXTERNAL evaluation is being
; used.
;
; ** SPECIAL NOTE ** For the "(EXTERNAL)" case, the quirk noted above
; does not apply. The gradient matrix, EXTERNAL_FJAC, should be
; comparable to "-FGRAD(x,p)/err", which is the *opposite* sign of
; the DP matrix described above. In other words, EXTERNAL_FJAC
; has the same sign as the derivative of EXTERNAL_FVEC, and the
; opposite sign of FGRAD.
;
; At the end of each iteration, control returns to the user, who must
; reevaluate the function at its new parameter values. Users should
; check the return value of the STATUS keyword, where a value of 9
; indicates the user should supply more data for the next iteration,
; and re-call MPFIT. The user may refrain from calling MPFIT
; further; as usual, STATUS will indicate when the solution has
; converged and no more iterations are required.
;
; Because MPFIT must maintain its own data structures between calls,
; the user must also pass a named variable to the EXTERNAL_STATE
; keyword. This variable must be maintained by the user, but not
; changed, throughout the fitting process. When no more iterations
; are desired, the named variable may be discarded.
;
;
; INPUTS:
; MYFUNCT - a string variable containing the name of the function to
; be minimized. The function should return the weighted
; deviations between the model and the data, as described
; above.
;
; For EXTERNAL evaluation of functions, this parameter
; should be set to a value of "(EXTERNAL)".
;
; START_PARAMS - An one-dimensional array of starting values for each of the
; parameters of the model. The number of parameters
; should be fewer than the number of measurements.
; Also, the parameters should have the same data type
; as the measurements (double is preferred).
;
; This parameter is optional if the PARINFO keyword
; is used (but see PARINFO). The PARINFO keyword
; provides a mechanism to fix or constrain individual
; parameters. If both START_PARAMS and PARINFO are
; passed, then the starting *value* is taken from
; START_PARAMS, but the *constraints* are taken from
; PARINFO.
;
; RETURNS:
;
; Returns the array of best-fit parameters.
; Exceptions:
; * if /QUERY is set (see QUERY).
;
;
; KEYWORD PARAMETERS:
;
; AUTODERIVATIVE - If this is set, derivatives of the function will
; be computed automatically via a finite
; differencing procedure. If not set, then MYFUNCT
; must provide the explicit derivatives.
; Default: set (=1)
; NOTE: to supply your own explicit derivatives,
; explicitly pass AUTODERIVATIVE=0
;
; BESTNORM - upon return, the value of the summed squared weighted
; residuals for the returned parameter values,
; i.e. TOTAL(DEVIATES^2).
;
; BEST_FJAC - upon return, BEST_FJAC contains the Jacobian, or
; partial derivative, matrix for the best-fit model.
; The values are an array,
; ARRAY(N_ELEMENTS(DEVIATES),NFREE) where NFREE is the
; number of free parameters. This array is only
; computed if /CALC_FJAC is set, otherwise BEST_FJAC is
; undefined.
;
; The returned array is such that BEST_FJAC[I,J] is the
; partial derivative of DEVIATES[I] with respect to
; parameter PARMS[PFREE_INDEX[J]]. Note that since
; deviates are (data-model)*weight, the Jacobian of the
; *deviates* will have the opposite sign from the
; Jacobian of the *model*, and may be scaled by a
; factor.
;
; BEST_RESID - upon return, an array of best-fit deviates.
;
; CALC_FJAC - if set, then calculate the Jacobian and return it in
; BEST_FJAC. If not set, then the return value of
; BEST_FJAC is undefined.
;
; COVAR - the covariance matrix for the set of parameters returned
; by MPFIT. The matrix is NxN where N is the number of
; parameters. The square root of the diagonal elements
; gives the formal 1-sigma statistical errors on the
; parameters IF errors were treated "properly" in MYFUNC.
; Parameter errors are also returned in PERROR.
;
; To compute the correlation matrix, PCOR, use this example:
; PCOR = COV * 0
; FOR i = 0, n-1 DO FOR j = 0, n-1 DO $
; PCOR[i,j] = COV[i,j]/sqrt(COV[i,i]*COV[j,j])
; or equivalently, in vector notation,
; PCOR = COV / (PERROR # PERROR)
;
; If NOCOVAR is set or MPFIT terminated abnormally, then
; COVAR is set to a scalar with value !VALUES.D_NAN.
;
; DOF - number of degrees of freedom, computed as
; DOF = N_ELEMENTS(DEVIATES) - NFREE
; Note that this doesn't account for pegged parameters (see
; NPEGGED). It also does not account for data points which
; are assigned zero weight by the user function.
;
; ERRMSG - a string error or warning message is returned.
;
; EXTERNAL_FVEC - upon input, the function values, evaluated at
; START_PARAMS. This should be an M-vector, where M
; is the number of data points.
;
; EXTERNAL_FJAC - upon input, the Jacobian array of partial
; derivative values. This should be a M x N array,
; where M is the number of data points and N is the
; number of parameters. NOTE: that all FIXED or
; TIED parameters must *not* be included in this
; array.
;
; EXTERNAL_STATE - a named variable to store MPFIT-related state
; information between iterations (used in input and
; output to MPFIT). The user must not manipulate
; or discard this data until the final iteration is
; performed.
;
; FASTNORM - set this keyword to select a faster algorithm to
; compute sum-of-square values internally. For systems
; with large numbers of data points, the standard
; algorithm can become prohibitively slow because it
; cannot be vectorized well. By setting this keyword,
; MPFIT will run faster, but it will be more prone to
; floating point overflows and underflows. Thus, setting
; this keyword may sacrifice some stability in the
; fitting process.
;
; FTOL - a nonnegative input variable. Termination occurs when both
; the actual and predicted relative reductions in the sum of
; squares are at most FTOL (and STATUS is accordingly set to
; 1 or 3). Therefore, FTOL measures the relative error
; desired in the sum of squares. Default: 1D-10
;
; FUNCTARGS - A structure which contains the parameters to be passed
; to the user-supplied function specified by MYFUNCT via
; the _EXTRA mechanism. This is the way you can pass
; additional data to your user-supplied function without
; using common blocks.
;
; Consider the following example:
; if FUNCTARGS = { XVAL:[1.D,2,3], YVAL:[1.D,4,9],
; ERRVAL:[1.D,1,1] }
; then the user supplied function should be declared
; like this:
; FUNCTION MYFUNCT, P, XVAL=x, YVAL=y, ERRVAL=err
;
; By default, no extra parameters are passed to the
; user-supplied function, but your function should
; accept *at least* one keyword parameter. [ This is to
; accomodate a limitation in IDL's _EXTRA
; parameter-passing mechanism. ]
;
; GTOL - a nonnegative input variable. Termination occurs when the
; cosine of the angle between fvec and any column of the
; jacobian is at most GTOL in absolute value (and STATUS is
; accordingly set to 4). Therefore, GTOL measures the
; orthogonality desired between the function vector and the
; columns of the jacobian. Default: 1D-10
;
; ITERARGS - The keyword arguments to be passed to ITERPROC via the
; _EXTRA mechanism. This should be a structure, and is
; similar in operation to FUNCTARGS.
; Default: no arguments are passed.
;
; ITERPRINT - The name of an IDL procedure, equivalent to PRINT,
; that ITERPROC will use to render output. ITERPRINT
; should be able to accept at least four positional
; arguments. In addition, it should be able to accept
; the standard FORMAT keyword for output formatting; and
; the UNIT keyword, to redirect output to a logical file
; unit (default should be UNIT=1, standard output).
; These keywords are passed using the ITERARGS keyword
; above. The ITERPRINT procedure must accept the _EXTRA
; keyword.
; NOTE: that much formatting can be handled with the
; MPPRINT and MPFORMAT tags.
; Default: 'MPFIT_DEFPRINT' (default internal formatter)
;
; ITERPROC - The name of a procedure to be called upon each NPRINT
; iteration of the MPFIT routine. ITERPROC is always
; called in the final iteration. It should be declared
; in the following way:
;
; PRO ITERPROC, MYFUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
; PARINFO=parinfo, QUIET=quiet, DOF=dof, PFORMAT=pformat, $
; UNIT=unit, ...
; ; perform custom iteration update
; END
;
; ITERPROC must either accept all three keyword
; parameters (FUNCTARGS, PARINFO and QUIET), or at least
; accept them via the _EXTRA keyword.
;
; MYFUNCT is the user-supplied function to be minimized,
; P is the current set of model parameters, ITER is the
; iteration number, and FUNCTARGS are the arguments to be
; passed to MYFUNCT. FNORM should be the chi-squared
; value. QUIET is set when no textual output should be
; printed. DOF is the number of degrees of freedom,
; normally the number of points less the number of free
; parameters. See below for documentation of PARINFO.
; PFORMAT is the default parameter value format. UNIT is
; passed on to the ITERPRINT procedure, and should
; indicate the file unit where log output will be sent
; (default: standard output).
;
; In implementation, ITERPROC can perform updates to the
; terminal or graphical user interface, to provide
; feedback while the fit proceeds. If the fit is to be
; stopped for any reason, then ITERPROC should set the
; common block variable ERROR_CODE to negative value
; between -15 and -1 (see MPFIT_ERROR common block
; below). In principle, ITERPROC should probably not
; modify the parameter values, because it may interfere
; with the algorithm's stability. In practice it is
; allowed.
;
; Default: an internal routine is used to print the
; parameter values.
;
; ITERSTOP - Set this keyword if you wish to be able to stop the
; fitting by hitting the predefined ITERKEYSTOP key on
; the keyboard. This only works if you use the default
; ITERPROC.
;
; ITERKEYSTOP - A keyboard key which will halt the fit (and if
; ITERSTOP is set and the default ITERPROC is used).
; ITERSTOPKEY may either be a one-character string
; with the desired key, or a scalar integer giving the
; ASCII code of the desired key.
; Default: 7b (control-g)
;
; NOTE: the default value of ASCI 7 (control-G) cannot
; be read in some windowing environments, so you must
; change to a printable character like 'q'.
;
; MAXITER - The maximum number of iterations to perform. If the
; number of calculation iterations exceeds MAXITER, then
; the STATUS value is set to 5 and MPFIT returns.
;
; If MAXITER EQ 0, then MPFIT does not iterate to adjust
; parameter values; however, the user function is evaluated
; and parameter errors/covariance/Jacobian are estimated
; before returning.
; Default: 200 iterations
;
; MIN_VERSION - The minimum requested version number. This must be
; a scalar string of the form returned by the VERSION
; keyword. If the current version of MPFIT does not
; satisfy the minimum requested version number, then,
; MPFIT(/query, min_version='...') returns 0
; MPFIT(...) returns NAN
; Default: no version number check
; NOTE: MIN_VERSION was added in MPFIT version 1.70
;
; NFEV - the number of MYFUNCT function evaluations performed.
;
; NFREE - the number of free parameters in the fit. This includes
; parameters which are not FIXED and not TIED, but it does
; include parameters which are pegged at LIMITS.
;
; NITER - the number of iterations completed.
;
; NOCATCH - if set, then MPFIT will not perform any error trapping.
; By default (not set), MPFIT will trap errors and report
; them to the caller. This keyword will typically be used
; for debugging.
;
; NOCOVAR - set this keyword to prevent the calculation of the
; covariance matrix before returning (see COVAR)
;
; NPEGGED - the number of free parameters which are pegged at a
; LIMIT.
;
; NPRINT - The frequency with which ITERPROC is called. A value of
; 1 indicates that ITERPROC is called with every iteration,
; while 2 indicates every other iteration, etc. Be aware
; that several Levenberg-Marquardt attempts can be made in
; a single iteration. Also, the ITERPROC is *always*
; called for the final iteration, regardless of the
; iteration number.
; Default value: 1
;
; PARINFO - A one-dimensional array of structures.
; Provides a mechanism for more sophisticated constraints
; to be placed on parameter values. When PARINFO is not
; passed, then it is assumed that all parameters are free
; and unconstrained. Values in PARINFO are never
; modified during a call to MPFIT.
;
; See description above for the structure of PARINFO.
;
; Default value: all parameters are free and unconstrained.
;
; PERROR - The formal 1-sigma errors in each parameter, computed
; from the covariance matrix. If a parameter is held
; fixed, or if it touches a boundary, then the error is
; reported as zero.
;
; If the fit is unweighted (i.e. no errors were given, or
; the weights were uniformly set to unity), then PERROR
; will probably not represent the true parameter
; uncertainties.
;
; *If* you can assume that the true reduced chi-squared
; value is unity -- meaning that the fit is implicitly
; assumed to be of good quality -- then the estimated
; parameter uncertainties can be computed by scaling PERROR
; by the measured chi-squared value.
;
; DOF = N_ELEMENTS(X) - N_ELEMENTS(PARMS) ; deg of freedom
; PCERROR = PERROR * SQRT(BESTNORM / DOF) ; scaled uncertainties
;
; PFREE_INDEX - upon return, PFREE_INDEX contains an index array
; which indicates which parameter were allowed to
; vary. I.e. of all the parameters PARMS, only
; PARMS[PFREE_INDEX] were varied.
;
; QUERY - if set, then MPFIT() will return immediately with one of
; the following values:
; 1 - if MIN_VERSION is not set
; 1 - if MIN_VERSION is set and MPFIT satisfies the minimum
; 0 - if MIN_VERSION is set and MPFIT does not satisfy it
; The VERSION output keyword is always set upon return.
; Default: not set.
;
; QUIET - set this keyword when no textual output should be printed
; by MPFIT
;
; RESDAMP - a scalar number, indicating the cut-off value of
; residuals where "damping" will occur. Residuals with
; magnitudes greater than this number will be replaced by
; their logarithm. This partially mitigates the so-called
; large residual problem inherent in least-squares solvers
; (as for the test problem CURVI, http://www.maxthis.com/-
; curviex.htm). A value of 0 indicates no damping.
; Default: 0
;
; Note: RESDAMP doesn't work with AUTODERIV=0
;
; STATUS - an integer status code is returned. All values greater
; than zero can represent success (however STATUS EQ 5 may
; indicate failure to converge). It can have one of the
; following values:
;
; -18 a fatal execution error has occurred. More information
; may be available in the ERRMSG string.
;
; -16 a parameter or function value has become infinite or an
; undefined number. This is usually a consequence of
; numerical overflow in the user's model function, which
; must be avoided.
;
; -15 to -1
; these are error codes that either MYFUNCT or ITERPROC
; may return to terminate the fitting process (see
; description of MPFIT_ERROR common below). If either
; MYFUNCT or ITERPROC set ERROR_CODE to a negative number,
; then that number is returned in STATUS. Values from -15
; to -1 are reserved for the user functions and will not
; clash with MPFIT.
;
; 0 improper input parameters.
;
; 1 both actual and predicted relative reductions
; in the sum of squares are at most FTOL.
;
; 2 relative error between two consecutive iterates
; is at most XTOL
;
; 3 conditions for STATUS = 1 and STATUS = 2 both hold.
;
; 4 the cosine of the angle between fvec and any
; column of the jacobian is at most GTOL in
; absolute value.
;
; 5 the maximum number of iterations has been reached
;
; 6 FTOL is too small. no further reduction in
; the sum of squares is possible.
;
; 7 XTOL is too small. no further improvement in
; the approximate solution x is possible.
;
; 8 GTOL is too small. fvec is orthogonal to the
; columns of the jacobian to machine precision.
;
; 9 A successful single iteration has been completed, and
; the user must supply another "EXTERNAL" evaluation of
; the function and its derivatives. This status indicator
; is neither an error nor a convergence indicator.
;
; VERSION - upon return, VERSION will be set to the MPFIT internal
; version number. The version number will be a string of
; the form "X.Y" where X is a major revision number and Y
; is a minor revision number.
; NOTE: the VERSION keyword was not present before
; MPFIT version number 1.70, therefore, callers must
; use exception handling when using this keyword.
;
; XTOL - a nonnegative input variable. Termination occurs when the
; relative error between two consecutive iterates is at most
; XTOL (and STATUS is accordingly set to 2 or 3). Therefore,
; XTOL measures the relative error desired in the approximate
; solution. Default: 1D-10
;
;
; EXAMPLE:
;
; p0 = [5.7D, 2.2, 500., 1.5, 2000.]
; fa = {X:x, Y:y, ERR:err}
; p = mpfit('MYFUNCT', p0, functargs=fa)
;
; Minimizes sum of squares of MYFUNCT. MYFUNCT is called with the X,
; Y, and ERR keyword parameters that are given by FUNCTARGS. The
; resulting parameter values are returned in p.
;
;
; COMMON BLOCKS:
;
; COMMON MPFIT_ERROR, ERROR_CODE
;
; User routines may stop the fitting process at any time by
; setting an error condition. This condition may be set in either
; the user's model computation routine (MYFUNCT), or in the
; iteration procedure (ITERPROC).
;
; To stop the fitting, the above common block must be declared,
; and ERROR_CODE must be set to a negative number. After the user
; procedure or function returns, MPFIT checks the value of this
; common block variable and exits immediately if the error
; condition has been set. This value is also returned in the
; STATUS keyword: values of -1 through -15 are reserved error
; codes for the user routines. By default the value of ERROR_CODE
; is zero, indicating a successful function/procedure call.
;
; COMMON MPFIT_PROFILE
; COMMON MPFIT_MACHAR
; COMMON MPFIT_CONFIG
;
; These are undocumented common blocks are used internally by
; MPFIT and may change in future implementations.
;
; THEORY OF OPERATION:
;
; There are many specific strategies for function minimization. One
; very popular technique is to use function gradient information to
; realize the local structure of the function. Near a local minimum
; the function value can be taylor expanded about x0 as follows:
;
; f(x) = f(x0) + f'(x0) . (x-x0) + (1/2) (x-x0) . f''(x0) . (x-x0)
; ----- --------------- ------------------------------- (1)
; Order 0th 1st 2nd
;
; Here f'(x) is the gradient vector of f at x, and f''(x) is the
; Hessian matrix of second derivatives of f at x. The vector x is
; the set of function parameters, not the measured data vector. One
; can find the minimum of f, f(xm) using Newton's method, and
; arrives at the following linear equation:
;
; f''(x0) . (xm-x0) = - f'(x0) (2)
;
; If an inverse can be found for f''(x0) then one can solve for
; (xm-x0), the step vector from the current position x0 to the new
; projected minimum. Here the problem has been linearized (ie, the
; gradient information is known to first order). f''(x0) is
; symmetric n x n matrix, and should be positive definite.
;
; The Levenberg - Marquardt technique is a variation on this theme.
; It adds an additional diagonal term to the equation which may aid the
; convergence properties:
;
; (f''(x0) + nu I) . (xm-x0) = -f'(x0) (2a)
;
; where I is the identity matrix. When nu is large, the overall
; matrix is diagonally dominant, and the iterations follow steepest
; descent. When nu is small, the iterations are quadratically
; convergent.
;
; In principle, if f''(x0) and f'(x0) are known then xm-x0 can be
; determined. However the Hessian matrix is often difficult or
; impossible to compute. The gradient f'(x0) may be easier to
; compute, if even by finite difference techniques. So-called
; quasi-Newton techniques attempt to successively estimate f''(x0)
; by building up gradient information as the iterations proceed.
;
; In the least squares problem there are further simplifications
; which assist in solving eqn (2). The function to be minimized is
; a sum of squares:
;
; f = Sum(hi^2) (3)
;
; where hi is the ith residual out of m residuals as described
; above. This can be substituted back into eqn (2) after computing
; the derivatives:
;
; f' = 2 Sum(hi hi')
; f'' = 2 Sum(hi' hj') + 2 Sum(hi hi'') (4)
;
; If one assumes that the parameters are already close enough to a
; minimum, then one typically finds that the second term in f'' is
; negligible [or, in any case, is too difficult to compute]. Thus,
; equation (2) can be solved, at least approximately, using only
; gradient information.
;
; In matrix notation, the combination of eqns (2) and (4) becomes:
;
; hT' . h' . dx = - hT' . h (5)
;
; Where h is the residual vector (length m), hT is its transpose, h'
; is the Jacobian matrix (dimensions n x m), and dx is (xm-x0). The
; user function supplies the residual vector h, and in some cases h'
; when it is not found by finite differences (see MPFIT_FDJAC2,
; which finds h and hT'). Even if dx is not the best absolute step
; to take, it does provide a good estimate of the best *direction*,
; so often a line minimization will occur along the dx vector
; direction.
;
; The method of solution employed by MINPACK is to form the Q . R
; factorization of h', where Q is an orthogonal matrix such that QT .
; Q = I, and R is upper right triangular. Using h' = Q . R and the
; ortogonality of Q, eqn (5) becomes
;
; (RT . QT) . (Q . R) . dx = - (RT . QT) . h
; RT . R . dx = - RT . QT . h (6)
; R . dx = - QT . h
;
; where the last statement follows because R is upper triangular.
; Here, R, QT and h are known so this is a matter of solving for dx.
; The routine MPFIT_QRFAC provides the QR factorization of h, with
; pivoting, and MPFIT_QRSOL;V provides the solution for dx.
;
; REFERENCES:
;
; Markwardt, C. B. 2008, "Non-Linear Least Squares Fitting in IDL
; with MPFIT," in proc. Astronomical Data Analysis Software and
; Systems XVIII, Quebec, Canada, ASP Conference Series, Vol. XXX, eds.
; D. Bohlender, P. Dowler & D. Durand (Astronomical Society of the
; Pacific: San Francisco), p. 251-254 (ISBN: 978-1-58381-702-5)
; http://arxiv.org/abs/0902.2850
; Link to NASA ADS: http://adsabs.harvard.edu/abs/2009ASPC..411..251M
; Link to ASP: http://aspbooks.org/a/volumes/table_of_contents/411
;
; Refer to the MPFIT website as:
; http://purl.com/net/mpfit
;
; MINPACK-1 software, by Jorge More' et al, available from netlib.
; http://www.netlib.org/
;
; "Optimization Software Guide," Jorge More' and Stephen Wright,
; SIAM, *Frontiers in Applied Mathematics*, Number 14.
; (ISBN: 978-0-898713-22-0)
;
; More', J. 1978, "The Levenberg-Marquardt Algorithm: Implementation
; and Theory," in Numerical Analysis, vol. 630, ed. G. A. Watson
; (Springer-Verlag: Berlin), p. 105 (DOI: 10.1007/BFb0067690 )
;
; MODIFICATION HISTORY:
; Translated from MINPACK-1 in FORTRAN, Apr-Jul 1998, CM
; Fixed bug in parameter limits (x vs xnew), 04 Aug 1998, CM
; Added PERROR keyword, 04 Aug 1998, CM
; Added COVAR keyword, 20 Aug 1998, CM
; Added NITER output keyword, 05 Oct 1998
; D.L Windt, Bell Labs, windt@bell-labs.com;
; Made each PARINFO component optional, 05 Oct 1998 CM
; Analytical derivatives allowed via AUTODERIVATIVE keyword, 09 Nov 1998
; Parameter values can be tied to others, 09 Nov 1998
; Fixed small bugs (Wayne Landsman), 24 Nov 1998
; Added better exception error reporting, 24 Nov 1998 CM
; Cosmetic documentation changes, 02 Jan 1999 CM
; Changed definition of ITERPROC to be consistent with TNMIN, 19 Jan 1999 CM
; Fixed bug when AUTDERIVATIVE=0. Incorrect sign, 02 Feb 1999 CM
; Added keyboard stop to MPFIT_DEFITER, 28 Feb 1999 CM
; Cosmetic documentation changes, 14 May 1999 CM
; IDL optimizations for speed & FASTNORM keyword, 15 May 1999 CM
; Tried a faster version of mpfit_enorm, 30 May 1999 CM
; Changed web address to cow.physics.wisc.edu, 14 Jun 1999 CM
; Found malformation of FDJAC in MPFIT for 1 parm, 03 Aug 1999 CM
; Factored out user-function call into MPFIT_CALL. It is possible,
; but currently disabled, to call procedures. The calling format
; is similar to CURVEFIT, 25 Sep 1999, CM
; Slightly changed mpfit_tie to be less intrusive, 25 Sep 1999, CM
; Fixed some bugs associated with tied parameters in mpfit_fdjac, 25
; Sep 1999, CM
; Reordered documentation; now alphabetical, 02 Oct 1999, CM
; Added QUERY keyword for more robust error detection in drivers, 29
; Oct 1999, CM
; Documented PERROR for unweighted fits, 03 Nov 1999, CM
; Split out MPFIT_RESETPROF to aid in profiling, 03 Nov 1999, CM
; Some profiling and speed optimization, 03 Nov 1999, CM
; Worst offenders, in order: fdjac2, qrfac, qrsolv, enorm.
; fdjac2 depends on user function, qrfac and enorm seem to be
; fully optimized. qrsolv probably could be tweaked a little, but
; is still <10% of total compute time.
; Made sure that !err was set to 0 in MPFIT_DEFITER, 10 Jan 2000, CM
; Fixed small inconsistency in setting of QANYLIM, 28 Jan 2000, CM
; Added PARINFO field RELSTEP, 28 Jan 2000, CM
; Converted to MPFIT_ERROR common block for indicating error
; conditions, 28 Jan 2000, CM
; Corrected scope of MPFIT_ERROR common block, CM, 07 Mar 2000
; Minor speed improvement in MPFIT_ENORM, CM 26 Mar 2000
; Corrected case where ITERPROC changed parameter values and
; parameter values were TIED, CM 26 Mar 2000
; Changed MPFIT_CALL to modify NFEV automatically, and to support
; user procedures more, CM 26 Mar 2000
; Copying permission terms have been liberalized, 26 Mar 2000, CM
; Catch zero value of zero a(j,lj) in MPFIT_QRFAC, 20 Jul 2000, CM
; (thanks to David Schlegel <schlegel@astro.princeton.edu>)
; MPFIT_SETMACHAR is called only once at init; only one common block
; is created (MPFIT_MACHAR); it is now a structure; removed almost
; all CHECK_MATH calls for compatibility with IDL5 and !EXCEPT;
; profiling data is now in a structure too; noted some
; mathematical discrepancies in Linux IDL5.0, 17 Nov 2000, CM
; Some significant changes. New PARINFO fields: MPSIDE, MPMINSTEP,
; MPMAXSTEP. Improved documentation. Now PTIED constraints are
; maintained in the MPCONFIG common block. A new procedure to
; parse PARINFO fields. FDJAC2 now computes a larger variety of
; one-sided and two-sided finite difference derivatives. NFEV is
; stored in the MPCONFIG common now. 17 Dec 2000, CM
; Added check that PARINFO and XALL have same size, 29 Dec 2000 CM
; Don't call function in TERMINATE when there is an error, 05 Jan
; 2000
; Check for float vs. double discrepancies; corrected implementation
; of MIN/MAXSTEP, which I still am not sure of, but now at least
; the correct behavior occurs *without* it, CM 08 Jan 2001
; Added SCALE_FCN keyword, to allow for scaling, as for the CASH
; statistic; added documentation about the theory of operation,
; and under the QR factorization; slowly I'm beginning to
; understand the bowels of this algorithm, CM 10 Jan 2001
; Remove MPMINSTEP field of PARINFO, for now at least, CM 11 Jan
; 2001
; Added RESDAMP keyword, CM, 14 Jan 2001
; Tried to improve the DAMP handling a little, CM, 13 Mar 2001
; Corrected .PARNAME behavior in _DEFITER, CM, 19 Mar 2001
; Added checks for parameter and function overflow; a new STATUS
; value to reflect this; STATUS values of -15 to -1 are reserved
; for user function errors, CM, 03 Apr 2001
; DAMP keyword is now a TANH, CM, 03 Apr 2001
; Added more error checking of float vs. double, CM, 07 Apr 2001
; Fixed bug in handling of parameter lower limits; moved overflow
; checking to end of loop, CM, 20 Apr 2001
; Failure using GOTO, TERMINATE more graceful if FNORM1 not defined,
; CM, 13 Aug 2001
; Add MPPRINT tag to PARINFO, CM, 19 Nov 2001
; Add DOF keyword to DEFITER procedure, and print degrees of
; freedom, CM, 28 Nov 2001
; Add check to be sure MYFUNCT is a scalar string, CM, 14 Jan 2002
; Addition of EXTERNAL_FJAC, EXTERNAL_FVEC keywords; ability to save
; fitter's state from one call to the next; allow '(EXTERNAL)'
; function name, which implies that user will supply function and
; Jacobian at each iteration, CM, 10 Mar 2002
; Documented EXTERNAL evaluation code, CM, 10 Mar 2002
; Corrected signficant bug in the way that the STEP parameter, and
; FIXED parameters interacted (Thanks Andrew Steffl), CM, 02 Apr
; 2002
; Allow COVAR and PERROR keywords to be computed, even in case of
; '(EXTERNAL)' function, 26 May 2002
; Add NFREE and NPEGGED keywords; compute NPEGGED; compute DOF using
; NFREE instead of n_elements(X), thanks to Kristian Kjaer, CM 11
; Sep 2002
; Hopefully PERROR is all positive now, CM 13 Sep 2002
; Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002
; Error checking to detect missing start pars, CM 12 Apr 2003
; Add DOF keyword to return degrees of freedom, CM, 30 June 2003
; Always call ITERPROC in the final iteration; add ITERKEYSTOP
; keyword, CM, 30 June 2003
; Correct bug in MPFIT_LMPAR of singularity handling, which might
; likely be fatal for one-parameter fits, CM, 21 Nov 2003
; (with thanks to Peter Tuthill for the proper test case)
; Minor documentation adjustment, 03 Feb 2004, CM
; Correct small error in QR factorization when pivoting; document
; the return values of QRFAC when pivoting, 21 May 2004, CM
; Add MPFORMAT field to PARINFO, and correct behavior of interaction
; between MPPRINT and PARNAME in MPFIT_DEFITERPROC (thanks to Tim
; Robishaw), 23 May 2004, CM
; Add the ITERPRINT keyword to allow redirecting output, 26 Sep
; 2004, CM
; Correct MAXSTEP behavior in case of a negative parameter, 26 Sep
; 2004, CM
; Fix bug in the parsing of MINSTEP/MAXSTEP, 10 Apr 2005, CM
; Fix bug in the handling of upper/lower limits when the limit was
; negative (the fitting code would never "stick" to the lower
; limit), 29 Jun 2005, CM
; Small documentation update for the TIED field, 05 Sep 2005, CM
; Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
; If MAXITER equals zero, then do the basic parameter checking and
; uncertainty analysis, but do not adjust the parameters, 15 Aug
; 2006, CM
; Added documentation, 18 Sep 2006, CM
; A few more IDL 5 array syntax changes, 25 Sep 2006, CM
; Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
; Bug fix for case of MPMAXSTEP and fixed parameters, thanks
; to Huib Intema (who found it from the Python translation!), 05 Feb 2007
; Similar fix for MPFIT_FDJAC2 and the MPSIDE sidedness of
; derivatives, also thanks to Huib Intema, 07 Feb 2007
; Clarify documentation on user-function, derivatives, and PARINFO,
; 27 May 2007
; Change the wording of "Analytic Derivatives" to "Explicit
; Derivatives" in the documentation, CM, 03 Sep 2007
; Further documentation tweaks, CM, 13 Dec 2007
; Add COMPATIBILITY section and add credits to copyright, CM, 13 Dec
; 2007
; Document and enforce that START_PARMS and PARINFO are 1-d arrays,
; CM, 29 Mar 2008
; Previous change for 1-D arrays wasn't correct for
; PARINFO.LIMITED/.LIMITS; now fixed, CM, 03 May 2008
; Documentation adjustments, CM, 20 Aug 2008
; Change some minor FOR-loop variables to type-long, CM, 03 Sep 2008
; Change error handling slightly, document NOCATCH keyword,
; document error handling in general, CM, 01 Oct 2008
; Special case: when either LIMITS is zero, and a parameter pushes
; against that limit, the coded that 'pegged' it there would not
; work since it was a relative condition; now zero is handled
; properly, CM, 08 Nov 2008
; Documentation of how TIED interacts with LIMITS, CM, 21 Dec 2008
; Better documentation of references, CM, 27 Feb 2009
; If MAXITER=0, then be sure to set STATUS=5, which permits the
; the covariance matrix to be computed, CM, 14 Apr 2009
; Avoid numerical underflow while solving for the LM parameter,
; (thanks to Sergey Koposov) CM, 14 Apr 2009
; Use individual functions for all possible MPFIT_CALL permutations,
; (and make sure the syntax is right) CM, 01 Sep 2009
; Correct behavior of MPMAXSTEP when some parameters are frozen,
; thanks to Josh Destree, CM, 22 Nov 2009
; Update the references section, CM, 22 Nov 2009
; 1.70 - Add the VERSION and MIN_VERSION keywords, CM, 22 Nov 2009
; 1.71 - Store pre-calculated revision in common, CM, 23 Nov 2009
; 1.72-1.74 - Documented alternate method to compute correlation matrix,
; CM, 05 Feb 2010
; 1.75 - Enforce TIED constraints when preparing to terminate the
; routine, CM, 2010-06-22
; 1.76 - Documented input keywords now are not modified upon output,
; CM, 2010-07-13
; 1.77 - Upon user request (/CALC_FJAC), compute Jacobian matrix and
; return in BEST_FJAC; also return best residuals in
; BEST_RESID; also return an index list of free parameters as
; PFREE_INDEX; add a fencepost to prevent recursion
; CM, 2010-10-27
; 1.79 - Documentation corrections. CM, 2011-08-26
; 1.81 - Fix bug in interaction of AUTODERIVATIVE=0 and .MPSIDE=3;
; Document FJAC_MASK. CM, 2012-05-08
;
; $Id: mpfit.pro,v 1.82 2012/09/27 23:59:44 cmarkwar Exp $
;-
; Original MINPACK by More' Garbow and Hillstrom, translated with permission
; Modifications and enhancements are:
; Copyright (C) 1997-2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
pro mpfit_dummy
;; Enclose in a procedure so these are not defined in the main level
COMPILE_OPT strictarr
FORWARD_FUNCTION mpfit_fdjac2, mpfit_enorm, mpfit_lmpar, mpfit_covar, $
mpfit, mpfit_call
COMMON mpfit_error, error_code ;; For error passing to user function
COMMON mpfit_config, mpconfig ;; For internal error configrations
end
;; Reset profiling registers for another run. By default, and when
;; uncommented, the profiling registers simply accumulate.
pro mpfit_resetprof
COMPILE_OPT strictarr
common mpfit_profile, mpfit_profile_vals
mpfit_profile_vals = { status: 1L, fdjac2: 0D, lmpar: 0D, mpfit: 0D, $
qrfac: 0D, qrsolv: 0D, enorm: 0D}
return
end
;; Following are machine constants that can be loaded once. I have
;; found that bizarre underflow messages can be produced in each call
;; to MACHAR(), so this structure minimizes the number of calls to
;; one.
pro mpfit_setmachar, double=isdouble
COMPILE_OPT strictarr
common mpfit_profile, profvals
if n_elements(profvals) EQ 0 then mpfit_resetprof
common mpfit_machar, mpfit_machar_vals
;; In earlier versions of IDL, MACHAR itself could produce a load of
;; error messages. We try to mask some of that out here.
if (!version.release) LT 5 then dummy = check_math(1, 1)
mch = 0.
mch = machar(double=keyword_set(isdouble))
dmachep = mch.eps
dmaxnum = mch.xmax
dminnum = mch.xmin
dmaxlog = alog(mch.xmax)
dminlog = alog(mch.xmin)
if keyword_set(isdouble) then $
dmaxgam = 171.624376956302725D $
else $
dmaxgam = 171.624376956302725
drdwarf = sqrt(dminnum*1.5) * 10
drgiant = sqrt(dmaxnum) * 0.1
mpfit_machar_vals = {machep: dmachep, maxnum: dmaxnum, minnum: dminnum, $
maxlog: dmaxlog, minlog: dminlog, maxgam: dmaxgam, $
rdwarf: drdwarf, rgiant: drgiant}
if (!version.release) LT 5 then dummy = check_math(0, 0)
return
end
; Call user function with no _EXTRA parameters
function mpfit_call_func_noextra, fcn, x, fjac, _EXTRA=extra
if n_params() EQ 2 then begin
return, call_function(fcn, x)
endif else begin
return, call_function(fcn, x, fjac)
endelse
end
; Call user function with _EXTRA parameters
function mpfit_call_func_extra, fcn, x, fjac, _EXTRA=extra
if n_params() EQ 2 then begin
return, call_function(fcn, x, _EXTRA=extra)
endif else begin
return, call_function(fcn, x, fjac, _EXTRA=extra)
endelse
end
; Call user procedure with no _EXTRA parameters
function mpfit_call_pro_noextra, fcn, x, fjac, _EXTRA=extra
if n_params() EQ 2 then begin
call_procedure, fcn, x, f
endif else begin
call_procedure, fcn, x, f, fjac
endelse
return, f
end
; Call user procedure with _EXTRA parameters
function mpfit_call_pro_extra, fcn, x, fjac, _EXTRA=extra
if n_params() EQ 2 then begin
call_procedure, fcn, x, f, _EXTRA=extra
endif else begin
call_procedure, fcn, x, f, fjac, _EXTRA=extra
endelse
return, f
end
;; Call user function or procedure, with _EXTRA or not, with
;; derivatives or not.
function mpfit_call, fcn, x, fjac, _EXTRA=extra
COMPILE_OPT strictarr
common mpfit_config, mpconfig
if keyword_set(mpconfig.qanytied) then mpfit_tie, x, mpconfig.ptied
;; Decide whether we are calling a procedure or function, and
;; with/without FUNCTARGS
proname = 'MPFIT_CALL'
proname = proname + ((mpconfig.proc) ? '_PRO' : '_FUNC')
proname = proname + ((n_elements(extra) GT 0) ? '_EXTRA' : '_NOEXTRA')
if n_params() EQ 2 then begin
f = call_function(proname, fcn, x, _EXTRA=extra)
endif else begin
f = call_function(proname, fcn, x, fjac, _EXTRA=extra)
endelse
mpconfig.nfev = mpconfig.nfev + 1
if n_params() EQ 2 AND mpconfig.damp GT 0 then begin
damp = mpconfig.damp[0]
;; Apply the damping if requested. This replaces the residuals
;; with their hyperbolic tangent. Thus residuals larger than
;; DAMP are essentially clipped.
f = tanh(f/damp)
endif
return, f
end
function mpfit_fdjac2, fcn, x, fvec, step, ulimited, ulimit, dside, $
iflag=iflag, epsfcn=epsfcn, autoderiv=autoderiv, $
FUNCTARGS=fcnargs, xall=xall, ifree=ifree, dstep=dstep, $
deriv_debug=ddebug, deriv_reltol=ddrtol, deriv_abstol=ddatol
COMPILE_OPT strictarr
common mpfit_machar, machvals
common mpfit_profile, profvals
common mpfit_error, mperr
; prof_start = systime(1)
MACHEP0 = machvals.machep
DWARF = machvals.minnum
if n_elements(epsfcn) EQ 0 then epsfcn = MACHEP0
if n_elements(xall) EQ 0 then xall = x
if n_elements(ifree) EQ 0 then ifree = lindgen(n_elements(xall))
if n_elements(step) EQ 0 then step = x * 0.
if n_elements(ddebug) EQ 0 then ddebug = intarr(n_elements(xall))
if n_elements(ddrtol) EQ 0 then ddrtol = x * 0.
if n_elements(ddatol) EQ 0 then ddatol = x * 0.
has_debug_deriv = max(ddebug)
if keyword_set(has_debug_deriv) then begin
;; Header for debugging
print, 'FJAC DEBUG BEGIN'
print, "IPNT", "FUNC", "DERIV_U", "DERIV_N", "DIFF_ABS", "DIFF_REL", $
format='("# ",A10," ",A10," ",A10," ",A10," ",A10," ",A10)'
endif
nall = n_elements(xall)
eps = sqrt(max([epsfcn, MACHEP0]));
m = n_elements(fvec)
n = n_elements(x)
;; Compute analytical derivative if requested
;; Two ways to enable computation of explicit derivatives:
;; 1. AUTODERIVATIVE=0
;; 2. AUTODERIVATIVE=1, but P[i].MPSIDE EQ 3
if keyword_set(autoderiv) EQ 0 OR max(dside[ifree] EQ 3) EQ 1 then begin
fjac_mask = intarr(nall)
;; Specify which parameters need derivatives
;; ---- Case 2 ------ ----- Case 1 -----
fjac_mask[ifree] = (dside[ifree] EQ 3) OR (keyword_set(autoderiv) EQ 0)
if has_debug_deriv then $
print, fjac_mask, format='("# FJAC_MASK = ",100000(I0," ",:))'
fjac = fjac_mask ;; Pass the mask to the calling function as FJAC
mperr = 0
fp = mpfit_call(fcn, xall, fjac, _EXTRA=fcnargs)
iflag = mperr
if n_elements(fjac) NE m*nall then begin
message, /cont, 'ERROR: Derivative matrix was not computed properly.'
iflag = 1
; profvals.fdjac2 = profvals.fdjac2 + (systime(1) - prof_start)
return, 0
endif
;; This definition is consistent with CURVEFIT (WRONG, see below)
;; Sign error found (thanks Jesus Fernandez <fernande@irm.chu-caen.fr>)
;; ... and now I regret doing this sign flip since it's not
;; strictly correct. The definition should be RESID =
;; (Y-F)/SIGMA, so d(RESID)/dP should be -dF/dP. My response to
;; Fernandez was unfounded because he was trying to supply
;; dF/dP. Sigh. (CM 31 Aug 2007)
fjac = reform(-temporary(fjac), m, nall, /overwrite)
;; Select only the free parameters
if n_elements(ifree) LT nall then $
fjac = reform(fjac[*,ifree], m, n, /overwrite)
;; Are we done computing derivatives? The answer is, YES, if we
;; computed explicit derivatives for all free parameters, EXCEPT
;; when we are going on to compute debugging derivatives.
if min(fjac_mask[ifree]) EQ 1 AND NOT has_debug_deriv then begin
return, fjac
endif
endif
;; Final output array, if it was not already created above
if n_elements(fjac) EQ 0 then begin
fjac = make_array(m, n, value=fvec[0]*0.)
fjac = reform(fjac, m, n, /overwrite)
endif
h = eps * abs(x)
;; if STEP is given, use that
;; STEP includes the fixed parameters
if n_elements(step) GT 0 then begin
stepi = step[ifree]
wh = where(stepi GT 0, ct)
if ct GT 0 then h[wh] = stepi[wh]
endif
;; if relative step is given, use that
;; DSTEP includes the fixed parameters
if n_elements(dstep) GT 0 then begin
dstepi = dstep[ifree]
wh = where(dstepi GT 0, ct)
if ct GT 0 then h[wh] = abs(dstepi[wh]*x[wh])
endif
;; In case any of the step values are zero
wh = where(h EQ 0, ct)
if ct GT 0 then h[wh] = eps
;; Reverse the sign of the step if we are up against the parameter
;; limit, or if the user requested it.
;; DSIDE includes the fixed parameters (ULIMITED/ULIMIT have only
;; varying ones)
mask = dside[ifree] EQ -1
if n_elements(ulimited) GT 0 AND n_elements(ulimit) GT 0 then $
mask = mask OR (ulimited AND (x GT ulimit-h))
wh = where(mask, ct)
if ct GT 0 then h[wh] = -h[wh]
;; Loop through parameters, computing the derivative for each
for j=0L, n-1 do begin
dsidej = dside[ifree[j]]
ddebugj = ddebug[ifree[j]]
;; Skip this parameter if we already computed its derivative
;; explicitly, and we are not debugging.
if (dsidej EQ 3) AND (ddebugj EQ 0) then continue
if (dsidej EQ 3) AND (ddebugj EQ 1) then $
print, ifree[j], format='("FJAC PARM ",I0)'
xp = xall
xp[ifree[j]] = xp[ifree[j]] + h[j]
mperr = 0
fp = mpfit_call(fcn, xp, _EXTRA=fcnargs)
iflag = mperr
if iflag LT 0 then return, !values.d_nan
if ((dsidej GE -1) AND (dsidej LE 1)) OR (dsidej EQ 3) then begin
;; COMPUTE THE ONE-SIDED DERIVATIVE
;; Note optimization fjac(0:*,j)
fjacj = (fp-fvec)/h[j]
endif else begin
;; COMPUTE THE TWO-SIDED DERIVATIVE
xp[ifree[j]] = xall[ifree[j]] - h[j]
mperr = 0
fm = mpfit_call(fcn, xp, _EXTRA=fcnargs)
iflag = mperr
if iflag LT 0 then return, !values.d_nan
;; Note optimization fjac(0:*,j)
fjacj = (fp-fm)/(2*h[j])
endelse
;; Debugging of explicit derivatives
if (dsidej EQ 3) AND (ddebugj EQ 1) then begin
;; Relative and absolute tolerances
dr = ddrtol[ifree[j]] & da = ddatol[ifree[j]]
;; Explicitly calculated
fjaco = fjac[*,j]
;; If tolerances are zero, then any value for deriv triggers print...
if (da EQ 0 AND dr EQ 0) then $
diffj = (fjaco NE 0 OR fjacj NE 0)
;; ... otherwise the difference must be a greater than tolerance
if (da NE 0 OR dr NE 0) then $
diffj = (abs(fjaco-fjacj) GT (da+abs(fjaco)*dr))
for k = 0L, m-1 do if diffj[k] then begin
print, k, fvec[k], fjaco[k], fjacj[k], fjaco[k]-fjacj[k], $
(fjaco[k] EQ 0)?(0):((fjaco[k]-fjacj[k])/fjaco[k]), $
format='(" ",I10," ",G10.4," ",G10.4," ",G10.4," ",G10.4," ",G10.4)'
endif
endif
;; Store final results in output array
fjac[0,j] = fjacj
endfor
if has_debug_deriv then print, 'FJAC DEBUG END'
; profvals.fdjac2 = profvals.fdjac2 + (systime(1) - prof_start)
return, fjac
end
function mpfit_enorm, vec
COMPILE_OPT strictarr
;; NOTE: it turns out that, for systems that have a lot of data
;; points, this routine is a big computing bottleneck. The extended
;; computations that need to be done cannot be effectively
;; vectorized. The introduction of the FASTNORM configuration
;; parameter allows the user to select a faster routine, which is
;; based on TOTAL() alone.
common mpfit_profile, profvals
; prof_start = systime(1)
common mpfit_config, mpconfig
; Very simple-minded sum-of-squares
if n_elements(mpconfig) GT 0 then if mpconfig.fastnorm then begin
ans = sqrt(total(vec^2))
goto, TERMINATE
endif
common mpfit_machar, machvals
agiant = machvals.rgiant / n_elements(vec)
adwarf = machvals.rdwarf * n_elements(vec)
;; This is hopefully a compromise between speed and robustness.
;; Need to do this because of the possibility of over- or underflow.
mx = max(vec, min=mn)
mx = max(abs([mx,mn]))
if mx EQ 0 then return, vec[0]*0.
if mx GT agiant OR mx LT adwarf then ans = mx * sqrt(total((vec/mx)^2))$
else ans = sqrt( total(vec^2) )
TERMINATE:
; profvals.enorm = profvals.enorm + (systime(1) - prof_start)
return, ans
end
; **********
;
; subroutine qrfac
;
; this subroutine uses householder transformations with column
; pivoting (optional) to compute a qr factorization of the
; m by n matrix a. that is, qrfac determines an orthogonal
; matrix q, a permutation matrix p, and an upper trapezoidal
; matrix r with diagonal elements of nonincreasing magnitude,
; such that a*p = q*r. the householder transformation for
; column k, k = 1,2,...,min(m,n), is of the form
;
; t
; i - (1/u(k))*u*u
;
; where u has zeros in the first k-1 positions. the form of
; this transformation and the method of pivoting first
; appeared in the corresponding linpack subroutine.
;
; the subroutine statement is
;
; subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
;
; where
;
; m is a positive integer input variable set to the number
; of rows of a.
;
; n is a positive integer input variable set to the number
; of columns of a.
;
; a is an m by n array. on input a contains the matrix for
; which the qr factorization is to be computed. on output
; the strict upper trapezoidal part of a contains the strict
; upper trapezoidal part of r, and the lower trapezoidal
; part of a contains a factored form of q (the non-trivial
; elements of the u vectors described above).
;
; lda is a positive integer input variable not less than m
; which specifies the leading dimension of the array a.
;
; pivot is a logical input variable. if pivot is set true,
; then column pivoting is enforced. if pivot is set false,
; then no column pivoting is done.
;
; ipvt is an integer output array of length lipvt. ipvt
; defines the permutation matrix p such that a*p = q*r.
; column j of p is column ipvt(j) of the identity matrix.
; if pivot is false, ipvt is not referenced.
;
; lipvt is a positive integer input variable. if pivot is false,
; then lipvt may be as small as 1. if pivot is true, then
; lipvt must be at least n.
;
; rdiag is an output array of length n which contains the
; diagonal elements of r.
;
; acnorm is an output array of length n which contains the
; norms of the corresponding columns of the input matrix a.
; if this information is not needed, then acnorm can coincide
; with rdiag.
;
; wa is a work array of length n. if pivot is false, then wa
; can coincide with rdiag.
;
; subprograms called
;
; minpack-supplied ... dpmpar,enorm
;
; fortran-supplied ... dmax1,dsqrt,min0
;
; argonne national laboratory. minpack project. march 1980.
; burton s. garbow, kenneth e. hillstrom, jorge j. more
;
; **********
;
; PIVOTING / PERMUTING:
;
; Upon return, A(*,*) is in standard parameter order, A(*,IPVT) is in
; permuted order.
;
; RDIAG is in permuted order.
;
; ACNORM is in standard parameter order.
;
; NOTE: in IDL the factors appear slightly differently than described
; above. The matrix A is still m x n where m >= n.
;
; The "upper" triangular matrix R is actually stored in the strict
; lower left triangle of A under the standard notation of IDL.
;
; The reflectors that generate Q are in the upper trapezoid of A upon
; output.
;
; EXAMPLE: decompose the matrix [[9.,2.,6.],[4.,8.,7.]]
; aa = [[9.,2.,6.],[4.,8.,7.]]
; mpfit_qrfac, aa, aapvt, rdiag, aanorm
; IDL> print, aa
; 1.81818* 0.181818* 0.545455*
; -8.54545+ 1.90160* 0.432573*
; IDL> print, rdiag
; -11.0000+ -7.48166+
;
; The components marked with a * are the components of the
; reflectors, and those marked with a + are components of R.
;
; To reconstruct Q and R we proceed as follows. First R.
; r = fltarr(m, n)
; for i = 0, n-1 do r(0:i,i) = aa(0:i,i) ; fill in lower diag
; r(lindgen(n)*(m+1)) = rdiag
;
; Next, Q, which are composed from the reflectors. Each reflector v
; is taken from the upper trapezoid of aa, and converted to a matrix
; via (I - 2 vT . v / (v . vT)).
;
; hh = ident ;; identity matrix
; for i = 0, n-1 do begin
; v = aa(*,i) & if i GT 0 then v(0:i-1) = 0 ;; extract reflector
; hh = hh ## (ident - 2*(v # v)/total(v * v)) ;; generate matrix
; endfor
;
; Test the result:
; IDL> print, hh ## transpose(r)
; 9.00000 4.00000
; 2.00000 8.00000
; 6.00000 7.00000
;
; Note that it is usually never necessary to form the Q matrix
; explicitly, and MPFIT does not.
pro mpfit_qrfac, a, ipvt, rdiag, acnorm, pivot=pivot
COMPILE_OPT strictarr
sz = size(a)
m = sz[1]
n = sz[2]
common mpfit_machar, machvals
common mpfit_profile, profvals
; prof_start = systime(1)
MACHEP0 = machvals.machep
DWARF = machvals.minnum
;; Compute the initial column norms and initialize arrays
acnorm = make_array(n, value=a[0]*0.)
for j = 0L, n-1 do $
acnorm[j] = mpfit_enorm(a[*,j])
rdiag = acnorm
wa = rdiag
ipvt = lindgen(n)
;; Reduce a to r with householder transformations
minmn = min([m,n])
for j = 0L, minmn-1 do begin
if NOT keyword_set(pivot) then goto, HOUSE1
;; Bring the column of largest norm into the pivot position
rmax = max(rdiag[j:*])
kmax = where(rdiag[j:*] EQ rmax, ct) + j
if ct LE 0 then goto, HOUSE1
kmax = kmax[0]
;; Exchange rows via the pivot only. Avoid actually exchanging
;; the rows, in case there is lots of memory transfer. The
;; exchange occurs later, within the body of MPFIT, after the
;; extraneous columns of the matrix have been shed.
if kmax NE j then begin
temp = ipvt[j] & ipvt[j] = ipvt[kmax] & ipvt[kmax] = temp
rdiag[kmax] = rdiag[j]
wa[kmax] = wa[j]
endif
HOUSE1:
;; Compute the householder transformation to reduce the jth
;; column of A to a multiple of the jth unit vector
lj = ipvt[j]
ajj = a[j:*,lj]
ajnorm = mpfit_enorm(ajj)
if ajnorm EQ 0 then goto, NEXT_ROW
if a[j,lj] LT 0 then ajnorm = -ajnorm
ajj = ajj / ajnorm
ajj[0] = ajj[0] + 1
;; *** Note optimization a(j:*,j)
a[j,lj] = ajj
;; Apply the transformation to the remaining columns
;; and update the norms
;; NOTE to SELF: tried to optimize this by removing the loop,
;; but it actually got slower. Reverted to "for" loop to keep
;; it simple.
if j+1 LT n then begin
for k=j+1, n-1 do begin
lk = ipvt[k]
ajk = a[j:*,lk]
;; *** Note optimization a(j:*,lk)
;; (corrected 20 Jul 2000)
if a[j,lj] NE 0 then $
a[j,lk] = ajk - ajj * total(ajk*ajj)/a[j,lj]
if keyword_set(pivot) AND rdiag[k] NE 0 then begin
temp = a[j,lk]/rdiag[k]
rdiag[k] = rdiag[k] * sqrt((1.-temp^2) > 0)
temp = rdiag[k]/wa[k]
if 0.05D*temp*temp LE MACHEP0 then begin
rdiag[k] = mpfit_enorm(a[j+1:*,lk])
wa[k] = rdiag[k]
endif
endif
endfor
endif
NEXT_ROW:
rdiag[j] = -ajnorm
endfor
; profvals.qrfac = profvals.qrfac + (systime(1) - prof_start)
return
end
; **********
;
; subroutine qrsolv
;
; given an m by n matrix a, an n by n diagonal matrix d,
; and an m-vector b, the problem is to determine an x which
; solves the system
;
; a*x = b , d*x = 0 ,
;
; in the least squares sense.
;
; this subroutine completes the solution of the problem
; if it is provided with the necessary information from the
; qr factorization, with column pivoting, of a. that is, if
; a*p = q*r, where p is a permutation matrix, q has orthogonal
; columns, and r is an upper triangular matrix with diagonal
; elements of nonincreasing magnitude, then qrsolv expects
; the full upper triangle of r, the permutation matrix p,
; and the first n components of (q transpose)*b. the system
; a*x = b, d*x = 0, is then equivalent to
;
; t t
; r*z = q *b , p *d*p*z = 0 ,
;
; where x = p*z. if this system does not have full rank,
; then a least squares solution is obtained. on output qrsolv
; also provides an upper triangular matrix s such that
;
; t t t
; p *(a *a + d*d)*p = s *s .
;
; s is computed within qrsolv and may be of separate interest.
;
; the subroutine statement is
;
; subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
;
; where
;
; n is a positive integer input variable set to the order of r.
;
; r is an n by n array. on input the full upper triangle
; must contain the full upper triangle of the matrix r.
; on output the full upper triangle is unaltered, and the
; strict lower triangle contains the strict upper triangle
; (transposed) of the upper triangular matrix s.
;
; ldr is a positive integer input variable not less than n
; which specifies the leading dimension of the array r.
;
; ipvt is an integer input array of length n which defines the
; permutation matrix p such that a*p = q*r. column j of p
; is column ipvt(j) of the identity matrix.
;
; diag is an input array of length n which must contain the
; diagonal elements of the matrix d.
;
; qtb is an input array of length n which must contain the first
; n elements of the vector (q transpose)*b.
;
; x is an output array of length n which contains the least
; squares solution of the system a*x = b, d*x = 0.
;
; sdiag is an output array of length n which contains the
; diagonal elements of the upper triangular matrix s.
;
; wa is a work array of length n.
;
; subprograms called
;
; fortran-supplied ... dabs,dsqrt
;
; argonne national laboratory. minpack project. march 1980.
; burton s. garbow, kenneth e. hillstrom, jorge j. more
;
pro mpfit_qrsolv, r, ipvt, diag, qtb, x, sdiag
COMPILE_OPT strictarr
sz = size(r)
m = sz[1]
n = sz[2]
delm = lindgen(n) * (m+1) ;; Diagonal elements of r
common mpfit_profile, profvals
; prof_start = systime(1)
;; copy r and (q transpose)*b to preserve input and initialize s.
;; in particular, save the diagonal elements of r in x.
for j = 0L, n-1 do $
r[j:n-1,j] = r[j,j:n-1]
x = r[delm]
wa = qtb
;; Below may look strange, but it's so we can keep the right precision
zero = qtb[0]*0.
half = zero + 0.5
quart = zero + 0.25
;; Eliminate the diagonal matrix d using a givens rotation
for j = 0L, n-1 do begin
l = ipvt[j]
if diag[l] EQ 0 then goto, STORE_RESTORE
sdiag[j:*] = 0
sdiag[j] = diag[l]
;; The transformations to eliminate the row of d modify only a
;; single element of (q transpose)*b beyond the first n, which
;; is initially zero.
qtbpj = zero
for k = j, n-1 do begin
if sdiag[k] EQ 0 then goto, ELIM_NEXT_LOOP
if abs(r[k,k]) LT abs(sdiag[k]) then begin
cotan = r[k,k]/sdiag[k]
sine = half/sqrt(quart + quart*cotan*cotan)
cosine = sine*cotan
endif else begin
tang = sdiag[k]/r[k,k]
cosine = half/sqrt(quart + quart*tang*tang)
sine = cosine*tang
endelse
;; Compute the modified diagonal element of r and the
;; modified element of ((q transpose)*b,0).
r[k,k] = cosine*r[k,k] + sine*sdiag[k]
temp = cosine*wa[k] + sine*qtbpj
qtbpj = -sine*wa[k] + cosine*qtbpj
wa[k] = temp
;; Accumulate the transformation in the row of s
if n GT k+1 then begin
temp = cosine*r[k+1:n-1,k] + sine*sdiag[k+1:n-1]
sdiag[k+1:n-1] = -sine*r[k+1:n-1,k] + cosine*sdiag[k+1:n-1]
r[k+1:n-1,k] = temp
endif
ELIM_NEXT_LOOP:
endfor
STORE_RESTORE:
sdiag[j] = r[j,j]
r[j,j] = x[j]
endfor
;; Solve the triangular system for z. If the system is singular
;; then obtain a least squares solution
nsing = n
wh = where(sdiag EQ 0, ct)
if ct GT 0 then begin
nsing = wh[0]
wa[nsing:*] = 0
endif
if nsing GE 1 then begin
wa[nsing-1] = wa[nsing-1]/sdiag[nsing-1] ;; Degenerate case
;; *** Reverse loop ***
for j=nsing-2,0,-1 do begin
sum = total(r[j+1:nsing-1,j]*wa[j+1:nsing-1])
wa[j] = (wa[j]-sum)/sdiag[j]
endfor
endif
;; Permute the components of z back to components of x
x[ipvt] = wa
; profvals.qrsolv = profvals.qrsolv + (systime(1) - prof_start)
return
end
;
; subroutine lmpar
;
; given an m by n matrix a, an n by n nonsingular diagonal
; matrix d, an m-vector b, and a positive number delta,
; the problem is to determine a value for the parameter
; par such that if x solves the system
;
; a*x = b , sqrt(par)*d*x = 0 ,
;
; in the least squares sense, and dxnorm is the euclidean
; norm of d*x, then either par is zero and
;
; (dxnorm-delta) .le. 0.1*delta ,
;
; or par is positive and
;
; abs(dxnorm-delta) .le. 0.1*delta .
;
; this subroutine completes the solution of the problem
; if it is provided with the necessary information from the
; qr factorization, with column pivoting, of a. that is, if
; a*p = q*r, where p is a permutation matrix, q has orthogonal
; columns, and r is an upper triangular matrix with diagonal
; elements of nonincreasing magnitude, then lmpar expects
; the full upper triangle of r, the permutation matrix p,
; and the first n components of (q transpose)*b. on output
; lmpar also provides an upper triangular matrix s such that
;
; t t t
; p *(a *a + par*d*d)*p = s *s .
;
; s is employed within lmpar and may be of separate interest.
;
; only a few iterations are generally needed for convergence
; of the algorithm. if, however, the limit of 10 iterations
; is reached, then the output par will contain the best
; value obtained so far.
;
; the subroutine statement is
;
; subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
; wa1,wa2)
;
; where
;
; n is a positive integer input variable set to the order of r.
;
; r is an n by n array. on input the full upper triangle
; must contain the full upper triangle of the matrix r.
; on output the full upper triangle is unaltered, and the
; strict lower triangle contains the strict upper triangle
; (transposed) of the upper triangular matrix s.
;
; ldr is a positive integer input variable not less than n
; which specifies the leading dimension of the array r.
;
; ipvt is an integer input array of length n which defines the
; permutation matrix p such that a*p = q*r. column j of p
; is column ipvt(j) of the identity matrix.
;
; diag is an input array of length n which must contain the
; diagonal elements of the matrix d.
;
; qtb is an input array of length n which must contain the first
; n elements of the vector (q transpose)*b.
;
; delta is a positive input variable which specifies an upper
; bound on the euclidean norm of d*x.
;
; par is a nonnegative variable. on input par contains an
; initial estimate of the levenberg-marquardt parameter.
; on output par contains the final estimate.
;
; x is an output array of length n which contains the least
; squares solution of the system a*x = b, sqrt(par)*d*x = 0,
; for the output par.
;
; sdiag is an output array of length n which contains the
; diagonal elements of the upper triangular matrix s.
;
; wa1 and wa2 are work arrays of length n.
;
; subprograms called
;
; minpack-supplied ... dpmpar,enorm,qrsolv
;
; fortran-supplied ... dabs,dmax1,dmin1,dsqrt
;
; argonne national laboratory. minpack project. march 1980.
; burton s. garbow, kenneth e. hillstrom, jorge j. more
;
function mpfit_lmpar, r, ipvt, diag, qtb, delta, x, sdiag, par=par
COMPILE_OPT strictarr
common mpfit_machar, machvals
common mpfit_profile, profvals
; prof_start = systime(1)
MACHEP0 = machvals.machep
DWARF = machvals.minnum
sz = size(r)
m = sz[1]
n = sz[2]
delm = lindgen(n) * (m+1) ;; Diagonal elements of r
;; Compute and store in x the gauss-newton direction. If the
;; jacobian is rank-deficient, obtain a least-squares solution
nsing = n
wa1 = qtb
rthresh = max(abs(r[delm]))*MACHEP0
wh = where(abs(r[delm]) LT rthresh, ct)
if ct GT 0 then begin
nsing = wh[0]
wa1[wh[0]:*] = 0
endif
if nsing GE 1 then begin
;; *** Reverse loop ***
for j=nsing-1,0,-1 do begin
wa1[j] = wa1[j]/r[j,j]
if (j-1 GE 0) then $
wa1[0:(j-1)] = wa1[0:(j-1)] - r[0:(j-1),j]*wa1[j]
endfor
endif
;; Note: ipvt here is a permutation array
x[ipvt] = wa1
;; Initialize the iteration counter. Evaluate the function at the
;; origin, and test for acceptance of the gauss-newton direction
iter = 0L
wa2 = diag * x
dxnorm = mpfit_enorm(wa2)
fp = dxnorm - delta
if fp LE 0.1*delta then goto, TERMINATE
;; If the jacobian is not rank deficient, the newton step provides a
;; lower bound, parl, for the zero of the function. Otherwise set
;; this bound to zero.
zero = wa2[0]*0.
parl = zero
if nsing GE n then begin
wa1 = diag[ipvt]*wa2[ipvt]/dxnorm
wa1[0] = wa1[0] / r[0,0] ;; Degenerate case
for j=1L, n-1 do begin ;; Note "1" here, not zero
sum = total(r[0:(j-1),j]*wa1[0:(j-1)])
wa1[j] = (wa1[j] - sum)/r[j,j]
endfor
temp = mpfit_enorm(wa1)
parl = ((fp/delta)/temp)/temp
endif
;; Calculate an upper bound, paru, for the zero of the function
for j=0L, n-1 do begin
sum = total(r[0:j,j]*qtb[0:j])
wa1[j] = sum/diag[ipvt[j]]
endfor
gnorm = mpfit_enorm(wa1)
paru = gnorm/delta
if paru EQ 0 then paru = DWARF/min([delta,0.1])
;; If the input par lies outside of the interval (parl,paru), set
;; par to the closer endpoint
par = max([par,parl])
par = min([par,paru])
if par EQ 0 then par = gnorm/dxnorm
;; Beginning of an interation
ITERATION:
iter = iter + 1
;; Evaluate the function at the current value of par
if par EQ 0 then par = max([DWARF, paru*0.001])
temp = sqrt(par)
wa1 = temp * diag
mpfit_qrsolv, r, ipvt, wa1, qtb, x, sdiag
wa2 = diag*x
dxnorm = mpfit_enorm(wa2)
temp = fp
fp = dxnorm - delta
if (abs(fp) LE 0.1D*delta) $
OR ((parl EQ 0) AND (fp LE temp) AND (temp LT 0)) $
OR (iter EQ 10) then goto, TERMINATE
;; Compute the newton correction
wa1 = diag[ipvt]*wa2[ipvt]/dxnorm
for j=0L,n-2 do begin
wa1[j] = wa1[j]/sdiag[j]
wa1[j+1:n-1] = wa1[j+1:n-1] - r[j+1:n-1,j]*wa1[j]
endfor
wa1[n-1] = wa1[n-1]/sdiag[n-1] ;; Degenerate case
temp = mpfit_enorm(wa1)
parc = ((fp/delta)/temp)/temp
;; Depending on the sign of the function, update parl or paru
if fp GT 0 then parl = max([parl,par])
if fp LT 0 then paru = min([paru,par])
;; Compute an improved estimate for par
par = max([parl, par+parc])
;; End of an iteration
goto, ITERATION
TERMINATE:
;; Termination
; profvals.lmpar = profvals.lmpar + (systime(1) - prof_start)
if iter EQ 0 then return, par[0]*0.
return, par
end
;; Procedure to tie one parameter to another.
pro mpfit_tie, p, _ptied
COMPILE_OPT strictarr
if n_elements(_ptied) EQ 0 then return
if n_elements(_ptied) EQ 1 then if _ptied[0] EQ '' then return
for _i = 0L, n_elements(_ptied)-1 do begin
if _ptied[_i] EQ '' then goto, NEXT_TIE
_cmd = 'p['+strtrim(_i,2)+'] = '+_ptied[_i]
_err = execute(_cmd)
if _err EQ 0 then begin
message, 'ERROR: Tied expression "'+_cmd+'" failed.'
return
endif
NEXT_TIE:
endfor
end
;; Default print procedure
pro mpfit_defprint, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, $
p11, p12, p13, p14, p15, p16, p17, p18, $
format=format, unit=unit0, _EXTRA=extra
COMPILE_OPT strictarr
if n_elements(unit0) EQ 0 then unit = -1 else unit = round(unit0[0])
if n_params() EQ 0 then printf, unit, '' $
else if n_params() EQ 1 then printf, unit, p1, format=format $
else if n_params() EQ 2 then printf, unit, p1, p2, format=format $
else if n_params() EQ 3 then printf, unit, p1, p2, p3, format=format $
else if n_params() EQ 4 then printf, unit, p1, p2, p4, format=format
return
end
;; Default procedure to be called every iteration. It simply prints
;; the parameter values.
pro mpfit_defiter, fcn, x, iter, fnorm, FUNCTARGS=fcnargs, $
quiet=quiet, iterstop=iterstop, iterkeybyte=iterkeybyte, $
parinfo=parinfo, iterprint=iterprint0, $
format=fmt, pformat=pformat, dof=dof0, _EXTRA=iterargs
COMPILE_OPT strictarr
common mpfit_error, mperr
mperr = 0
if keyword_set(quiet) then goto, DO_ITERSTOP
if n_params() EQ 3 then begin
fvec = mpfit_call(fcn, x, _EXTRA=fcnargs)
fnorm = mpfit_enorm(fvec)^2
endif
;; Determine which parameters to print
nprint = n_elements(x)
iprint = lindgen(nprint)
if n_elements(iterprint0) EQ 0 then iterprint = 'MPFIT_DEFPRINT' $
else iterprint = strtrim(iterprint0[0],2)
if n_elements(dof0) EQ 0 then dof = 1L else dof = floor(dof0[0])
call_procedure, iterprint, iter, fnorm, dof, $
format='("Iter ",I6," CHI-SQUARE = ",G15.8," DOF = ",I0)', $
_EXTRA=iterargs
if n_elements(fmt) GT 0 then begin
call_procedure, iterprint, x, format=fmt, _EXTRA=iterargs
endif else begin
if n_elements(pformat) EQ 0 then pformat = '(G40.6)'
parname = 'P('+strtrim(iprint,2)+')'
pformats = strarr(nprint) + pformat
if n_elements(parinfo) GT 0 then begin
parinfo_tags = tag_names(parinfo)
wh = where(parinfo_tags EQ 'PARNAME', ct)
if ct EQ 1 then begin
wh = where(parinfo.parname NE '', ct)
if ct GT 0 then $
parname[wh] = strmid(parinfo[wh].parname,0,25)
endif
wh = where(parinfo_tags EQ 'MPPRINT', ct)
if ct EQ 1 then begin
iprint = where(parinfo.mpprint EQ 1, nprint)
if nprint EQ 0 then goto, DO_ITERSTOP
endif
wh = where(parinfo_tags EQ 'MPFORMAT', ct)
if ct EQ 1 then begin
wh = where(parinfo.mpformat NE '', ct)
if ct GT 0 then pformats[wh] = parinfo[wh].mpformat
endif
endif
for i = 0L, nprint-1 do begin
call_procedure, iterprint, parname[iprint[i]], x[iprint[i]], $
format='(" ",A0," = ",'+pformats[iprint[i]]+')', $
_EXTRA=iterargs
endfor
endelse
DO_ITERSTOP:
if n_elements(iterkeybyte) EQ 0 then iterkeybyte = 7b
if keyword_set(iterstop) then begin
k = get_kbrd(0)
if k EQ string(iterkeybyte[0]) then begin
message, 'WARNING: minimization not complete', /info
print, 'Do you want to terminate this procedure? (y/n)', $
format='(A,$)'
k = ''
read, k
if strupcase(strmid(k,0,1)) EQ 'Y' then begin
message, 'WARNING: Procedure is terminating.', /info
mperr = -1
endif
endif
endif
return
end
;; Procedure to parse the parameter values in PARINFO
pro mpfit_parinfo, parinfo, tnames, tag, values, default=def, status=status, $
n_param=n
COMPILE_OPT strictarr
status = 0
if n_elements(n) EQ 0 then n = n_elements(parinfo)
if n EQ 0 then begin
if n_elements(def) EQ 0 then return
values = def
status = 1
return
endif
if n_elements(parinfo) EQ 0 then goto, DO_DEFAULT
if n_elements(tnames) EQ 0 then tnames = tag_names(parinfo)
wh = where(tnames EQ tag, ct)
if ct EQ 0 then begin
DO_DEFAULT:
if n_elements(def) EQ 0 then return
values = make_array(n, value=def[0])
values[0] = def
endif else begin
values = parinfo.(wh[0])
np = n_elements(parinfo)
nv = n_elements(values)
values = reform(values[*], nv/np, np)
endelse
status = 1
return
end
; **********
;
; subroutine covar
;
; given an m by n matrix a, the problem is to determine
; the covariance matrix corresponding to a, defined as
;
; t
; inverse(a *a) .
;
; this subroutine completes the solution of the problem
; if it is provided with the necessary information from the
; qr factorization, with column pivoting, of a. that is, if
; a*p = q*r, where p is a permutation matrix, q has orthogonal
; columns, and r is an upper triangular matrix with diagonal
; elements of nonincreasing magnitude, then covar expects
; the full upper triangle of r and the permutation matrix p.
; the covariance matrix is then computed as
;
; t t
; p*inverse(r *r)*p .
;
; if a is nearly rank deficient, it may be desirable to compute
; the covariance matrix corresponding to the linearly independent
; columns of a. to define the numerical rank of a, covar uses
; the tolerance tol. if l is the largest integer such that
;
; abs(r(l,l)) .gt. tol*abs(r(1,1)) ,
;
; then covar computes the covariance matrix corresponding to
; the first l columns of r. for k greater than l, column
; and row ipvt(k) of the covariance matrix are set to zero.
;
; the subroutine statement is
;
; subroutine covar(n,r,ldr,ipvt,tol,wa)
;
; where
;
; n is a positive integer input variable set to the order of r.
;
; r is an n by n array. on input the full upper triangle must
; contain the full upper triangle of the matrix r. on output
; r contains the square symmetric covariance matrix.
;
; ldr is a positive integer input variable not less than n
; which specifies the leading dimension of the array r.
;
; ipvt is an integer input array of length n which defines the
; permutation matrix p such that a*p = q*r. column j of p
; is column ipvt(j) of the identity matrix.
;
; tol is a nonnegative input variable used to define the
; numerical rank of a in the manner described above.
;
; wa is a work array of length n.
;
; subprograms called
;
; fortran-supplied ... dabs
;
; argonne national laboratory. minpack project. august 1980.
; burton s. garbow, kenneth e. hillstrom, jorge j. more
;
; **********
function mpfit_covar, rr, ipvt, tol=tol
COMPILE_OPT strictarr
sz = size(rr)
if sz[0] NE 2 then begin
message, 'ERROR: r must be a two-dimensional matrix'
return, -1L
endif
n = sz[1]
if n NE sz[2] then begin
message, 'ERROR: r must be a square matrix'
return, -1L
endif
zero = rr[0] * 0.
one = zero + 1.
if n_elements(ipvt) EQ 0 then ipvt = lindgen(n)
r = rr
r = reform(rr, n, n, /overwrite)
;; Form the inverse of r in the full upper triangle of r
l = -1L
if n_elements(tol) EQ 0 then tol = one*1.E-14
tolr = tol * abs(r[0,0])
for k = 0L, n-1 do begin
if abs(r[k,k]) LE tolr then goto, INV_END_LOOP
r[k,k] = one/r[k,k]
for j = 0L, k-1 do begin
temp = r[k,k] * r[j,k]
r[j,k] = zero
r[0,k] = r[0:j,k] - temp*r[0:j,j]
endfor
l = k
endfor
INV_END_LOOP:
;; Form the full upper triangle of the inverse of (r transpose)*r
;; in the full upper triangle of r
if l GE 0 then $
for k = 0L, l do begin
for j = 0L, k-1 do begin
temp = r[j,k]
r[0,j] = r[0:j,j] + temp*r[0:j,k]
endfor
temp = r[k,k]
r[0,k] = temp * r[0:k,k]
endfor
;; Form the full lower triangle of the covariance matrix
;; in the strict lower triangle of r and in wa
wa = replicate(r[0,0], n)
for j = 0L, n-1 do begin
jj = ipvt[j]
sing = j GT l
for i = 0L, j do begin
if sing then r[i,j] = zero
ii = ipvt[i]
if ii GT jj then r[ii,jj] = r[i,j]
if ii LT jj then r[jj,ii] = r[i,j]
endfor
wa[jj] = r[j,j]
endfor
;; Symmetrize the covariance matrix in r
for j = 0L, n-1 do begin
r[0:j,j] = r[j,0:j]
r[j,j] = wa[j]
endfor
return, r
end
;; Parse the RCSID revision number
function mpfit_revision
;; NOTE: this string is changed every time an RCS check-in occurs
revision = '$Revision: 1.82 $'
;; Parse just the version number portion
revision = stregex(revision,'\$'+'Revision: *([0-9.]+) *'+'\$',/extract,/sub)
revision = revision[1]
return, revision
end
;; Parse version numbers of the form 'X.Y'
function mpfit_parse_version, version
sz = size(version)
if sz[sz[0]+1] NE 7 then return, 0
s = stregex(version[0], '^([0-9]+)\.([0-9]+)$', /extract,/sub)
if s[0] NE version[0] then return, 0
return, long(s[1:2])
end
;; Enforce a minimum version number
function mpfit_min_version, version, min_version
mv = mpfit_parse_version(min_version)
if mv[0] EQ 0 then return, 0
v = mpfit_parse_version(version)
;; Compare version components
if v[0] LT mv[0] then return, 0
if v[1] LT mv[1] then return, 0
return, 1
end
; Manually reset recursion fencepost if the user gets in trouble
pro mpfit_reset_recursion
common mpfit_fencepost, mpfit_fencepost_active
mpfit_fencepost_active = 0
end
; **********
;
; subroutine lmdif
;
; the purpose of lmdif is to minimize the sum of the squares of
; m nonlinear functions in n variables by a modification of
; the levenberg-marquardt algorithm. the user must provide a
; subroutine which calculates the functions. the jacobian is
; then calculated by a forward-difference approximation.
;
; the subroutine statement is
;
; subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn,
; diag,mode,factor,nprint,info,nfev,fjac,
; ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4)
;
; where
;
; fcn is the name of the user-supplied subroutine which
; calculates the functions. fcn must be declared
; in an external statement in the user calling
; program, and should be written as follows.
;
; subroutine fcn(m,n,x,fvec,iflag)
; integer m,n,iflag
; double precision x(n),fvec(m)
; ----------
; calculate the functions at x and
; return this vector in fvec.
; ----------
; return
; end
;
; the value of iflag should not be changed by fcn unless
; the user wants to terminate execution of lmdif.
; in this case set iflag to a negative integer.
;
; m is a positive integer input variable set to the number
; of functions.
;
; n is a positive integer input variable set to the number
; of variables. n must not exceed m.
;
; x is an array of length n. on input x must contain
; an initial estimate of the solution vector. on output x
; contains the final estimate of the solution vector.
;
; fvec is an output array of length m which contains
; the functions evaluated at the output x.
;
; ftol is a nonnegative input variable. termination
; occurs when both the actual and predicted relative
; reductions in the sum of squares are at most ftol.
; therefore, ftol measures the relative error desired
; in the sum of squares.
;
; xtol is a nonnegative input variable. termination
; occurs when the relative error between two consecutive
; iterates is at most xtol. therefore, xtol measures the
; relative error desired in the approximate solution.
;
; gtol is a nonnegative input variable. termination
; occurs when the cosine of the angle between fvec and
; any column of the jacobian is at most gtol in absolute
; value. therefore, gtol measures the orthogonality
; desired between the function vector and the columns
; of the jacobian.
;
; maxfev is a positive integer input variable. termination
; occurs when the number of calls to fcn is at least
; maxfev by the end of an iteration.
;
; epsfcn is an input variable used in determining a suitable
; step length for the forward-difference approximation. this
; approximation assumes that the relative errors in the
; functions are of the order of epsfcn. if epsfcn is less
; than the machine precision, it is assumed that the relative
; errors in the functions are of the order of the machine
; precision.
;
; diag is an array of length n. if mode = 1 (see
; below), diag is internally set. if mode = 2, diag
; must contain positive entries that serve as
; multiplicative scale factors for the variables.
;
; mode is an integer input variable. if mode = 1, the
; variables will be scaled internally. if mode = 2,
; the scaling is specified by the input diag. other
; values of mode are equivalent to mode = 1.
;
; factor is a positive input variable used in determining the
; initial step bound. this bound is set to the product of
; factor and the euclidean norm of diag*x if nonzero, or else
; to factor itself. in most cases factor should lie in the
; interval (.1,100.). 100. is a generally recommended value.
;
; nprint is an integer input variable that enables controlled
; printing of iterates if it is positive. in this case,
; fcn is called with iflag = 0 at the beginning of the first
; iteration and every nprint iterations thereafter and
; immediately prior to return, with x and fvec available
; for printing. if nprint is not positive, no special calls
; of fcn with iflag = 0 are made.
;
; info is an integer output variable. if the user has
; terminated execution, info is set to the (negative)
; value of iflag. see description of fcn. otherwise,
; info is set as follows.
;
; info = 0 improper input parameters.
;
; info = 1 both actual and predicted relative reductions
; in the sum of squares are at most ftol.
;
; info = 2 relative error between two consecutive iterates
; is at most xtol.
;
; info = 3 conditions for info = 1 and info = 2 both hold.
;
; info = 4 the cosine of the angle between fvec and any
; column of the jacobian is at most gtol in
; absolute value.
;
; info = 5 number of calls to fcn has reached or
; exceeded maxfev.
;
; info = 6 ftol is too small. no further reduction in
; the sum of squares is possible.
;
; info = 7 xtol is too small. no further improvement in
; the approximate solution x is possible.
;
; info = 8 gtol is too small. fvec is orthogonal to the
; columns of the jacobian to machine precision.
;
; nfev is an integer output variable set to the number of
; calls to fcn.
;
; fjac is an output m by n array. the upper n by n submatrix
; of fjac contains an upper triangular matrix r with
; diagonal elements of nonincreasing magnitude such that
;
; t t t
; p *(jac *jac)*p = r *r,
;
; where p is a permutation matrix and jac is the final
; calculated jacobian. column j of p is column ipvt(j)
; (see below) of the identity matrix. the lower trapezoidal
; part of fjac contains information generated during
; the computation of r.
;
; ldfjac is a positive integer input variable not less than m
; which specifies the leading dimension of the array fjac.
;
; ipvt is an integer output array of length n. ipvt
; defines a permutation matrix p such that jac*p = q*r,
; where jac is the final calculated jacobian, q is
; orthogonal (not stored), and r is upper triangular
; with diagonal elements of nonincreasing magnitude.
; column j of p is column ipvt(j) of the identity matrix.
;
; qtf is an output array of length n which contains
; the first n elements of the vector (q transpose)*fvec.
;
; wa1, wa2, and wa3 are work arrays of length n.
;
; wa4 is a work array of length m.
;
; subprograms called
;
; user-supplied ...... fcn
;
; minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac
;
; fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
;
; argonne national laboratory. minpack project. march 1980.
; burton s. garbow, kenneth e. hillstrom, jorge j. more
;
; **********
function dustem_mpfit, fcn, xall, FUNCTARGS=fcnargs, SCALE_FCN=scalfcn, $
ftol=ftol0, xtol=xtol0, gtol=gtol0, epsfcn=epsfcn, $
resdamp=damp0, $
nfev=nfev, maxiter=maxiter, errmsg=errmsg, $
factor=factor0, nprint=nprint0, STATUS=info, $
iterproc=iterproc0, iterargs=iterargs, iterstop=ss,$
iterkeystop=iterkeystop, $
niter=iter, nfree=nfree, npegged=npegged, dof=dof, $
diag=diag, rescale=rescale, autoderivative=autoderiv0, $
pfree_index=ifree, $
perror=perror, covar=covar, nocovar=nocovar, $
bestnorm=fnorm, best_resid=fvec, $
best_fjac=output_fjac, calc_fjac=calc_fjac, $
parinfo=parinfo, quiet=quiet, nocatch=nocatch, $
fastnorm=fastnorm0, proc=proc, query=query, $
external_state=state, external_init=extinit, $
external_fvec=efvec, external_fjac=efjac, $
version=version, min_version=min_version0
COMPILE_OPT strictarr
info = 0L
errmsg = ''
;; Compute the revision number, to be returned in the VERSION and
;; QUERY keywords.
common mpfit_revision_common, mpfit_revision_str
if n_elements(mpfit_revision_str) EQ 0 then $
mpfit_revision_str = mpfit_revision()
version = mpfit_revision_str
if keyword_set(query) then begin
if n_elements(min_version0) GT 0 then $
if mpfit_min_version(version, min_version0[0]) EQ 0 then $
return, 0
return, 1
endif
if n_elements(min_version0) GT 0 then $
if mpfit_min_version(version, min_version0[0]) EQ 0 then begin
message, 'ERROR: minimum required version '+min_version0[0]+' not satisfied', /info
return, !values.d_nan
endif
if n_params() EQ 0 then begin
message, "USAGE: PARMS = MPFIT('MYFUNCT', START_PARAMS, ... )", /info
return, !values.d_nan
endif
;; Use of double here not a problem since f/x/gtol are all only used
;; in comparisons
if n_elements(ftol0) EQ 0 then ftol = 1.D-10 else ftol = ftol0[0]
if n_elements(xtol0) EQ 0 then xtol = 1.D-10 else xtol = xtol0[0]
if n_elements(gtol0) EQ 0 then gtol = 1.D-10 else gtol = gtol0[0]
if n_elements(factor0) EQ 0 then factor = 100. else factor = factor0[0]
if n_elements(nprint0) EQ 0 then nprint = 1 else nprint = nprint0[0]
if n_elements(iterproc0) EQ 0 then iterproc = 'MPFIT_DEFITER' else iterproc = iterproc0[0]
if n_elements(autoderiv0) EQ 0 then autoderiv = 1 else autoderiv = autoderiv0[0]
if n_elements(fastnorm0) EQ 0 then fastnorm = 0 else fastnorm = fastnorm0[0]
if n_elements(damp0) EQ 0 then damp = 0 else damp = damp0[0]
;; These are special configuration parameters that can't be easily
;; passed by MPFIT directly.
;; FASTNORM - decide on which sum-of-squares technique to use (1)
;; is fast, (0) is slower
;; PROC - user routine is a procedure (1) or function (0)
;; QANYTIED - set to 1 if any parameters are TIED, zero if none
;; PTIED - array of strings, one for each parameter
common mpfit_config, mpconfig
mpconfig = {fastnorm: keyword_set(fastnorm), proc: 0, nfev: 0L, damp: damp}
common mpfit_machar, machvals
iflag = 0L
catch_msg = 'in MPFIT'
nfree = 0L
npegged = 0L
dof = 0L
output_fjac = 0L
;; Set up a persistent fencepost that prevents recursive calls
common mpfit_fencepost, mpfit_fencepost_active
if n_elements(mpfit_fencepost_active) EQ 0 then mpfit_fencepost_active = 0
if mpfit_fencepost_active then begin
errmsg = 'ERROR: recursion detected; you cannot run MPFIT recursively'
goto, TERMINATE
endif
;; Only activate the fencepost if we are not in debugging mode
if NOT keyword_set(nocatch) then mpfit_fencepost_active = 1
;; Parameter damping doesn't work when user is providing their own
;; gradients.
if damp NE 0 AND NOT keyword_set(autoderiv) then begin
errmsg = 'ERROR: keywords DAMP and AUTODERIV are mutually exclusive'
goto, TERMINATE
endif
;; Process the ITERSTOP and ITERKEYSTOP keywords, and turn this into
;; a set of keywords to pass to MPFIT_DEFITER.
if strupcase(iterproc) EQ 'MPFIT_DEFITER' AND n_elements(iterargs) EQ 0 $
AND keyword_set(ss) then begin
if n_elements(iterkeystop) GT 0 then begin
sz = size(iterkeystop)
tp = sz[sz[0]+1]
if tp EQ 7 then begin
;; String - convert first char to byte
iterkeybyte = (byte(iterkeystop[0]))[0]
endif
if (tp GE 1 AND tp LE 3) OR (tp GE 12 AND tp LE 15) then begin
;; Integer - convert to byte
iterkeybyte = byte(iterkeystop[0])
endif
if n_elements(iterkeybyte) EQ 0 then begin
errmsg = 'ERROR: ITERKEYSTOP must be either a BYTE or STRING'
goto, TERMINATE
endif
iterargs = {iterstop: 1, iterkeybyte: iterkeybyte}
endif else begin
iterargs = {iterstop: 1, iterkeybyte: 7b}
endelse
endif
;; Handle error conditions gracefully
if NOT keyword_set(nocatch) then begin
catch, catcherror
if catcherror NE 0 then begin ;; An error occurred!!!
catch, /cancel
mpfit_fencepost_active = 0
err_string = ''+!error_state.msg
message, /cont, 'Error detected while '+catch_msg+':'
message, /cont, err_string
message, /cont, 'Error condition detected. Returning to MAIN level.'
if errmsg EQ '' then $
errmsg = 'Error detected while '+catch_msg+': '+err_string
if info EQ 0 then info = -18
return, !values.d_nan
endif
endif
mpconfig = create_struct(mpconfig, 'NOCATCH', keyword_set(nocatch))
;; Parse FCN function name - be sure it is a scalar string
sz = size(fcn)
if sz[0] NE 0 then begin
FCN_NAME:
errmsg = 'ERROR: MYFUNCT must be a scalar string'
goto, TERMINATE
endif
if sz[sz[0]+1] NE 7 then goto, FCN_NAME
isext = 0
if fcn EQ '(EXTERNAL)' then begin
if n_elements(efvec) EQ 0 OR n_elements(efjac) EQ 0 then begin
errmsg = 'ERROR: when using EXTERNAL function, EXTERNAL_FVEC '+$
'and EXTERNAL_FJAC must be defined'
goto, TERMINATE
endif
nv = n_elements(efvec)
nj = n_elements(efjac)
if (nj MOD nv) NE 0 then begin
errmsg = 'ERROR: the number of values in EXTERNAL_FJAC must be '+ $
'a multiple of the number of values in EXTERNAL_FVEC'
goto, TERMINATE
endif
isext = 1
endif
;; Parinfo:
;; --------------- STARTING/CONFIG INFO (passed in to routine, not changed)
;; .value - starting value for parameter
;; .fixed - parameter is fixed
;; .limited - a two-element array, if parameter is bounded on
;; lower/upper side
;; .limits - a two-element array, lower/upper parameter bounds, if
;; limited vale is set
;; .step - step size in Jacobian calc, if greater than zero
catch_msg = 'parsing input parameters'
;; Parameters can either be stored in parinfo, or x. Parinfo takes
;; precedence if it exists.
if n_elements(xall) EQ 0 AND n_elements(parinfo) EQ 0 then begin
errmsg = 'ERROR: must pass parameters in P or PARINFO'
goto, TERMINATE
endif
;; Be sure that PARINFO is of the right type
if n_elements(parinfo) GT 0 then begin
;; Make sure the array is 1-D
parinfo = parinfo[*]
parinfo_size = size(parinfo)
if parinfo_size[parinfo_size[0]+1] NE 8 then begin
errmsg = 'ERROR: PARINFO must be a structure.'
goto, TERMINATE
endif
if n_elements(xall) GT 0 AND n_elements(xall) NE n_elements(parinfo) $
then begin
errmsg = 'ERROR: number of elements in PARINFO and P must agree'
goto, TERMINATE
endif
endif
;; If the parameters were not specified at the command line, then
;; extract them from PARINFO
if n_elements(xall) EQ 0 then begin
mpfit_parinfo, parinfo, tagnames, 'VALUE', xall, status=status
if status EQ 0 then begin
errmsg = 'ERROR: either P or PARINFO[*].VALUE must be supplied.'
goto, TERMINATE
endif
sz = size(xall)
;; Convert to double if parameters are not float or double
if sz[sz[0]+1] NE 4 AND sz[sz[0]+1] NE 5 then $
xall = double(xall)
endif
xall = xall[*] ;; Make sure the array is 1-D
npar = n_elements(xall)
zero = xall[0] * 0.
one = zero + 1.
fnorm = -one
fnorm1 = -one
;; TIED parameters?
mpfit_parinfo, parinfo, tagnames, 'TIED', ptied, default='', n=npar
ptied = strtrim(ptied, 2)
wh = where(ptied NE '', qanytied)
qanytied = qanytied GT 0
mpconfig = create_struct(mpconfig, 'QANYTIED', qanytied, 'PTIED', ptied)
;; FIXED parameters ?
mpfit_parinfo, parinfo, tagnames, 'FIXED', pfixed, default=0, n=npar
pfixed = pfixed EQ 1
pfixed = pfixed OR (ptied NE '');; Tied parameters are also effectively fixed
;; Finite differencing step, absolute and relative, and sidedness of deriv.
mpfit_parinfo, parinfo, tagnames, 'STEP', step, default=zero, n=npar
mpfit_parinfo, parinfo, tagnames, 'RELSTEP', dstep, default=zero, n=npar
mpfit_parinfo, parinfo, tagnames, 'MPSIDE', dside, default=0, n=npar
;; Debugging parameters
mpfit_parinfo, parinfo, tagnames, 'MPDERIV_DEBUG', ddebug, default=0, n=npar
mpfit_parinfo, parinfo, tagnames, 'MPDERIV_RELTOL', ddrtol, default=zero, n=npar
mpfit_parinfo, parinfo, tagnames, 'MPDERIV_ABSTOL', ddatol, default=zero, n=npar
;; Maximum and minimum steps allowed to be taken in one iteration
mpfit_parinfo, parinfo, tagnames, 'MPMAXSTEP', maxstep, default=zero, n=npar
mpfit_parinfo, parinfo, tagnames, 'MPMINSTEP', minstep, default=zero, n=npar
qmin = minstep * 0 ;; Remove minstep for now!!
qmax = maxstep NE 0
wh = where(qmin AND qmax AND maxstep LT minstep, ct)
if ct GT 0 then begin
errmsg = 'ERROR: MPMINSTEP is greater than MPMAXSTEP'
goto, TERMINATE
endif
;; Finish up the free parameters
ifree = where(pfixed NE 1, nfree)
if nfree EQ 0 then begin
errmsg = 'ERROR: no free parameters'
goto, TERMINATE
endif
;; An external Jacobian must be checked against the number of
;; parameters
if isext then begin
if (nj/nv) NE nfree then begin
errmsg = string(nv, nfree, nfree, $
format=('("ERROR: EXTERNAL_FJAC must be a ",I0," x ",I0,' + $
'" array, where ",I0," is the number of free parameters")'))
goto, TERMINATE
endif
endif
;; Compose only VARYING parameters
xnew = xall ;; xnew is the set of parameters to be returned
x = xnew[ifree] ;; x is the set of free parameters
; Same for min/max step diagnostics
qmin = qmin[ifree] & minstep = minstep[ifree]
qmax = qmax[ifree] & maxstep = maxstep[ifree]
wh = where(qmin OR qmax, ct)
qminmax = ct GT 0
;; LIMITED parameters ?
mpfit_parinfo, parinfo, tagnames, 'LIMITED', limited, status=st1
mpfit_parinfo, parinfo, tagnames, 'LIMITS', limits, status=st2
if st1 EQ 1 AND st2 EQ 1 then begin
;; Error checking on limits in parinfo
wh = where((limited[0,*] AND xall LT limits[0,*]) OR $
(limited[1,*] AND xall GT limits[1,*]), ct)
if ct GT 0 then begin
errmsg = 'ERROR: parameters are not within PARINFO limits'
goto, TERMINATE
endif
wh = where(limited[0,*] AND limited[1,*] AND $
limits[0,*] GE limits[1,*] AND $
pfixed EQ 0, ct)
if ct GT 0 then begin
errmsg = 'ERROR: PARINFO parameter limits are not consistent'
goto, TERMINATE
endif
;; Transfer structure values to local variables
qulim = limited[1, ifree]
ulim = limits [1, ifree]
qllim = limited[0, ifree]
llim = limits [0, ifree]
wh = where(qulim OR qllim, ct)
if ct GT 0 then qanylim = 1 else qanylim = 0
endif else begin
;; Fill in local variables with dummy values
qulim = lonarr(nfree)
ulim = x * 0.
qllim = qulim
llim = x * 0.
qanylim = 0
endelse
;; Initialize the number of parameters pegged at a hard limit value
wh = where((qulim AND (x EQ ulim)) OR (qllim AND (x EQ llim)), npegged)
n = n_elements(x)
if n_elements(maxiter) EQ 0 then maxiter = 200L
;; Check input parameters for errors
if (n LE 0) OR (ftol LE 0) OR (xtol LE 0) OR (gtol LE 0) $
OR (maxiter LT 0) OR (factor LE 0) then begin
errmsg = 'ERROR: input keywords are inconsistent'
goto, TERMINATE
endif
if keyword_set(rescale) then begin
errmsg = 'ERROR: DIAG parameter scales are inconsistent'
if n_elements(diag) LT n then goto, TERMINATE
wh = where(diag LE 0, ct)
if ct GT 0 then goto, TERMINATE
errmsg = ''
endif
if n_elements(state) NE 0 AND NOT keyword_set(extinit) then begin
szst = size(state)
if szst[szst[0]+1] NE 8 then begin
errmsg = 'EXTERNAL_STATE keyword was not preserved'
status = 0
goto, TERMINATE
endif
if nfree NE n_elements(state.ifree) then begin
BAD_IFREE:
errmsg = 'Number of free parameters must not change from one '+$
'external iteration to the next'
status = 0
goto, TERMINATE
endif
wh = where(ifree NE state.ifree, ct)
if ct GT 0 then goto, BAD_IFREE
tnames = tag_names(state)
for i = 0L, n_elements(tnames)-1 do begin
dummy = execute(tnames[i]+' = state.'+tnames[i])
endfor
wa4 = reform(efvec, n_elements(efvec))
goto, RESUME_FIT
endif
common mpfit_error, mperr
if NOT isext then begin
mperr = 0
catch_msg = 'calling '+fcn
fvec = mpfit_call(fcn, xnew, _EXTRA=fcnargs)
iflag = mperr
if iflag LT 0 then begin
errmsg = 'ERROR: first call to "'+fcn+'" failed'
goto, TERMINATE
endif
endif else begin
fvec = reform(efvec, n_elements(efvec))
endelse
catch_msg = 'calling MPFIT_SETMACHAR'
sz = size(fvec[0])
isdouble = (sz[sz[0]+1] EQ 5)
mpfit_setmachar, double=isdouble
common mpfit_profile, profvals
; prof_start = systime(1)
MACHEP0 = machvals.machep
DWARF = machvals.minnum
szx = size(x)
;; The parameters and the squared deviations should have the same
;; type. Otherwise the MACHAR-based evaluation will fail.
catch_msg = 'checking parameter data'
tp = szx[szx[0]+1]
if tp NE 4 AND tp NE 5 then begin
if NOT keyword_set(quiet) then begin
message, 'WARNING: input parameters must be at least FLOAT', /info
message, ' (converting parameters to FLOAT)', /info
endif
x = float(x)
xnew = float(x)
szx = size(x)
endif
if isdouble AND tp NE 5 then begin
if NOT keyword_set(quiet) then begin
message, 'WARNING: data is DOUBLE but parameters are FLOAT', /info
message, ' (converting parameters to DOUBLE)', /info
endif
x = double(x)
xnew = double(xnew)
endif
m = n_elements(fvec)
if (m LT n) then begin
errmsg = 'ERROR: number of parameters must not exceed data'
goto, TERMINATE
endif
fnorm = mpfit_enorm(fvec)
;; Initialize Levelberg-Marquardt parameter and iteration counter
par = zero
iter = 1L
qtf = x * 0.
;; Beginning of the outer loop
OUTER_LOOP:
;; If requested, call fcn to enable printing of iterates
xnew[ifree] = x
if qanytied then mpfit_tie, xnew, ptied
dof = (n_elements(fvec) - nfree) > 1L
if nprint GT 0 AND iterproc NE '' then begin
catch_msg = 'calling '+iterproc
iflag = 0L
if (iter-1) MOD nprint EQ 0 then begin
mperr = 0
xnew0 = xnew
call_procedure, iterproc, fcn, xnew, iter, fnorm^2, $
FUNCTARGS=fcnargs, parinfo=parinfo, quiet=quiet, $
dof=dof, _EXTRA=iterargs
iflag = mperr
;; Check for user termination
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by "'+iterproc+'"'
goto, TERMINATE
endif
;; If parameters were changed (grrr..) then re-tie
if max(abs(xnew0-xnew)) GT 0 then begin
if qanytied then mpfit_tie, xnew, ptied
x = xnew[ifree]
endif
endif
endif
;; Calculate the jacobian matrix
iflag = 2
if NOT isext then begin
catch_msg = 'calling MPFIT_FDJAC2'
;; NOTE! If you change this call then change the one during
;; clean-up as well!
fjac = mpfit_fdjac2(fcn, x, fvec, step, qulim, ulim, dside, $
iflag=iflag, epsfcn=epsfcn, $
autoderiv=autoderiv, dstep=dstep, $
FUNCTARGS=fcnargs, ifree=ifree, xall=xnew, $
deriv_debug=ddebug, deriv_reltol=ddrtol, deriv_abstol=ddatol)
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by FDJAC2'
goto, TERMINATE
endif
endif else begin
fjac = reform(efjac,n_elements(fvec),npar, /overwrite)
endelse
;; Rescale the residuals and gradient, for use with "alternative"
;; statistics such as the Cash statistic.
catch_msg = 'prescaling residuals and gradient'
if n_elements(scalfcn) GT 0 then begin
call_procedure, strtrim(scalfcn[0],2), fvec, fjac
endif
;; Determine if any of the parameters are pegged at the limits
npegged = 0L
if qanylim then begin
catch_msg = 'zeroing derivatives of pegged parameters'
whlpeg = where(qllim AND (x EQ llim), nlpeg)
whupeg = where(qulim AND (x EQ ulim), nupeg)
npegged = nlpeg + nupeg
;; See if any "pegged" values should keep their derivatives
if (nlpeg GT 0) then begin
;; Total derivative of sum wrt lower pegged parameters
;; Note: total(fvec*fjac[*,i]) is d(CHI^2)/dX[i]
for i = 0L, nlpeg-1 do begin
sum = total(fvec * fjac[*,whlpeg[i]])
if sum GT 0 then fjac[*,whlpeg[i]] = 0
endfor
endif
if (nupeg GT 0) then begin
;; Total derivative of sum wrt upper pegged parameters
for i = 0L, nupeg-1 do begin
sum = total(fvec * fjac[*,whupeg[i]])
if sum LT 0 then fjac[*,whupeg[i]] = 0
endfor
endif
endif
;; Save a copy of the Jacobian if the user requests it...
if keyword_set(calc_fjac) then output_fjac = fjac
;; =====================
;; Compute the QR factorization of the jacobian
catch_msg = 'calling MPFIT_QRFAC'
;; IN: Jacobian
;; OUT: Hh Vects Permutation RDIAG ACNORM
mpfit_qrfac, fjac, ipvt, wa1, wa2, /pivot
;; Jacobian - jacobian matrix computed by mpfit_fdjac2
;; Hh vects - house holder vectors from QR factorization & R matrix
;; Permutation - permutation vector for pivoting
;; RDIAG - diagonal elements of R matrix
;; ACNORM - norms of input Jacobian matrix before factoring
;; =====================
;; On the first iteration if "diag" is unspecified, scale
;; according to the norms of the columns of the initial jacobian
catch_msg = 'rescaling diagonal elements'
if (iter EQ 1) then begin
;; Input: WA2 = root sum of squares of original Jacobian matrix
;; DIAG = user-requested diagonal (not documented!)
;; FACTOR = user-requested norm factor (not documented!)
;; Output: DIAG = Diagonal scaling values
;; XNORM = sum of squared scaled residuals
;; DELTA = rescaled XNORM
if NOT keyword_set(rescale) OR (n_elements(diag) LT n) then begin
diag = wa2 ;; Calculated from original Jacobian
wh = where (diag EQ 0, ct) ;; Handle zero values
if ct GT 0 then diag[wh] = one
endif
;; On the first iteration, calculate the norm of the scaled x
;; and initialize the step bound delta
wa3 = diag * x ;; WA3 is temp variable
xnorm = mpfit_enorm(wa3)
delta = factor*xnorm
if delta EQ zero then delta = zero + factor
endif
;; Form (q transpose)*fvec and store the first n components in qtf
catch_msg = 'forming (q transpose)*fvec'
wa4 = fvec
for j=0L, n-1 do begin
lj = ipvt[j]
temp3 = fjac[j,lj]
if temp3 NE 0 then begin
fj = fjac[j:*,lj]
wj = wa4[j:*]
;; *** optimization wa4(j:*)
wa4[j] = wj - fj * total(fj*wj) / temp3
endif
fjac[j,lj] = wa1[j]
qtf[j] = wa4[j]
endfor
;; From this point on, only the square matrix, consisting of the
;; triangle of R, is needed.
fjac = fjac[0:n-1, 0:n-1]
fjac = reform(fjac, n, n, /overwrite)
fjac = fjac[*, ipvt] ;; Convert to permuted order
fjac = reform(fjac, n, n, /overwrite)
;; Check for overflow. This should be a cheap test here since FJAC
;; has been reduced to a (small) square matrix, and the test is
;; O(N^2).
wh = where(finite(fjac) EQ 0, ct)
if ct GT 0 then goto, FAIL_OVERFLOW
;; Compute the norm of the scaled gradient
catch_msg = 'computing the scaled gradient'
gnorm = zero
if fnorm NE 0 then begin
for j=0L, n-1 do begin
l = ipvt[j]
if wa2[l] NE 0 then begin
sum = total(fjac[0:j,j]*qtf[0:j])/fnorm
gnorm = max([gnorm,abs(sum/wa2[l])])
endif
endfor
endif
;; Test for convergence of the gradient norm
if gnorm LE gtol then info = 4
if info NE 0 then goto, TERMINATE
if maxiter EQ 0 then begin
info = 5
goto, TERMINATE
endif
;; Rescale if necessary
if NOT keyword_set(rescale) then $
diag = diag > wa2
;; Beginning of the inner loop
INNER_LOOP:
;; Determine the levenberg-marquardt parameter
catch_msg = 'calculating LM parameter (MPFIT_LMPAR)'
par = mpfit_lmpar(fjac, ipvt, diag, qtf, delta, wa1, wa2, par=par)
;; Store the direction p and x+p. Calculate the norm of p
wa1 = -wa1
if qanylim EQ 0 AND qminmax EQ 0 then begin
;; No parameter limits, so just move to new position WA2
alpha = one
wa2 = x + wa1
endif else begin
;; Respect the limits. If a step were to go out of bounds, then
;; we should take a step in the same direction but shorter distance.
;; The step should take us right to the limit in that case.
alpha = one
if qanylim EQ 1 then begin
;; Do not allow any steps out of bounds
catch_msg = 'checking for a step out of bounds'
if nlpeg GT 0 then wa1[whlpeg] = wa1[whlpeg] > 0
if nupeg GT 0 then wa1[whupeg] = wa1[whupeg] < 0
dwa1 = abs(wa1) GT MACHEP0
whl = where(dwa1 AND qllim AND (x + wa1 LT llim), lct)
if lct GT 0 then $
alpha = min([alpha, (llim[whl]-x[whl])/wa1[whl]])
whu = where(dwa1 AND qulim AND (x + wa1 GT ulim), uct)
if uct GT 0 then $
alpha = min([alpha, (ulim[whu]-x[whu])/wa1[whu]])
endif
;; Obey any max step values.
if qminmax EQ 1 then begin
nwa1 = wa1 * alpha
whmax = where(qmax AND maxstep GT 0, ct)
if ct GT 0 then begin
mrat = max(abs(nwa1[whmax])/abs(maxstep[whmax]))
if mrat GT 1 then alpha = alpha / mrat
endif
endif
;; Scale the resulting vector
wa1 = wa1 * alpha
wa2 = x + wa1
;; Adjust the final output values. If the step put us exactly
;; on a boundary, make sure we peg it there.
sgnu = (ulim GE 0)*2d - 1d
sgnl = (llim GE 0)*2d - 1d
;; Handles case of
;; ... nonzero *LIM ... ... zero *LIM ...
ulim1 = ulim*(1-sgnu*MACHEP0) - (ulim EQ 0)*MACHEP0
llim1 = llim*(1+sgnl*MACHEP0) + (llim EQ 0)*MACHEP0
wh = where(qulim AND (wa2 GE ulim1), ct)
if ct GT 0 then wa2[wh] = ulim[wh]
wh = where(qllim AND (wa2 LE llim1), ct)
if ct GT 0 then wa2[wh] = llim[wh]
endelse
wa3 = diag * wa1
pnorm = mpfit_enorm(wa3)
;; On the first iteration, adjust the initial step bound
if iter EQ 1 then delta = min([delta,pnorm])
xnew[ifree] = wa2
if isext then goto, SAVE_STATE
;; Evaluate the function at x+p and calculate its norm
mperr = 0
catch_msg = 'calling '+fcn
wa4 = mpfit_call(fcn, xnew, _EXTRA=fcnargs)
iflag = mperr
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by "'+fcn+'"'
goto, TERMINATE
endif
RESUME_FIT:
fnorm1 = mpfit_enorm(wa4)
;; Compute the scaled actual reduction
catch_msg = 'computing convergence criteria'
actred = -one
if 0.1D * fnorm1 LT fnorm then actred = - (fnorm1/fnorm)^2 + 1.
;; Compute the scaled predicted reduction and the scaled directional
;; derivative
for j = 0L, n-1 do begin
wa3[j] = 0
wa3[0:j] = wa3[0:j] + fjac[0:j,j]*wa1[ipvt[j]]
endfor
;; Remember, alpha is the fraction of the full LM step actually
;; taken
temp1 = mpfit_enorm(alpha*wa3)/fnorm
temp2 = (sqrt(alpha*par)*pnorm)/fnorm
half = zero + 0.5
prered = temp1*temp1 + (temp2*temp2)/half
dirder = -(temp1*temp1 + temp2*temp2)
;; Compute the ratio of the actual to the predicted reduction.
ratio = zero
tenth = zero + 0.1
if prered NE 0 then ratio = actred/prered
;; Update the step bound
if ratio LE 0.25D then begin
if actred GE 0 then temp = half $
else temp = half*dirder/(dirder + half*actred)
if ((0.1D*fnorm1) GE fnorm) OR (temp LT 0.1D) then temp = tenth
delta = temp*min([delta,pnorm/tenth])
par = par/temp
endif else begin
if (par EQ 0) OR (ratio GE 0.75) then begin
delta = pnorm/half
par = half*par
endif
endelse
;; Test for successful iteration
if ratio GE 0.0001 then begin
;; Successful iteration. Update x, fvec, and their norms
x = wa2
wa2 = diag * x
fvec = wa4
xnorm = mpfit_enorm(wa2)
fnorm = fnorm1
iter = iter + 1
;DUSTEM SYSVARS
;#iterations
!dustem_iter.act=iter
;#current parameter values
(*!dustem_fit).current_param_values=ptr_new(x*(*(*!dustem_fit).param_init_values));So that parameters aren't just passed directly from MPFIT. ALSO allows to test with !dustem_current
; ;#Current parameter errors
if n_elements(fnorm) GT 0 AND n_elements(fnorm1) GT 0 then begin
fnorm = max([fnorm, fnorm1])
fnorm = fnorm^2.
endif
covar = !values.d_nan
;; (very carefully) set the covariance matrix COVAR
if NOT keyword_set(nocovar) $
AND n_elements(n) GT 0 $
AND n_elements(fjac) GT 0 AND n_elements(ipvt) GT 0 then begin
sz = size(fjac)
if n GT 0 AND sz[0] GT 1 AND sz[1] GE n AND sz[2] GE n $
AND n_elements(ipvt) GE n then begin
catch_msg = 'computing the covariance matrix'
if n EQ 1 then $
cv = mpfit_covar(reform([fjac[0,0]],1,1), ipvt[0]) $
else $
cv = mpfit_covar(fjac[0:n-1,0:n-1], ipvt[0:n-1])
cv = reform(cv, n, n, /overwrite)
nn = n_elements(xall)
;; Fill in actual covariance matrix, accounting for fixed
;; parameters.
covar = replicate(zero, nn, nn)
for i = 0L, n-1 do begin
covar[ifree, ifree[i]] = cv[*,i]
end
;; Compute errors in parameters
catch_msg = 'computing parameter errors'
i = lindgen(nn)
perror = replicate(abs(covar[0])*0., nn)
wh = where(covar[i,i] GE 0, ct)
if ct GT 0 then $
perror[wh] = sqrt(covar[wh, wh])
(*!dustem_fit).current_param_errors=ptr_new(perror*(*(*!dustem_fit).param_init_values))
endif
endif
; ;#current parameter errors
; fvec = mpfit_call(fcn, xnew, _EXTRA=fcnargs)
;
; fnorm = mpfit_enorm(fvec)
;
; if n_elements(fnorm) GT 0 AND n_elements(fnorm1) GT 0 then begin
; fnorm = max([fnorm, fnorm1])
; fnorm = fnorm^2.
; endif
; stop
; covar = !values.d_nan
; ;; (very carefully) set the covariance matrix COVAR
;if info GT 0 AND NOT keyword_set(nocovar) AND n_elements(n) GT 0 AND n_elements(fjac) GT 0 AND n_elements(ipvt) GT 0 then begin
;if NOT keyword_set(nocovar) $
; sz = size(fjac)
; if n GT 0 AND sz[0] GT 1 AND sz[1] GE n AND sz[2] GE n AND n_elements(ipvt) GE n then begin
;
; catch_msg = 'computing the covariance matrix'
; if n EQ 1 then $
;cv = mpfit_covar(reform([fjac[0,0]],1,1), ipvt[0]) $
;else $
; cv = mpfit_covar(fjac[0:n-1,0:n-1], ipvt[0:n-1])
; cv = reform(cv, n, n, /overwrite)
; nn = n_elements(xall)
;
; Fill in actual covariance matrix, accounting for fixed
; parameters.
; covar = replicate(zero, nn, nn)
; for i = 0L, n-1 do begin
; covar[ifree, ifree[i]] = cv[*,i]
; end
; Compute errors in parameters
; catch_msg = 'computing parameter errors'
; i = lindgen(nn)
; perror = replicate(abs(covar[0])*0., nn)
; wh = where(covar[i,i] GE 0, ct)
; ;stop
; if ct GT 0 then $
; perror[wh] = sqrt(covar[wh, wh])
; stop
; (*!dustem_fit).current_param_errors=ptr_new(perror*(*(*!dustem_fit).param_init_values))
; endif;
endif
;; Tests for convergence
if (abs(actred) LE ftol) AND (prered LE ftol) $
AND (0.5D * ratio LE 1) then info = 1
if delta LE xtol*xnorm then info = 2
if (abs(actred) LE ftol) AND (prered LE ftol) $
AND (0.5D * ratio LE 1) AND (info EQ 2) then info = 3
if info NE 0 then goto, TERMINATE
;; Tests for termination and stringent tolerances
if iter GE maxiter then info = 5
if (abs(actred) LE MACHEP0) AND (prered LE MACHEP0) $
AND (0.5*ratio LE 1) then info = 6
if delta LE MACHEP0*xnorm then info = 7
if gnorm LE MACHEP0 then info = 8
if info NE 0 then goto, TERMINATE
;; End of inner loop. Repeat if iteration unsuccessful
if ratio LT 0.0001 then begin
goto, INNER_LOOP
endif
;; Check for over/underflow
wh = where(finite(wa1) EQ 0 OR finite(wa2) EQ 0 OR finite(x) EQ 0, ct)
if ct GT 0 OR finite(ratio) EQ 0 then begin
FAIL_OVERFLOW:
errmsg = ('ERROR: parameter or function value(s) have become '+$
'infinite; check model function for over- '+$
'and underflow')
info = -16
goto, TERMINATE
endif
;; End of outer loop.
goto, OUTER_LOOP
TERMINATE:
catch_msg = 'in the termination phase'
;; Termination, either normal or user imposed.
if iflag LT 0 then info = iflag
iflag = 0
if n_elements(xnew) EQ 0 then goto, FINAL_RETURN
if nfree EQ 0 then xnew = xall else xnew[ifree] = x
if n_elements(qanytied) GT 0 then if qanytied then mpfit_tie, xnew, ptied
dof = n_elements(fvec) - nfree
;; Call the ITERPROC at the end of the fit, if the fit status is
;; okay. Don't call it if the fit failed for some reason.
if info GT 0 then begin
mperr = 0
xnew0 = xnew
call_procedure, iterproc, fcn, xnew, iter, fnorm^2, $
FUNCTARGS=fcnargs, parinfo=parinfo, quiet=quiet, $
dof=dof, _EXTRA=iterargs
iflag = mperr
if iflag LT 0 then begin
errmsg = 'WARNING: premature termination by "'+iterproc+'"'
endif else begin
;; If parameters were changed (grrr..) then re-tie
if max(abs(xnew0-xnew)) GT 0 then begin
if qanytied then mpfit_tie, xnew, ptied
x = xnew[ifree]
endif
endelse
endif
;; Initialize the number of parameters pegged at a hard limit value
npegged = 0L
if n_elements(qanylim) GT 0 then if qanylim then begin
wh = where((qulim AND (x EQ ulim)) OR $
(qllim AND (x EQ llim)), npegged)
endif
;; Calculate final function value (FNORM) and residuals (FVEC)
if isext EQ 0 AND nprint GT 0 AND info GT 0 then begin
catch_msg = 'calling '+fcn
fvec = mpfit_call(fcn, xnew, _EXTRA=fcnargs)
catch_msg = 'in the termination phase'
fnorm = mpfit_enorm(fvec)
endif
if n_elements(fnorm) GT 0 AND n_elements(fnorm1) GT 0 then begin
fnorm = max([fnorm, fnorm1])
fnorm = fnorm^2.
endif
covar = !values.d_nan
;; (very carefully) set the covariance matrix COVAR
if info GT 0 AND NOT keyword_set(nocovar) $
AND n_elements(n) GT 0 $
AND n_elements(fjac) GT 0 AND n_elements(ipvt) GT 0 then begin
sz = size(fjac)
if n GT 0 AND sz[0] GT 1 AND sz[1] GE n AND sz[2] GE n $
AND n_elements(ipvt) GE n then begin
catch_msg = 'computing the covariance matrix'
if n EQ 1 then $
cv = mpfit_covar(reform([fjac[0,0]],1,1), ipvt[0]) $
else $
cv = mpfit_covar(fjac[0:n-1,0:n-1], ipvt[0:n-1])
cv = reform(cv, n, n, /overwrite)
nn = n_elements(xall)
;; Fill in actual covariance matrix, accounting for fixed
;; parameters.
covar = replicate(zero, nn, nn)
for i = 0L, n-1 do begin
covar[ifree, ifree[i]] = cv[*,i]
end
;; Compute errors in parameters
catch_msg = 'computing parameter errors'
i = lindgen(nn)
perror = replicate(abs(covar[0])*0., nn)
wh = where(covar[i,i] GE 0, ct)
if ct GT 0 then $
perror[wh] = sqrt(covar[wh, wh])
(*!dustem_fit).current_param_errors=ptr_new(perror*(*(*!dustem_fit).param_init_values))
endif
endif
; catch_msg = 'returning the result'
; profvals.mpfit = profvals.mpfit + (systime(1) - prof_start)
FINAL_RETURN:
mpfit_fencepost_active = 0
nfev = mpconfig.nfev
if n_elements(xnew) EQ 0 then return, !values.d_nan
return, xnew
;; ------------------------------------------------------------------
;; Alternate ending if the user supplies the function and gradients
;; externally
;; ------------------------------------------------------------------
SAVE_STATE:
catch_msg = 'saving MPFIT state'
;; Names of variables to save
varlist = ['alpha', 'delta', 'diag', 'dwarf', 'factor', 'fnorm', $
'fjac', 'gnorm', 'nfree', 'ifree', 'ipvt', 'iter', $
'm', 'n', 'machvals', 'machep0', 'npegged', $
'whlpeg', 'whupeg', 'nlpeg', 'nupeg', $
'mpconfig', 'par', 'pnorm', 'qtf', $
'wa1', 'wa2', 'wa3', 'xnorm', 'x', 'xnew']
cmd = ''
;; Construct an expression that will save them
for i = 0L, n_elements(varlist)-1 do begin
ival = 0
dummy = execute('ival = n_elements('+varlist[i]+')')
if ival GT 0 then begin
cmd = cmd + ',' + varlist[i]+':'+varlist[i]
endif
endfor
cmd = 'state = create_struct({'+strmid(cmd,1)+'})'
state = 0
if execute(cmd) NE 1 then $
message, 'ERROR: could not save MPFIT state'
;; Set STATUS keyword to prepare for next iteration, and reset init
;; so we do not init the next time
info = 9
extinit = 0
return, xnew
end