dustem_fit_intensity_example.pro
16.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
PRO dustem_fit_intensity_example,model=model $
,sed_file=sed_file $
,Nitermax=Nitermax $
,postscript=postscript $
,fits_save_and_restore=fits_save_and_restore $
,help=help $
,wait=wait $
,verbose=verbose
;This routine is an example of how to fit an observational SED (Stokes
;I only) with DustEM and DustEMWrap. The objective is to illustrate how to use DustEMWrap
; (and not to do science -- the fit obtained by running this example is
; likely to be poor!)
;
;For this example, the code uses the SED in the file example_SED_1.xcat,
;which is distributed in the Data/EXAMPLE_OBSDATA/ directory
;
;The example SED has Stokes I photometric data points from SPITZER
;IRAC and MIPS and IRAS. Examples illustrating running DustEMWrap to
;fit spectral data, polarisation data and extinction data
;are provided in other _example routines in the src/idl/ directory.
;+
; NAME:
; dustem_fit_intensity_example
; PURPOSE:
;
; This routine is an example of how to fit an observational SED
; (Stokes I only) using DustEM and DustEMWrap. The objective is to
; illustrate how to use DustEMWrap (and not to do science -- the fit
; obtained by running this example is likely to be poor!)
;
; For this example, the code uses the SED in the file example_SED_1.xcat,
; which is distributed in the Data/EXAMPLE_OBSDATA/ directory
;
; The example SED has Stokes I photometric data points from SPITZER
; IRAC and MIPS and IRAS. Examples illustrating running DustEMWrap to
; fit spectral data, polarisation data and extinction data
; are provided in other _example routines in the src/idl/ directory.
; CATEGORY:
; DustEMWrap, Distributed, High-Level, User Example
; CALLING SEQUENCE:
; dustem_fit_intensity_example[,model=][sed_file=][,postscript=][,Nitermax=][,fits_save_and_restore=][,/help]
; INPUTS:
; None
; OPTIONAL INPUT PARAMETERS:
; None
; OUTPUTS:
; None
; OPTIONAL OUTPUT PARAMETERS:
; Plots, results structure in binary FITS table format
; ACCEPTED KEY-WORDS:
; model = specifies the interstellar dust mixture used by DustEM
; 'MC10' model from Compiegne et al 2010 (default)
; 'DBP90' model from Desert et al 1990
; 'DL01' model from Draine & Li 2001
; 'WD01_RV5p5B' model from Weingartner & Draine 2002 with Rv=5.5
; 'DL07' model from Draine & Li 2007
; 'J13' model from Jones et al 2013, as updated in
; Koehler et al 2014
; 'G17_ModelA' model A from Guillet et al (2018). Includes
; polarisation. See Tables 2 and 3 of that paper for details.
; 'G17_ModelB' model B from Guillet et al (2018)
; 'G17_ModelC' model C from Guillet et al (2018)
; 'G17_ModelD' model A from Guillet et al (2018)
; sed_file = string naming the path to text file in .xcat format that
; describes the observational SED. If not set, the file
; 'Data/SEDs/sample_SED.xcat' is used.
; postscript = if set, final plot is saved as postscript in the
; current working directory
; Nitermax = maximum number of fit iterations. Default is 5.
; fits_save_and_restore = if set, save the fit results in a binary
; FITS file. The code then restore this file and plots
; the results using the saved results information.
; help = if set, print this help
; wait = if set, wait this many seconds between each step of
; the code (for illustration purposes)
; verbose = if set, subroutines will run in verbose mode
; COMMON BLOCKS:
; None
; SIDE EFFECTS:
; None
; RESTRICTIONS:
; The DustEM fortran code must be installed
; The DustEMWrap IDL code must be installed
; PROCEDURES AND SUBROUTINES USED:
; *** COMMENT AH --> is this really NONE? ****
; EXAMPLES
; dustem_fit_intensity_example
; dustem_fit_intensity_example,Nitermax=1,fits_save_and_restore='/tmp/mysavefile.fits'
; dustem_fit_intensity_example,model='DBP90'
; MODIFICATION HISTORY:
; Written by JPB Apr-2011
; Evolution details on the DustEMWrap gitlab.
; See http://dustemwrap.irap.omp.eu/ for FAQ and help.
;-
IF keyword_set(help) THEN BEGIN
doc_library,'dustem_fit_intensity_example'
goto,the_end
END
IF keyword_set(model) THEN BEGIN
use_model=strupcase(model)
ENDIF ELSE BEGIN
use_model='MC10' ;Default is the Compeigne et al (2011) model
ENDELSE
use_polarization=0 ; initialize Dustemwrap in no polarization mode
use_window=2 ; default graphics window number to use for plotting the results
use_verbose=0
if keyword_set(verbose) then use_verbose=1
;=== Set the (model-dependent) parameters that you want to fit (pd)
; their initial values (iv)
; and whether they are bounded (ulimed,llimed,llims,ulims)
; fixed parameters (fpd) and their values (fiv) are also set here
;=== Refer to the DustEM and DustEMWrap userguides for an explanation
; of the different grain types
CASE use_model OF
'DBP90':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;VSG mass fraction
'(*!dustem_params).grains(2).mdust_o_mh', $ ;BG mass fraction
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 4.3e-4, 4.7e-4,6.4e-3,0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
fpd=[] & fiv=[]
END
'DL01':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
'(*!dustem_params).grains(2).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(3).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(4).mdust_o_mh', $ ;aSil
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0,5.4e-4, 5.4e-4,1.8e-4,2.33e-3,8.27e-3,0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
fpd=[] & fiv=[]
END
'WD01_RV5p5B':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
'(*!dustem_params).grains(2).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(3).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(4).mdust_o_mh', $ ;aSil
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0,5.4e-4, 5.4e-4,1.8e-4,1.64e-3,6.99e-3,0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
fpd=[] & fiv=[]
END
'DL07':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
'(*!dustem_params).grains(2).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(3).mdust_o_mh', $ ;Gra
'(*!dustem_params).grains(4).mdust_o_mh', $ ;aSil
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0,4.97e-4, 4.97e-4,1.66e-4,2.21e-3,7.64e-3,0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
fpd=[] & fiv=[]
END
'MC10':BEGIN
; parameters of the model to fit
pd = [ $
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;PAH1 mass fraction
'(*!dustem_params).grains(2).mdust_o_mh', $ ;amCBEx
'(*!dustem_params).grains(3).mdust_o_mh', $ ;amCBEx
'(*!dustem_params).grains(4).mdust_o_mh' $ ;aSilx
]
; initial values of the model parameters that are to be varied during the fit
iv = [ 7.8e-4, 7.8e-4, 1.65e-4, 1.45e-3, 6.7e-3]
Npar=n_elements(pd)
; flags for whether the parameters are upper/lower bounded
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
; lower bound value
llims=replicate(0.,Npar)
; parameters of the model that are fixed
fpd=[ $
'(*!dustem_params).gas.G0' , $ ; ISRF intensity (multiplicative factor x G0)
'dustem_plugin_continuum_2' $ ;intensity of NIR continuum
]
; values of the fixed model parameters
fiv=[2.4, 3.e-3]
END
'J13':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;CM20 -- power law size distribution
'(*!dustem_params).grains(1).mdust_o_mh',$ ;CM20 -- logN size distribution
'(*!dustem_params).grains(2).mdust_o_mh', $ ;aPyM5
'(*!dustem_params).grains(3).mdust_o_mh', $ ;aOlM5
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 1.7e-3, 6.3e-4,2.55e-3,2.55e-3,0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
fpd=[] & fiv=[]
END
'G17_MODELA':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;amCB_0.3333x
'(*!dustem_params).grains(2).mdust_o_mh', $ ;aSil2001_0.3333_p20B
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 7.094483e-4, 1.319896e-3, 5.588265e-3, 0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
use_polarization=0
fpd=[] & fiv=[]
END
'G17_MODELB':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;amCB_0.3333x
'(*!dustem_params).grains(2).mdust_o_mh', $ ;aSil_0.3333_p20B
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 6.480655e-4, 1.327672e-3, 5.267745e-3, 0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
use_polarization=1
fpd=[] & fiv=[]
END
'G17_MODELC':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;amCBE_0.3333x
'(*!dustem_params).grains(2).mdust_o_mh', $ ;aSil2001_0.3333_p20B
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 6.979060e-4, 1.555919e-3, 4.366849e-3, 0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
use_polarization=1
fpd=[] & fiv=[]
END
'G17_MODELD':BEGIN
pd = [ $
'(*!dustem_params).G0', $ ;G0
'(*!dustem_params).grains(0).mdust_o_mh',$ ;PAH0 mass fraction
'(*!dustem_params).grains(1).mdust_o_mh',$ ;amCBE_0.3333x
'(*!dustem_params).grains(2).mdust_o_mh', $ ;aSil2001BE6pctG_0.4x
'dustem_plugin_continuum_2'] ;Intensity of NIR continuum
iv = [1.0, 7.235580e-4, 1.222725e-3, 5.324418e-3, 0.001]
Npar=n_elements(pd)
ulimed=replicate(0,Npar)
llimed=replicate(1,Npar)
llims=replicate(0.,Npar)
use_polarization=0
fpd=[] & fiv=[]
END
'ELSE':BEGIN
message,'model '+model+' unknown',/continue
message,'Known models are MC10,DBP90,DL01,WD01_RV5p5B,DL07,J13,G17_MODELA,G17_MODELB,G17_MODELC,G17_MODELD',/continue
stop
END
ENDCASE
Nfix=n_elements(fpd)
if n_elements(fiv) ne Nfix then begin
message,'Number of fixed parameters (fpd) does not equal number of initial values of fixed parameters (fiv)',/info
stop
end
if keyword_set(wait) then begin
message,'Finished setting dust model: '+model,/info
wait,wait
end
stop
;== INITIALISE DUSTEM
dustem_init,model=use_model,polarization=use_polarization
!dustem_nocatch=1
!dustem_verbose=use_verbose
!dustem_show_plot=1
;=== READ EXAMPLE SED DATA
dir=!dustem_wrap_soft_dir+'/Data/EXAMPLE_OBSDATA/'
file=dir+'example_SED_1.xcat'
IF keyword_set(sed_file) THEN file=sed_file
sed=read_xcat(file,/silent)
if keyword_set(wait) then begin
message,'Finished reading SED data: '+file,/info
wait,wait
end
;;=== ADJUST THE UNCERTAINTIES (FOR ILLUSTRATION)
ind=where(sed.sigmaII LT (0.2*sed.StokesI)^2,count)
IF count NE 0 THEN sed[ind].sigmaII=(0.2*sed[ind].StokesI)^2
;== SET THE OBSERVATIONAL STRUCTURE
;== sed is passed twice -- the first occurrence is the SED that you
;== wish to fit, the second occurrence is the
;== SED that you wish to visualise / plot. These are often, but not
;== always!, the same SED.
dustem_set_data,sed,sed
;== SET INITIAL VALUES AND LIMITS OF THE PARAMETERS THAT WILL BE
;== ADJUSTED DURING THE FIT
dustem_init_parinfo,pd,iv,up_limited=ulimed,lo_limited=llimed,up_limits=ulims,lo_limits=llims
;== INITIALIZE ANY PLUGINS
dustem_init_plugins,pd,fpd
;== INITIALIZE ANY FIXED PARAMETERS FOR PLUGINS
if Nfix gt 0 then dustem_init_fixed_params,fpd,fiv
if keyword_set(wait) then begin
message,'Finished initializing DustEmWrap, including plugins and fixed parameters',/info
wait,wait
end
;=== INFORMATION TO RUN THE FIT
tol=1.e-16 ;fit tolerence
use_Nitermax=5 ;maximum number of iterations.
IF keyword_set(Nitermax) THEN use_Nitermax=Nitermax
;=== INFORMATION TO MAKE THE PLOT
yr=[1.00e-4,1.00E2] ; y-axis limits
xr=[1.00E0,6.00e4] ; x-axis limits
tit='SED -- Example 1' ; plot title
ytit=textoidl('I_\nu (MJy/sr) for N_H=10^{20} H/cm^2') ; y-axis title
xtit=textoidl('\lambda (\mum)') ; x-axis title
;=== RUN THE FIT
t1=systime(0,/sec)
res=dustem_mpfit_data(tol=tol,Nitermax=use_Nitermax,gtol=gtol $
,/xlog,/ylog,xr=xr,yr=yr,xtit=xtit,ytit=ytit,title=tit $
,legend_xpos=legend_xpos,legend_ypos=legend_ypos $
,errors=errors,chi2=chi2,rchi2=rchi2)
t2=systime(0,/sec)
if keyword_set(wait) then begin
message,'Finished running DustEmWrap, using Niters: '+strtrim(string(use_Nitermax),2),/info
message,'Time taken [sec]: '+sigfig(t2-t1,2,/sci),/info
wait,wait
end
;=== MAKE THE FINAL PLOT
IF keyword_set(postscript) THEN BEGIN
dir_ps='./'
set_plot,'PS'
ps_file=dir_ps+postscript
device,filename=ps_file,/color
ENDIF
dustemwrap_plot,*(*!dustem_fit).CURRENT_PARAM_VALUES,dummy,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (Final fit)'
IF keyword_set(postscript) THEN BEGIN
set_plot,'X'
device,/close
message,'Wrote '+ps_file,/info
ENDIF
if keyword_set(wait) then begin
message,'Made the plot of the final results',/info
wait,wait
end
IF keyword_set(fits_save_and_restore) THEN BEGIN
message,'Writing out results structure: '+fits_save_and_restore,/info
dustem_write_fits_table,filename=fits_save_and_restore,help=help
;=== at this point, you could erase all dustem system variables, or exit idl... all the
; information needed has been saved in the FITS table
dustem_read_fits_table,filename=fits_save_and_restore,dustem_spectra_st=dustem_spectra_st
;==== plot result taken from the saved fits table
res=*(*!dustem_fit).CURRENT_PARAM_VALUES
dustemwrap_plot,res,dustem_spectra_st,xr=xr,/xstyle,yr=yr,/ysty,/ylog,/xlog,title=tit+' (From Saved FITS file)'
if keyword_set(wait) then begin
message,'Saved the results as FITS in the file: '+fits_save_and_restore+', and made a plot using the data in this file',/info
wait,wait
end
ENDIF
message,'Finished dustem_fit_intensity_example',/info
the_end:
END