Commit e3daaba9aa0a470a70206341f247d440a7e88c3d
1 parent
3ae41466
Exists in
master
ignored
Showing
1 changed file
with
0 additions
and
286 deletions
Show diff stats
photoionization_lib.py deleted
@@ -1,286 +0,0 @@ | @@ -1,286 +0,0 @@ | ||
1 | -#!/usr/bin/env python3 | ||
2 | -# -*- coding: utf-8 -*- | ||
3 | -""" | ||
4 | -Created on Tue Jun 30 09:54:20 2020 | ||
5 | -Library of the photoionization model | ||
6 | - | ||
7 | -@author: sacha.foschino@hotmail.fr | ||
8 | -""" | ||
9 | -import matplotlib.pyplot as plt | ||
10 | -import numpy as np | ||
11 | -from astropy.table import Table | ||
12 | - | ||
13 | -def preparation_Fe(d,Av,wave_range,quiet): | ||
14 | - '''Function adapting the radiation field (RF) to its use by the PE model | ||
15 | - d: float, distance between the region modeled and the UV source, in cm, e.g. 4.413e+17cm for the 0.143pc separating HD200775 and the PDR front, | ||
16 | - Av: float, Extinction in the V band, in mag, | ||
17 | - wave_range: list of 2 elements, limits of the wavelength interval considered in nm, e.g. [91.16,2000], | ||
18 | - quiet: bool, if False, plot the RF at each step of the conversion | ||
19 | - | ||
20 | - returns Fe_E_,E,Fe_l,wave ; i.e. respectively the RF in erg/sec/cm2/eV/sr, the photon energy vector, | ||
21 | - the RF in erg/sec/cm2/nm/sr and the corresponding wavelength vector | ||
22 | - ''' | ||
23 | - # ============================================================================= | ||
24 | - # preparation of HD200775 radiation field: dillution + extinction | ||
25 | - '''radiation field on HD200775''' | ||
26 | -# wave_rad,spec_rad=np.loadtxt(rf_name,unpack=True,skiprows=4) #if another RF than that of HD200775 is used (e.g. Draine, Habing or Mathis) | ||
27 | - wave_rad, spec_rad=np.loadtxt('./radiation_fields/HD200775_RF.txt', unpack=True) | ||
28 | - | ||
29 | - if not(quiet): | ||
30 | - plt.figure(1) | ||
31 | - plt.loglog(wave_rad,spec_rad,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
32 | - plt.title('virgin spectrum') | ||
33 | - plt.xlabel('wavelength (nm)') | ||
34 | - plt.ylabel('Specific intensity (erg/sec/cm$^2$/nm/sr)') | ||
35 | - plt.subplots_adjust(top=0.986,bottom=0.111,left=0.126,right=0.991,hspace=0.2,wspace=0.2) | ||
36 | - plt.legend() | ||
37 | - plt.tight_layout() | ||
38 | - | ||
39 | - | ||
40 | - '''wavelengths ranges for the G0 energies''' | ||
41 | - #selection of the wavelength range | ||
42 | - spec7023=spec_rad[np.where((wave_rad>wave_range[0]) & (wave_rad<wave_range[1]))[0]] | ||
43 | - wave=wave_rad[np.where((wave_rad>wave_range[0]) & (wave_rad<wave_range[1]))[0]] | ||
44 | - | ||
45 | - #intensity of HD200775 | ||
46 | - if not(quiet): | ||
47 | - plt.figure(2) | ||
48 | - plt.loglog(wave,spec7023,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
49 | - plt.title('virgin spectrum cut') | ||
50 | - plt.xlabel('wavelength (nm)') | ||
51 | - plt.ylabel('Specific intensity (erg/sec/cm$^2$/nm/sr)') | ||
52 | - plt.subplots_adjust(top=0.986,bottom=0.111,left=0.126,right=0.991,hspace=0.2,wspace=0.2) | ||
53 | - plt.legend() | ||
54 | - plt.tight_layout() | ||
55 | - | ||
56 | - | ||
57 | - '''interpolation of the extinction coefficients with HD200775's RF wavelength vector''' | ||
58 | - wave_draine__, albe, cos, cext__ = np.loadtxt('./extinction_curves/draine_curve_55.txt', unpack=True, usecols=[0,1,2,3], skiprows=80) | ||
59 | - Cext=np.interp(wave,wave_draine__[::-1]*1e3,cext__[::-1]) #/!\ reverse the order of the cext__ vector | ||
60 | - | ||
61 | - '''geometrical dillution''' | ||
62 | - R=10*70000000000 #radius of the star in cm, Pilleri et al. 2012 | ||
63 | - # d=0.143*3.086e18 | ||
64 | - intensity_diluted=spec7023*(R/d)**2 | ||
65 | - | ||
66 | - if not(quiet): | ||
67 | - plt.figure(3) | ||
68 | - plt.loglog(wave,intensity_diluted,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
69 | - plt.title('diluted spectrum') | ||
70 | - plt.xlabel('wavelength (nm)') | ||
71 | - plt.ylabel('Specific intensity (erg/sec/cm$^2$/nm/sr)') | ||
72 | - plt.subplots_adjust(top=0.986,bottom=0.111,left=0.126,right=0.991,hspace=0.2,wspace=0.2) | ||
73 | - plt.legend() | ||
74 | - plt.tight_layout() | ||
75 | - | ||
76 | - '''extinction''' | ||
77 | - NH=2e21 #conlumn density in cm-2, a column density of 2e21cm-2 implies an Av of 1mag | ||
78 | -# Av=0 | ||
79 | - taunu=NH*Av*Cext #opacity | ||
80 | - Fe_l=intensity_diluted*np.exp(-taunu) #intensity diluted and extincted | ||
81 | - if not(quiet): | ||
82 | - plt.figure(4) | ||
83 | - plt.loglog(wave,Fe_l,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
84 | - plt.title('ext spectrum') | ||
85 | - plt.xlabel('wavelength (nm)') | ||
86 | - plt.ylabel('Specific intensity (erg/sec/cm$^2$/nm/sr)') | ||
87 | - plt.legend() | ||
88 | - plt.tight_layout() | ||
89 | - | ||
90 | - | ||
91 | - | ||
92 | - '''conversion in erg/sec/cm2/sr/eV''' | ||
93 | - c=299792458000000000 #light speed in nm | ||
94 | - h=4.135667516e-15 #planck constant in eV*sec | ||
95 | - | ||
96 | - E=(h*c/wave)[::-1] #ev | ||
97 | - Fe_E_=Fe_l[::-1]*h*c/(E**2) | ||
98 | - | ||
99 | - if not(quiet): | ||
100 | - plt.figure(5) | ||
101 | - plt.loglog(E,Fe_E_,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
102 | -# plt.loglog(E,Fe_E_,label='d={:.0f}mpc, {:.0f}" '.format(d/3.086e15,d/(3.086e18*3.4268e-3))) | ||
103 | - plt.title('energy spectrum') | ||
104 | - plt.xlabel('photon energy (eV)') | ||
105 | - plt.ylabel('Specific intensity (erg/sec/cm$^2$/eV/sr)') | ||
106 | - plt.subplots_adjust(top=0.986,bottom=0.111,left=0.126,right=0.991,hspace=0.2,wspace=0.2) | ||
107 | - plt.legend() | ||
108 | - plt.tight_layout() | ||
109 | - | ||
110 | - return Fe_E_,E,Fe_l,wave | ||
111 | - | ||
112 | - | ||
113 | - | ||
114 | - | ||
115 | -def yield_n_to_p(E,IP): | ||
116 | - from numpy import where, concatenate,zeros,full | ||
117 | - '''adapt the photoelectric yield Neutral -> Cation | ||
118 | - version from Joachims et al 1996 | ||
119 | - E: 1xn array, photonenergy vector | ||
120 | - IP: float, first ionization potential of the molecule | ||
121 | - | ||
122 | - returns the yield of the first photoionization | ||
123 | - ''' | ||
124 | - | ||
125 | - first_part=where(E<IP)[0] | ||
126 | - scdn_part=where((E>=IP) & (E<(IP+9.2)))[0] | ||
127 | - third_part=where((E>IP+9.2))[0] | ||
128 | - | ||
129 | - Y_1=zeros([len(first_part)]) | ||
130 | - Y_2=(E[scdn_part]-IP)/9.2 | ||
131 | - Y_3=full(len(third_part), 1) | ||
132 | - | ||
133 | - Yntop=concatenate((Y_1,Y_2,Y_3)) | ||
134 | - return Yntop | ||
135 | - | ||
136 | - | ||
137 | -def yield_p_to_2p(E,IP2,Nc,alpha=0.3): | ||
138 | - from numpy import where, concatenate,zeros,full | ||
139 | - '''adapt the photoelectric yield Cation -> Dication to the molecule | ||
140 | - version from Wenzel et al 2020 | ||
141 | - E: 1xn array, photonenergy vector | ||
142 | - IP2: float, second ionization potential of the molecule | ||
143 | - Nc: int or float, size of the PAH in number of carbon atoms | ||
144 | - alpha: steepness coefficient, see Wenzel et al. 2020, this parameter should not change | ||
145 | - | ||
146 | - returns the yield of the second photoionization | ||
147 | - ''' | ||
148 | - | ||
149 | - if (Nc>=32) & (Nc<50): | ||
150 | - beta=0.59+8.1e-3*Nc | ||
151 | - if Nc>=50: | ||
152 | - beta=1 | ||
153 | - | ||
154 | - first_part=where(E<IP2)[0] | ||
155 | - scdn_part=where((E>=IP2) & (E<(11.3)))[0] | ||
156 | - third_part=where((E>=11.3) & (E<(12.9)))[0] | ||
157 | - fourth_part=where((E>=12.9) & (E<(13.6)))[0] | ||
158 | -# print(Nc) | ||
159 | - Y_1=zeros([len(first_part)]) | ||
160 | - Y_2=alpha/(11.3-IP2)*(E[scdn_part]-IP2) | ||
161 | - Y_3=full(len(third_part), alpha) | ||
162 | - Y_4=(beta-alpha)/2.1*(E[fourth_part]-12.9)+alpha | ||
163 | - Yptopp=concatenate((Y_1,Y_2,Y_3,Y_4)) | ||
164 | - | ||
165 | - return Yptopp | ||
166 | - | ||
167 | -def IP_estimate(Nc,Z): | ||
168 | - '''gives the estimate of the IP from Z to Z+1 according to Eq.1 of Wenzel et al. 2020 | ||
169 | - Nc: int of float, size of the PAH in carbon atoms | ||
170 | - Z: positive int, the charge state of the molecule | ||
171 | - | ||
172 | - returns the IP of the molecule''' | ||
173 | - | ||
174 | - eps0=8.85e-21 #en F/nm | ||
175 | - e=1.6e-19 #en C | ||
176 | - | ||
177 | - IP=3.9+(1/(4*np.pi*eps0))*((Z+0.5)*(e**2)/((Nc/468)**(1/3))+(Z+2)*((e**2)/((Nc/468)**(1/3)))*0.03/((Nc/468)**(1/3)))*1/e #en eV | ||
178 | - | ||
179 | - return IP | ||
180 | - | ||
181 | - | ||
182 | - | ||
183 | - | ||
184 | -def cross_secs(Nc,quiet): | ||
185 | - '''==========================|building of the cross section|=======================''' | ||
186 | - ''' derives a mean photoabsorption cross section of the molecule considered, in 3 size ranges | ||
187 | - Nc: int, size of the molecule in carbon atoms | ||
188 | - quiet: bool, if False plot the resulting cross sections''' | ||
189 | - #absorption cross section | ||
190 | - if (Nc>=32) & (Nc<40): | ||
191 | - #32 a 40 | ||
192 | - eVN_,crossN_1_1=np.loadtxt('./neutrals/ovalene_neutral.txt',unpack=True) #C32 | ||
193 | - eVC_,crossC_1_1=np.loadtxt('./cations/ovalene_cation.txt',unpack=True) #C32 | ||
194 | - eVDC_,crossDC_1_1=np.loadtxt('./dications/ovalene_dication.txt',unpack=True) #C32 | ||
195 | - | ||
196 | - eVN_,crossN_2_1=np.loadtxt('./neutrals/tetrabenzocoronene_neutral.txt',unpack=True) #C36 | ||
197 | - eVC_,crossC_2_1=np.loadtxt('./cations/tetrabenzocoronene_cation.txt',unpack=True) #C36 | ||
198 | - eVDC_,crossDC_2_1=np.loadtxt('./dications/tetrabenzocoronene_dication.txt',unpack=True) #C36 | ||
199 | - | ||
200 | - eVN_,crossN_3_1=np.loadtxt('./neutrals/circumbiphenyl_neutral.txt',unpack=True) #C38 | ||
201 | - eVC_,crossC_3_1=np.loadtxt('./cations/circumbiphenyl_cation.txt',unpack=True) #C38 | ||
202 | - eVDC_,crossDC_3_1=np.loadtxt('./dications/circumbiphenyl_dication.txt',unpack=True) #C38 | ||
203 | - | ||
204 | - cross_N_=(((crossN_1_1/32)+(crossN_2_1/36)+(crossN_3_1/38))/3)*Nc | ||
205 | - cross_C_=(((crossC_1_1/32)+(crossC_2_1/36)+(crossC_3_1/38))/3)*Nc | ||
206 | - cross_DC_=(((crossDC_1_1/32)+(crossDC_2_1/36)+(crossDC_3_1/38))/3)*Nc | ||
207 | - | ||
208 | - E_range=np.where(eVN_<13.6)[0] | ||
209 | - | ||
210 | - if not(quiet): | ||
211 | - plt.figure(121) | ||
212 | - plt.plot(eVN_[E_range],cross_N_[E_range],'b',label='Z=0') | ||
213 | - plt.plot(eVC_[E_range],cross_C_[E_range],'r',label='Z=1') | ||
214 | - plt.plot(eVDC_[E_range],cross_DC_[E_range],'orange',label='Z=2') | ||
215 | - plt.ylabel('$\sigma$ (Mb)') | ||
216 | - plt.xlabel('photon energy (eV)') | ||
217 | - plt.legend() | ||
218 | -# plt.plot(eVN_[E_range],crossN_1_1[E_range]) | ||
219 | -# plt.plot(eVN_[E_range],crossN_2_1[E_range]) | ||
220 | -# plt.plot(eVN_[E_range],crossN_3_1[E_range]) | ||
221 | - elif (Nc>=40) & (Nc<48): | ||
222 | - #40 a 48 | ||
223 | - | ||
224 | - eVN_,crossN_1_2=np.loadtxt('./neutrals/circumanthracene_neutral.txt',unpack=True) #C40 | ||
225 | - eVC_,crossC_1_2=np.loadtxt('./cations/circumanthracene_cation.txt',unpack=True) #C40 | ||
226 | - eVDC_,crossDC_1_2=np.loadtxt('./dications/circumanthracene_dication.txt',unpack=True) #C40 | ||
227 | - | ||
228 | - eVN_,crossN_2_2=np.loadtxt('./neutrals/circumpyrene_neutral.txt',unpack=True) #C42 | ||
229 | - eVC_,crossC_2_2=np.loadtxt('./cations/circumpyrene_cation.txt',unpack=True) #C42 | ||
230 | - eVDC_,crossDC_2_2=np.loadtxt('./dications/circumpyrene_dication.txt',unpack=True) #C42 | ||
231 | - | ||
232 | - eVN_,crossN_3_2=np.loadtxt('./neutrals/hexabenzocoronene_neutral.txt',unpack=True) #C42 | ||
233 | - eVC_,crossC_3_2=np.loadtxt('./cations/hexabenzocoronene_cation.txt',unpack=True) #C42 | ||
234 | - eVDC_,crossDC_3_2=np.loadtxt('./dications/hexabenzocoronene_dication.txt',unpack=True) #C42 | ||
235 | - | ||
236 | - E_range=np.where(eVN_<13.6)[0] | ||
237 | - | ||
238 | - cross_N_=(((crossN_1_2/40)+(crossN_2_2/42)+(crossN_3_2/42))/3)*Nc | ||
239 | - cross_C_=(((crossC_1_2/40)+(crossC_2_2/42)+(crossC_3_2/42))/3)*Nc | ||
240 | - cross_DC_=(((crossDC_1_2/40)+(crossDC_2_2/42)+(crossDC_3_2/42))/3)*Nc | ||
241 | - if not(quiet): | ||
242 | - | ||
243 | - plt.figure(121) | ||
244 | - plt.plot(eVN_[E_range],cross_N_[E_range],'b',label='Z=0') | ||
245 | - plt.plot(eVC_[E_range],cross_C_[E_range],'r',label='Z=1') | ||
246 | - plt.plot(eVDC_[E_range],cross_DC_[E_range],'orange',label='Z=2') | ||
247 | - plt.ylabel('$\sigma$ (Mb)') | ||
248 | - plt.xlabel('photon energy (eV)') | ||
249 | - plt.legend() | ||
250 | -# plt.plot(eVN_[E_range],crossN_1_1[E_range]) | ||
251 | -# plt.plot(eVN_[E_range],crossN_2_1[E_range]) | ||
252 | -# plt.plot(eVN_[E_range],crossN_3_1[E_range]) | ||
253 | - elif (Nc>=48): | ||
254 | - #48 a 66 | ||
255 | - eVN_,crossN_1_3=np.loadtxt('./neutrals/dicoronylene_neutral.txt',unpack=True) #C48 | ||
256 | - eVC_,crossC_1_3=np.loadtxt('./cations/dicoronylene_cation.txt',unpack=True) #C48 | ||
257 | - eVDC_,crossDC_1_3=np.loadtxt('./dications/dicoronylene_dication.txt',unpack=True) #C48 | ||
258 | - | ||
259 | - eVN_,crossN_2_3=np.loadtxt('./neutrals/circumcoronene_neutral.txt',unpack=True) #C54 | ||
260 | - eVC_,crossC_2_3=np.loadtxt('./cations/circumcoronene_cation.txt',unpack=True) #C54 | ||
261 | - eVDC_,crossDC_2_3=np.loadtxt('./dications/circumcoronene_dication.txt',unpack=True) #C54 | ||
262 | - | ||
263 | - eVN_,crossN_3_3=np.loadtxt('./neutrals/circumovalene_neutral.txt',unpack=True) #C66 | ||
264 | - eVC_,crossC_3_3=np.loadtxt('./cations/circumovalene_cation.txt',unpack=True) #C66 | ||
265 | - eVDC_,crossDC_3_3=np.loadtxt('./dications/circumovalene_dication.txt',unpack=True) #C66 | ||
266 | - | ||
267 | - E_range=np.where(eVN_<13.6)[0] | ||
268 | - | ||
269 | - cross_N_=(((crossN_1_3/48)+(crossN_2_3/54)+(crossN_3_3/66))/3)*Nc | ||
270 | - cross_C_=(((crossC_1_3/48)+(crossC_2_3/54)+(crossC_3_3/66))/3)*Nc | ||
271 | - cross_DC_=(((crossDC_1_3/48)+(crossDC_2_3/54)+(crossDC_3_3/66))/3)*Nc | ||
272 | - if not(quiet): | ||
273 | - plt.figure(121) | ||
274 | - plt.plot(eVN_[E_range],cross_N_[E_range],'b',label='Z=0') | ||
275 | - plt.plot(eVC_[E_range],cross_C_[E_range],'r',label='Z=1') | ||
276 | - plt.plot(eVDC_[E_range],cross_DC_[E_range],'orange',label='Z=2') | ||
277 | - plt.ylabel('$\sigma$ (Mb)') | ||
278 | - plt.xlabel('photon energy (eV)') | ||
279 | - plt.legend() | ||
280 | - return eVN_[E_range],eVC_[E_range],eVDC_[E_range],cross_N_[E_range],cross_C_[E_range],cross_DC_[E_range] | ||
281 | - | ||
282 | - | ||
283 | - | ||
284 | - | ||
285 | - | ||
286 | - | ||
287 | \ No newline at end of file | 0 | \ No newline at end of file |