photoelectric_heating_model_ngc7023nw.py
29.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 7 09:46:46 2020
@author: sacha
"""
import numpy as np
import matplotlib.pyplot as plt
#import matplotlib as mpl
#import coupes_fits as cf
import photoionization_lib as photo_lib
#from astropy.io import fits
# =============================================================================
'''some constants'''
habing=1.6e-3 #habing flux
#Nc=54 #number of carbon atoms of the PAH consedred
#fraction of the remaining energy "beared" by the photo-electron
eV_to_erg=1.6021765e-12 #1 eV in erg
c=299792458000000000 #light speed in nm
h=4.135667516e-15 #planck constant in eV*sec
h_J=6.626070e-34 #planck constant in J*sec
#
## ============================================================================
'''_________________________________________________________________________'''
'''_____________________________NGC 7023 gas heating model__________________'''
'''_________________________________________________________________________'''
'''physical conditions'''
arcsec=np.array([20,25,30,35,40,45,50,55,60])
d=3.40486e-3*arcsec*3.086e18 #distance to the star in cm for 0.143pc at 42" and d=430pc
T_list=[750,750,750,750,750,750,350,150,150]
Av_list=[0,0,0,0,0,0,0,0.5,1,1.6]# d=430*arcsec*4.868e-6*3.086e18 #distance to the star in cm
nH_list=np.array([1.5e4,1.5e4,1.5e4,1.5e4,2e4,2e4,2e4,2e4,2e4])
ne_list=1.6e-4*nH_list
#
##carbon locked in PAHs
fc_PAH=np.array([3.9,6,7,7,7,7,7,7,7])*1e-2 #from Berné et al. 2015
wave_range=[91.16,2000] #in nm
# energy vector
G0_wave_l=[91.16,240] #in nm
G0_wave_E=[h*c/240,h*c/91.16] #in eV
#
'''_________________________________________________________________________'''
'''_____________________________PAH parameters______________________________'''
'''selection of the partition coefficient'''
G=0.46 #usually fixed at 0.5 (Verstraete et al.1990, Tielens (2005))
print('Model started with a partition coefficient of',G)
'''selection of the PAH size'''
Nc_list=np.array([54])
Nc_index=0
'''computation of the photoabsorption crosssection'''
eVN_,eVC_,eVDC_,cross_N_,cross_C_,crossDC_=photo_lib.cross_secs(Nc_list[Nc_index],quiet=True) #/!\ cross sections in Mega Barn => 1e-18 cm2
'''Estimation of the IPs'''
IP_N=photo_lib.IP_estimate(Nc_list[Nc_index],Z=0)
IP_C=photo_lib.IP_estimate(Nc_list[Nc_index],Z=1)
'''Estimation of the photoionization yield'''
yield_N_=photo_lib.yield_n_to_p(eVN_,IP_N)
yield_C_=photo_lib.yield_p_to_2p(eVC_,IP_C,Nc_list[Nc_index])
'''_________________________________________________________________________'''
'''_____________________________Saving arrays_______________________________'''
nb_point=len(arcsec) #number of modeled locations
gaz_heating_rate_7023=np.zeros([2,nb_point])
#
total_gas_heating_BT=np.zeros(nb_point) # Array of gas heating rate to be compared with Bakes & Tielens 94
total_gas_heating_WD=np.zeros(nb_point) # Array of gas heating rate to be compared with Weingartner & Draine 01
#tableau des taux de chauffage len(Nc_list) la poussiere de chaque etat d'ionisation en chaque points
dust_heating_rate_7023=np.zeros([3,nb_point])
#tableau des taux d'ionisation de chaque etat d'ionisation en chaque points
ionisation_rate_7023=np.zeros([2,nb_point]) #seuls les neutres et cations peuvent etre ionisés
#tableau des taux de recombinaison de chaque etat d'ionisation en chaque points
recombinaison_rate_7023=np.zeros([2,nb_point]) #seuls les cations et dications peuvent se recombiner
#fraction de chaque etat d'ionisation en chaque points
population_fraction_7023=np.zeros([3,nb_point])
ioni_fraction_7023=np.zeros(nb_point)
#efficacité intrinseque de chaque etat d'ionisation en chaque points
intr_efficiency_7023=np.zeros([2,nb_point])
#efficacité intrinseque de chaque etat d'ionisation en chaque points
total_efficiency_7023=np.zeros([nb_point])
#mean photoelectron energy
mean_photelec_energy_7023=np.zeros([2,nb_point])
#total heating rate:
total_gas_heating=np.zeros([nb_point])
#G0 de NGC7023:
G0_list_7023=np.zeros([nb_point])
#gamma array
gamma_list_7023=np.zeros([nb_point])
'''_________________________________________________________________________'''
'''________Application of the model for nb_point points in NGC 7023 NW______'''
for point in range(len(arcsec)):
T=T_list[point]
ne=ne_list[point]
nH=nH_list[point]
'''====================================================================='''
'''=======================|radiation field|============================='''
Fe,E,Fe_l,wave_l=photo_lib.preparation_Fe(d[point],Av_list[point],wave_range=wave_range,quiet=True) #Fe en erg/sec/cm2/eV/sr
# Fe=Fe_*2*np.pi
G0=np.trapz(2*np.pi*Fe[(E>G0_wave_E[0]) & (E<G0_wave_E[1])],E[(E>G0_wave_E[0]) & (E<G0_wave_E[1])])/1.6e-3
G0_list_7023[point]=G0.copy()
gamma_list_7023[point]=np.sqrt(T)*G0/ne
print('G0={} and gamma={} at {}"'.format(G0,gamma_list_7023[point],arcsec[point]))
'''====================================================================='''
'''=========================|ionization cross-section building|========='''
'''====================================================================='''
''' adaptating the cross section from 0 to 13.6eV'''
crossN=np.interp(E,eVN_,cross_N_)*1e-18 #in cm2/Carbon (from Mb/C to cm2/C)
crossC=np.interp(E,eVC_,cross_C_)*1e-18 #in cm2/Carbon (from Mb/C to cm2/C)
crossDC=np.interp(E,eVDC_,crossDC_)*1e-18 #in cm2/Carbon (from Mb/C to cm2/C)
yield_N=np.interp(E,eVN_,yield_N_)
yield_C=np.interp(E,eVC_,yield_C_)
ioni_cross_N=crossN.copy()*yield_N.copy() #in cm2/C (from Mb/C to cm2/C)
ioni_cross_C=crossC.copy()*yield_C.copy() #in cm2/C (from Mb/C to cm2/C)
'''====================================================================='''
'''=====================dust and gas heating calculation================'''
'''====================================================================='''
E_range_N=np.where(E>IP_N)[0]
E_range_C=np.where(E>IP_C)[0]
# E_range_DC=np.where(E>IP_DC)[0]
'''photo absorption of the neutrals, cations and dications '''
photo_absorption_N=Fe*crossN*2*np.pi #erg/sec/eV /!\ the 2*np.pi is the solid angle considered => the RF comes from the star only
photo_absorption_C=Fe*crossC*2*np.pi #erg/sec/eV
photo_absorption_DC=Fe*crossDC*2*np.pi #erg/sec/eV
'''heating rate of the molecule itself'''
chauffe_dust_N=np.trapz(photo_absorption_N,E) #erg/sec
chauffe_dust_C=np.trapz(photo_absorption_C,E) #erg/sec
chauffe_dust_DC=np.trapz(photo_absorption_DC,E) #erg/sec
#saving of the dust heating rate
dust_heating_rate_7023[0,point]=chauffe_dust_N.copy()
dust_heating_rate_7023[1,point]=chauffe_dust_C.copy()
dust_heating_rate_7023[2,point]=chauffe_dust_DC.copy()
''' power density absorbed for ionization '''
ionisation_absorption_N=yield_N*photo_absorption_N #erg/sec/eV
ionisation_absorption_C=yield_C*photo_absorption_C #erg/sec/eV
# ionisation_absorption_DC=yield_2p_to_3p*photo_absorption_DC #erg/sec/eV
'''number of ionizations'''
number_ionisation_absorption_N=ionisation_absorption_N/(E*eV_to_erg) # ioni/sec/eV
number_ionisation_absorption_C=ionisation_absorption_C/(E*eV_to_erg) # ioni/sec/eV
# number_ionisation_absorption_DC=ionisation_absorption_DC/(E*eV_to_erg) # ioni/sec/eV
'''photoionization rate'''
kpe_N=np.trapz(number_ionisation_absorption_N[E_range_N],(E-IP_N)[E_range_N])
kpe_C=np.trapz(number_ionisation_absorption_C[E_range_C],(E-IP_C)[E_range_C])
# kpe_DC=np.trapz(number_ionisation_absorption_DC[E_range_DC],(E-IP_DC)[E_range_DC])
'''mean gas heating energy'''
mean_photelec_energy_7023[0,point]=1/kpe_N*np.trapz(G*(E[E_range_N]-IP_N)*number_ionisation_absorption_N[E_range_N],(E[E_range_N]-IP_N)) #from Verstraete et al. 90
mean_photelec_energy_7023[1,point]=1/kpe_C*np.trapz(G*(E[E_range_C]-IP_C)*number_ionisation_absorption_C[E_range_C],(E[E_range_C]-IP_C))
#saving of the ionization rate
ionisation_rate_7023[0,point]=kpe_N.copy()
ionisation_rate_7023[1,point]=kpe_C.copy()
# ionisation_rate[2,mol,point]=kpe_DC.copy()
'''spectrum of the gas heating per charge state'''
chauffage_du_gaz_par_eV_N=G*(E-IP_N)*number_ionisation_absorption_N*eV_to_erg #erg/sec/eV
chauffage_du_gaz_par_eV_C=G*(E-IP_C)*number_ionisation_absorption_C*eV_to_erg #erg/sec/eV
# chauffage_du_gaz_par_eV_DC=G*(E-IP_DC)*number_ionisation_absorption_DC*eV_to_erg #erg/sec/eV
'''gaz heating rate per charge state'''
chauffe_gas_neutre=np.trapz(chauffage_du_gaz_par_eV_N[E_range_N],(E[E_range_N]-IP_N)) #erg/sec/molecule
chauffe_gas_cation=np.trapz(chauffage_du_gaz_par_eV_C[E_range_C],(E[E_range_C]-IP_C)) #erg/sec/molecule
# chauffe_gas_dication=np.trapz(chauffage_du_gaz_par_eV_DC[E_range_DC],G*(E[E_range_DC]-IP_DC))
#saving of the gas heating rate
gaz_heating_rate_7023[0,point]=chauffe_gas_neutre.copy()
gaz_heating_rate_7023[1,point]=chauffe_gas_neutre.copy()
'''====================================================================='''
'''======================= population fractions ========================'''
'''======================= in a 3-levels model ========================='''
'''====================================================================='''
'''======================= recombinaison ========================'''
krec_neutral=ne*1.28e-10*Nc_list[Nc_index]*np.sqrt(T)*(1+(1.85e5)/(np.sqrt(Nc_list[Nc_index])*T))
krec_cation=ne*1.28e-10*Nc_list[Nc_index]*np.sqrt(T)*(1+(2*1.85e5)/(np.sqrt(Nc_list[Nc_index])*T))
# krec_dication=ne*1.28e-10*Nc_list[Nc_index]*np.sqrt(T)*(1+(3*1.85e5)/(np.sqrt(Nc_list[Nc_index])*T))
#saving of the recombinaison rate
recombinaison_rate_7023[0,point]=krec_neutral.copy()
recombinaison_rate_7023[1,point]=krec_cation.copy()
# recombinaison_rate[temp,radfield,2,Nc_index,point]=krec_dication.copy()
'''population fraction computation'''
#cations
fp3l=1/(1+krec_neutral/kpe_N+kpe_C/krec_cation)
#neutrals
f03l=(1-fp3l*kpe_C/krec_cation)/(1+kpe_N/krec_neutral)
#dications
fpp3l=(1-f03l)/(1+krec_cation/kpe_C)
#saving of the fraction of each population
population_fraction_7023[0,point]=f03l.copy()
population_fraction_7023[1,point]=fp3l.copy()
population_fraction_7023[2,point]=fpp3l.copy()
'''ionization fraction'''
ioni_fraction_7023[point]=fpp3l.copy()+fp3l.copy()
'''======================= heating efficiencies ========================'''
'''intrinsic'''
intr_efficiency_N=chauffe_gas_neutre/chauffe_dust_N
intr_efficiency_C=chauffe_gas_cation/chauffe_dust_C
#saving of the intrinsic heating efficiency of each population
intr_efficiency_7023[0,point]=intr_efficiency_N.copy()
intr_efficiency_7023[1,point]=intr_efficiency_C.copy()
'''mixed 3-levels model'''
total_gas_heating[point]=(f03l*chauffe_gas_neutre+fp3l*chauffe_gas_cation) #erg/sec/(molecule de taille Nc)
mixed_efficiency_3l=(f03l*chauffe_gas_neutre+fp3l*chauffe_gas_cation)/(f03l*chauffe_dust_N+\
fp3l*chauffe_dust_C+fpp3l*chauffe_dust_DC)
total_efficiency_7023[point]=mixed_efficiency_3l.copy()
'''gas heating'''
#saving of the total heating efficiency
#
total_gas_heating_WD[point]=(f03l*chauffe_gas_neutre+fp3l*chauffe_gas_cation)/(G0*nH)
total_gas_heating_BT[point]=(f03l*chauffe_gas_neutre+fp3l*chauffe_gas_cation)*fc_PAH[point]/Nc_list[Nc_index]*1.6e-4
'''display of the principal parameters'''
''' pop_fraction with the distance '''
fig0,ax1=plt.subplots(figsize=(5.90,3.93))
ax1.set_xlabel('Distance fron the star (")')
ax1.set_ylabel('population fraction')
ax1.plot(arcsec,population_fraction_7023[0,:],color = 'green',label='Z=0')
ax1.plot(arcsec,population_fraction_7023[1,:],color = 'blue',label='Z=1')
ax1.plot(arcsec,population_fraction_7023[2,:],color = 'red',label='Z=2')
plt.legend()
'''comparaison with observation'''
if True:
'''photoionization yield'''
IP_Npet=photo_lib.IP_estimate(32,0)
IP_Nmoy=photo_lib.IP_estimate(44,0)
IP_Ngrand=photo_lib.IP_estimate(64,0)
IP_Cpet=photo_lib.IP_estimate(32,1)
IP_Cmoy=photo_lib.IP_estimate(44,1)
IP_Cgrand=photo_lib.IP_estimate(64,1)
yield_petitN=photo_lib.yield_n_to_p(eVN_,IP_Npet)
yield_moyN=photo_lib.yield_n_to_p(eVN_,IP_Nmoy)
yield_grandN=photo_lib.yield_n_to_p(eVN_,IP_Ngrand)
yield_petitC=photo_lib.yield_p_to_2p(eVC_,IP_Cpet,32)
yield_moyC=photo_lib.yield_p_to_2p(eVC_,IP_Cmoy,44)
yield_grandC=photo_lib.yield_p_to_2p(eVC_,IP_Cgrand,66)
plt.figure()
plt.plot(eVN_,yield_petitN,'darkblue',label='Z=0->1')
plt.plot(eVN_,yield_moyN,'cornflowerblue')
plt.plot(eVN_,yield_grandN,'darkred')
plt.text(4.1,0.70,'N$_C$=32',color='darkblue')
plt.text(4.1,0.65,'N$_C$=44',color='cornflowerblue')
plt.text(4.1,0.60,'N$_C$=66',color='darkred')
plt.plot(eVN_,yield_petitC,'darkblue',ls='--',label='Z=1->2')
plt.plot(eVN_,yield_moyC,'cornflowerblue',ls='--')
plt.plot(eVN_,yield_grandC,'darkred',ls='--')
plt.xlabel('Énergie de photon (eV)')
plt.ylabel('Y(E,Z)')
plt.xlim([4,13.6])
plt.legend()
'''====================================================================='''
'''ioni and photo cross sections'''
eVN_,eVC_,eVDC_,cross_N_petit,cross_C_petit,crossDC_petit=photo_lib.cross_secs(32,quiet=True) #/!\ cross sections en Mega Barn => 1e-18 cm2
cross_N_petit=cross_N_petit/32*1e-18
cross_C_petit=cross_C_petit/32*1e-18
crossDC_petit=crossDC_petit/32*1e-18
ionicross_N_petit=cross_N_petit*yield_petitN
ionicross_C_petit=cross_C_petit*yield_petitC
eVN_,eVC_,eVDC_,cross_N_moy,cross_C_moy,crossDC_moy=photo_lib.cross_secs(44,quiet=True) #/!\ cross sections en Mega Barn => 1e-18 cm2
cross_N_moy=cross_N_moy/44*1e-18
cross_C_moy=cross_C_moy/44*1e-18
crossDC_moy=crossDC_moy/44*1e-18
ionicross_N_moy=cross_N_moy*yield_moyN
ionicross_C_moy=cross_C_moy*yield_moyC
eVN_,eVC_,eVDC_,cross_N_grand,cross_C_grand,crossDC_grand=photo_lib.cross_secs(66,quiet=True) #/!\ cross sections en Mega Barn => 1e-18 cm2
cross_N_grand=cross_N_grand/66*1e-18
cross_C_grand=cross_C_grand/66*1e-18
crossDC_grand=crossDC_grand/66*1e-18
ionicross_N_grand=cross_N_grand*yield_grandN
ionicross_C_grand=cross_C_grand*yield_grandC
fig=plt.figure(figsize=(3.97,4.17))
# fig=plt.figure()
ax1 = fig.add_subplot(311)
ax1.plot(eVN_,cross_N_petit*1e17,'darkblue',label='$\sigma(E,Z)$')
ax1.plot(eVN_,cross_N_moy*1e17,'cornflowerblue')
ax1.plot(eVN_,cross_N_grand*1e17,'darkred')
ax1.plot(eVN_,ionicross_N_petit*1e17,'darkblue',ls='--',label='$\sigma_{ion}(E)/N_C$')
ax1.plot(eVC_,ionicross_N_moy*1e17,'cornflowerblue',ls='--')
ax1.plot(eVDC_,ionicross_N_grand*1e17,'darkred',ls='--')
# plt.legend()
ax2 = fig.add_subplot(312)
ax2.plot(eVN_,cross_C_petit*1e17,'darkblue')
ax2.plot(eVN_,cross_C_moy*1e17,'cornflowerblue')
ax2.plot(eVN_,cross_C_grand*1e17,'darkred')
ax2.plot(eVN_,ionicross_C_petit*1e17,'darkblue',ls='--')
ax2.plot(eVC_,ionicross_C_moy*1e17,'cornflowerblue',ls='--')
ax2.plot(eVDC_,ionicross_C_grand*1e17,'darkred',ls='--')
ax3 = fig.add_subplot(313)
ax3.plot(eVN_,crossDC_petit*1e17,'darkblue')
ax3.plot(eVN_,crossDC_moy*1e17,'cornflowerblue')
ax3.plot(eVN_,crossDC_grand*1e17,'darkred')
ax1.tick_params(labelbottom='off',direction='inout')
ax2.tick_params(labelbottom='off',direction='inout')
ax3.tick_params(direction='inout')
ax1.xaxis.set_ticks_position('both')
ax2.xaxis.set_ticks_position('both')
ax3.xaxis.set_ticks_position('both')
# ax1.set_xlabel('Énergie de photon (eV)')
ax1.text(8,1,'Z=0')
ax2.text(8,1,'Z=1')
ax3.text(8,1,'Z=2')
ax1.text(0,1.2,'- $\sigma_{abs}$')
ax1.text(0,0.9,'-- $\sigma_{ion}$')
# ax2.set_xlabel('Énergie de photon (eV)')
ax3.set_xlabel('Photon energy (eV)')
ax2.set_ylabel('Cross sections (10$^{-17}$cm$^2$/C)')
ax2.text(0,1.15,'N$_C$=32',color='darkblue')
ax2.text(0,0.9,'N$_C$=44',color='cornflowerblue')
ax2.text(0,0.65,'N$_C$=66',color='darkred')
fig.subplots_adjust(top=0.96,bottom=0.11,left=0.135,right=0.985,hspace=0.0,wspace=0.2)
'''====================================================================='''
'''====================================================================='''
'''=====================cut in the observations========================='''
import coupes_fits as cf #personnal librairy used for the cuts
#RA/DEC coordinates in deg of the extremes points of the 3 cuts
#starting point
coord1_1=[315.3945810,68.1785188]
coord1_2=[315.3797831,68.1748496]
coord1_3=[315.3644449,68.1715722]
#ending point
coord2_2=[315.39375,68.1667]
coord2_3=[315.3909639,68.1662128]
coord2_1=[315.3978010,68.1687543]
#HD200775 coord.
coordstar=[315.4038,68.1632]
#list of coordinates to be used by the cut function
coords=[[coord1_1,coord1_2,coord1_3],[coord2_1,coord2_2,coord2_3],coordstar]
#files to consider
#PE efficiency, neutral and cation integrated intensity
filename_PE='./data/PE_PAH_h2_PAH_map_publication.fits'
filename_PAH0='./data/N7023_neutrals_map_intLR_11_reproj.fits'
filename_PAHp='./data/N7023_cations_map_intLR_11_reproj.fits'
#gas emission
filename_CII='./data/CII157line_BS.fits'
filename_OI63='./data/OI63line_BS.fits'
filename_OI145='./data/OI145line_BS.fits'
filename_AIB='./data/AIB_int_map_publication.fits'
filename_cont='./data/N7023_int_cont_map.fits'
model_output=np.zeros([2,len(arcsec)])
model_output[0,:]=arcsec.copy()
model_output[1,:]=total_efficiency_7023.copy()
#cuts, see the documentation and comments of the cf.cut_fits
#Pe efficiency and neutral and cation integrated intensity
all_data_average_PE,all_error_PE,all_distance_average_PE=cf.cut_fits(filename_PE,coords,plot_all_cut=True,average=True,model_output=model_output,fig_index='PE efficiency')
all_data_averagePAH0,all_error_PAH0,all_distance_average_PAH0=cf.cut_fits(filename_PAH0,coords,plot_all_cut=True,average=True,model_output=[],fig_index='PAH0')
all_data_averagePAHp,all_error_PAHp,all_distance_average_PAHp=cf.cut_fits(filename_PAHp,coords,plot_all_cut=True,average=True,model_output=[],fig_index='PAH+')
#gas emission
all_data_average_CII,all_error_CII,all_distance_average_CII=cf.cut_fits(filename_CII,coords,plot_all_cut=True,average=True,model_output=[],fig_index='C+')
all_data_average_OI63,all_error_OI63,all_distance_average_OI63=cf.cut_fits(filename_OI63,coords,plot_all_cut=True,average=True,model_output=[],fig_index='OI63')
all_data_average_OI145,all_error_OI145,all_distance_average_OI145=cf.cut_fits(filename_OI145,coords,plot_all_cut=True,average=True,model_output=[],fig_index='OI145')
all_data_average_AIB,all_error_AIB,all_distance_average_AIB=cf.cut_fits(filename_AIB,coords,plot_all_cut=True,average=True,model_output=[],fig_index='AIB')
all_data_average_cont,all_error_cont,all_distance_average_cont=cf.cut_fits(filename_cont,coords,plot_all_cut=True,average=True,model_output=[],fig_index='cont')
#
#
plt.figure(figsize=(5.90,3.93))
'''verify that you used Nc=54 to be comparable to the following computed PE efficiencies'''
#PE efficiencies computed for Nc=54 and several partition coefficient
pe_eff_G04=np.array([0.00613149, 0.00845175, 0.01065419, 0.0126501 , 0.01656323, 0.0176872 , 0.02070102, 0.02283699, 0.02091324])
pe_eff_G035=np.array([0.00536505, 0.00739529, 0.00932241, 0.01106884, 0.01449282, 0.0154763 , 0.0181134 , 0.01998237, 0.01829909])
pe_eff_G05=np.array([0.00766436, 0.01056469, 0.01331773, 0.01581263, 0.02070403, 0.022109 , 0.02587628, 0.02854624, 0.02614155])
pe_eff_G055=np.array([0.00843079, 0.01162116, 0.01464951, 0.01739389, 0.02277444, 0.0243199 , 0.02846391, 0.03140086, 0.02875571])
#plot of the computed PAH PE efficiency
plt.semilogy(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),total_efficiency_7023,'x',color='red',label='modèle, G={}'.format(G))
#observations: cuts of the observed ``reduced'' PE efficiency in function of the cation fraction
plt.errorbar(all_data_averagePAHp[0]/(all_data_averagePAHp[0]+all_data_averagePAH0[0]),all_data_average_PE[0],yerr=all_error_PE[0],label='coupe {}'.format(0))
plt.errorbar(all_data_averagePAHp[1]/(all_data_averagePAHp[1]+all_data_averagePAH0[1]),all_data_average_PE[1],yerr=all_error_PE[1],label='coupe {}'.format(1))
plt.errorbar(all_data_averagePAHp[2]/(all_data_averagePAHp[2]+all_data_averagePAH0[2]),all_data_average_PE[2],yerr=all_error_PE[2],label='coupe {}'.format(2))
#for comparaison to the computed pe_eff_GXX
plt.plot(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),pe_eff_G035,'v',label='model, G=0.35')
plt.plot(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),pe_eff_G04,'1',label='model, G=0.4')
# plt.plot(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),pe_eff_G05,'d',label='modèle, G=0.5')
plt.plot(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),pe_eff_G055,'*',label='model, G=0.55')
plt.legend()
# plt.axvline(0.5,lw=0.8,ls='--',color='grey')
plt.xlabel('Cation fraction')
plt.ylabel('$\epsilon$')
plt.title('N$_C$={}'.format(54))
plt.figure('gas emission')
plt.semilogy(all_distance_average_PAHp[0],all_data_average_CII[0],label='[CII] 158$\mu$m')
plt.plot(all_distance_average_PAHp[0],all_data_average_OI63[0],label='[0I] 63$\mu$m')
plt.plot(all_distance_average_PAHp[0],all_data_average_OI145[0],label='[OI] 145$\mu$m')
plt.plot(all_distance_average_PAHp[0],all_data_average_AIB[0],label='AIB')
plt.xlabel('Distance (")')
plt.ylabel('Brightness (W/m2/sr)')
plt.legend()
filename_PAHp_IRSres='./data/N7023_ionization_fraction.fits' #ionization fraction map at the IRS spatial resolution
all_data_averagePAHp_IRSres,all_error_PAHp_IRSres,all_distance_average_PAHp_IRSres=cf.cut_fits(filename_PAHp_IRSres,coords,plot_all_cut=True,average=True,model_output=[],fig_index='PAH+ IRS')
#computed ionization fraction for different sizes
ioni_fraction_NC32=np.array([0.79313524, 0.69150685, 0.59621668, 0.51204338, 0.36650701, 0.31117851, 0.19870353, 0.04037594, 0.01136714])
ioni_fraction_NC44=np.array([0.85018817, 0.7634044, 0.67614262, 0.59450648, 0.4432105, 0.38221601, 0.25239059, 0.05409562, 0.01544414])
ioni_fraction_NC66=np.array([0.8855932, 0.81159114, 0.73315735, 0.6564234, 0.50591308, 0.4421752, 0.30113321, 0.06761376, 0.01948429])
#computed PE on PAHs heating efficiency for different sizes
PE_eff_NC32_G05=np.array([0.00591002, 0.01120707, 0.01392701, 0.01626842, 0.02021422, 0.02168575, 0.02463521, 0.02668083, 0.02525464])
PE_eff_NC44_G05=np.array([0.00589942, 0.01120773, 0.0140879 , 0.01667006, 0.0212639 , 0.02306228, 0.02680859, 0.0297366 , 0.02875639])
PE_eff_NC66_G05=np.array([0.00542426, 0.0103825 , 0.01318074, 0.01577018, 0.02059159, 0.02256117, 0.02680796, 0.03037893, 0.02954722])
#computed PE on PAHs heating efficiency for Nc=66 and different partition coefficients
PE_eff_NC66_G06=np.array([0.00650911, 0.012459, 0.01581688, 0.01892422, 0.02470991, 0.02707341, 0.03216955, 0.03645472, 0.03545667])
PE_eff_NC66_G04=np.array([0.00433941, 0.008306, 0.01054459, 0.01261615, 0.01647328, 0.01804894, 0.02144637, 0.02430315, 0.02363778])
# print('$\epsilon_{PAH}$',total_efficiency_7023)
print('ioni fraction, Nc={}, G={}'.format(Nc_list[0],G))
#comparaison computed ionization fraction VS observed ionization fraction
plt.figure(figsize=(5.90,3.93))
ls=['-','--','-.']
plt.xlabel('Distance (")')
plt.ylabel("$f\,_{ion}^{Obs}$,$f\,_{ion}^{Mod}$")
plt.errorbar(all_distance_average_PAHp_IRSres[0],all_data_averagePAHp_IRSres[0],yerr=all_error_PAHp_IRSres[0],label='coupe 1')
plt.errorbar(all_distance_average_PAHp_IRSres[1],all_data_averagePAHp_IRSres[1],yerr=all_error_PAHp_IRSres[1],label='coupe 2')
plt.errorbar(all_distance_average_PAHp_IRSres[2],all_data_averagePAHp_IRSres[2],yerr=all_error_PAHp_IRSres[2],label='coupe 3')
# plt.plot(arcsec,population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),'x',color='red',label='modèle PAH$^+$')
plt.plot(arcsec,ioni_fraction_NC66,'x',color='darkred',label='N$_C$=66')
plt.plot(arcsec,ioni_fraction_NC44,'x',color='cornflowerblue',label='N$_C$=44')
plt.plot(arcsec,ioni_fraction_NC32,'x',color='darkblue',label='N$_C$=32')
plt.subplots_adjust(top=0.984,bottom=0.128,left=0.093,right=0.992,hspace=0.2,wspace=0.2)
plt.axhline(0.5,ls='--',alpha=0.5)
plt.legend(loc=3)
###############
#plot of the heating efficiencies from WD01 and BT94
#from WD01
size_WD01=[4,5,6,7,8,9,10] #in Angstroms
gamma_WD01=[1e3,1e4,1e5]
PE_eff_WD01_gam1e3=np.array([0.05,0.06,0.065,0.065,0.065,0.065,0.065])
PE_eff_WD01_gam1e4=np.array([0.019,0.019,0.019,0.018,0.017,0.016,0.015])
PE_eff_WD01_gam1e5=np.array([0.0023,0.0021,0.0019,0.0018,0.0016,0.0015,0.0014])
PE_eff_WD01=np.zeros([7,3])
PE_eff_WD01[:,0]=PE_eff_WD01_gam1e3.copy()
PE_eff_WD01[:,1]=PE_eff_WD01_gam1e4.copy()
PE_eff_WD01[:,2]=PE_eff_WD01_gam1e5.copy()
#from BT94
#/!\ the size variation is not considered in BT94 formula
epsilonBT94=(4.87e-2)/(1+(4e-3)*(gamma_list_7023)**0.73)+(3.65e-2*(100/1e4)**0.7)/(1+2e-4*(gamma_list_7023))
plt.figure()
#plot of WD01
plt.loglog(gamma_WD01,PE_eff_WD01[0,:],ls='--',color='cornflowerblue',label='WD01, 4$\AA$')
# plt.plot(gamma_WD01,PE_eff_WD01[1,:],'*')
# plt.plot(gamma_WD01,PE_eff_WD01[2,:],'*')
plt.plot(gamma_WD01,PE_eff_WD01[3,:],ls='--',color='darkred',label='WD01, 7$\AA$')
# plt.plot(gamma_WD01,PE_eff_WD01[4,:],'*')
# plt.plot(gamma_WD01,PE_eff_WD01[5,:],'*')
plt.plot(gamma_WD01,PE_eff_WD01[6,:],ls='--',color='darkblue',label='WD01, 10$\AA$')
#plot of BT94
plt.plot(gamma_list_7023,epsilonBT94,ls=':',color='black',label='BT94')
#plot of this code
plt.plot(gamma_list_7023,PE_eff_NC66_G05,color='darkred',label='modele PAH, Nc=66')
plt.plot(gamma_list_7023,PE_eff_NC44_G05,color='cornflowerblue',label='modele PAH, Nc=44')
plt.plot(gamma_list_7023,PE_eff_NC32_G05,color='red',label='modele PAH, Nc=32')
plt.xlabel('$\gamma$ (K$^{1/2}$cm$^3$)')
plt.ylabel('$\epsilon$')
plt.legend()
#######
'''introduction of the alpha parameter, i.e. the contribution of PAHs in the gas heating'''
alpha=1 #if 1, you consider that only PAH contribute to the gas heating. Good results with alpha=0.8
plt.figure(figsize=(5.90,3.93))
plt.errorbar(all_data_averagePAHp[0]/(all_data_averagePAHp[0]+all_data_averagePAH0[0]),all_data_average_PE[0]*alpha,yerr=all_error_PE[0],label='coupe 1'.format(0))
plt.errorbar(all_data_averagePAHp[1]/(all_data_averagePAHp[1]+all_data_averagePAH0[1]),all_data_average_PE[1]*alpha,yerr=all_error_PE[1],label='coupe 2'.format(1))
plt.errorbar(all_data_averagePAHp[2]/(all_data_averagePAHp[2]+all_data_averagePAH0[2]),all_data_average_PE[2]*alpha,yerr=all_error_PE[2],label='coupe 3'.format(2))
# plt.plot(population_fraction_7023[1,:]/(population_fraction_7023[0,:]+population_fraction_7023[1,:]),total_efficiency_7023,'x',color='red',label='$\epsilon_{th}$')
plt.plot(ioni_fraction_NC66,PE_eff_NC66_G05,'x',color='red',label='Grands')
# plt.plot(ioni_fraction_NC66,PE_eff_NC66_G05,'x',color='orange',label='G=0.5')
# plt.plot(ioni_fraction_NC66,PE_eff_NC66_G04,'x',color='blue',label='G=0.4')
plt.plot(ioni_fraction_NC44,PE_eff_NC44_G05,'x',color='orange',label='Moyens')
plt.plot(ioni_fraction_NC32,PE_eff_NC32_G05,'x',color='blue',label='Petits')
plt.subplots_adjust(top=0.984,bottom=0.128,left=0.108,right=0.992,hspace=0.2,wspace=0.2)
plt.legend()
plt.ylabel('$\epsilon\,_{PAH}$, $\epsilon\,_{r}$')
plt.xlabel("$f\,_{ion}^{Mod}$,$f\,_{ion}^{Obs}$")
plt.figure()
plt.loglog(gamma_list_7023,total_gas_heating_WD,label='Nc=66, 8$\AA$')
plt.ylabel('$\Gamma/G_0n_H$')
plt.xlabel('$\gamma$ (T$^{1/2}$cm$^3$)')
plt.figure()
plt.loglog(gamma_list_7023,total_gas_heating_BT,label='Nc=66, 8$\AA$')
plt.ylabel('taux de chauffage (erg/sec/H)')
plt.xlabel('$\gamma$ (T$^{1/2}$cm$^3$)')
if False:
#T=750
#G0=2600
n=7e3
ne=1.6e-4*n
nb_temp=50
T=np.logspace(1,4,nb_temp)
G0=np.logspace(2,4,nb_temp)
for i in range(len(G0_list_7023)):
epsilon=(4.87e-2)/(1+(4e-3)*(G0*np.sqrt(T)/ne)**0.73)+(3.65e-2*(100/1e4)**0.7)/(1+2e-4*(G0_list_7023[i]*np.sqrt(T)/ne))
chauffageBT=1e-24*epsilon*nH_list[0]*G0
#chauffage=total_gas_heating*0.1*1.6e-4/Nc_list[0]*n
refroidissement=2.5e-29*n**2*T**(2/3)*np.exp(-228/T)+8e-27*n**2*np.exp(-92/T)
plt.figure()
plt.loglog(T,chauffageBT,'r',label='heating rate')
plt.plot(T,refroidissement,'b',label='cooling rate')
plt.legend()
# fig=plt.figure()
nb_temp=1000
T=np.logspace(1,4,nb_temp)
refroidissement=np.zeros([len(arcsec),nb_temp])
for j in range(len(arcsec)):
refroidissement[j,:]=8e-27*nH_list[j]**2*np.exp(-92/T)
chauffage=total_gas_heating[j]*fc_PAH[point]*2.7e-4/Nc_list[Nc_index]*nH_list[j]
plt.figure('distance={}'.format(arcsec[j]))
plt.loglog(T,refroidissement[j,:],'r',label='cooling rate')
plt.axhline(chauffage,ls='--',label='heating rate')
plt.legend()
heat_rate_7023=total_gas_heating*fc_PAH[point]*2.7e-4/Nc_list[Nc_index]*1e-7 # heating in watts / H