Commit 2585c602f2ac85781f36cd91f3bd20a58ee98807

Authored by Laurent BEIGBEDER
1 parent 6c54c49f
Exists in master

9097, 9059, 8841: ajouts des repères MSE MSEQ NSO USO NPO NSO.

Ajout de la description détaillée de tous les repères.
Showing 1 changed file with 1078 additions and 220 deletions   Show diff stats
server/kernel/data/frames.xml
1 1 <?xml version="1.0"?>
2 2 <treps>
3   - <frames>
4   - <frame id="EME">
5   - <fullname>
6   - Earth Mean Equator and Equinox
7   - </fullname>
8   - <description>
9   - </description>
10   - </frame>
11   - <frame id="JEME">
12   - <fullname>
13   - EME2000 centered on Jupiter
14   - </fullname>
15   - <description>
16   - </description>
17   - </frame>
18   - <frame id="KEME">
19   - <fullname>
20   - EME2000 centered on Saturn
21   - </fullname>
22   - <description>
23   - </description>
24   - </frame>
25   - <frame id="VME">
26   - <fullname>
27   - Venus Mean Equator
28   - </fullname>
29   - <description>
30   - </description>
31   - </frame>
32   - <frame id="MME">
33   - <fullname>
34   - Mars Mean Equator
35   - </fullname>
36   - <description>
37   - </description>
38   - </frame>
39   - <frame id="LME">
40   - <fullname>
41   - Moon Mean Equator
42   - </fullname>
43   - <description>
44   - </description>
45   - </frame>
46   - <frame id="HEE">
47   - <fullname>
48   - Heliocentric Earth Ecliptic
49   - </fullname>
50   - <description>
51   - </description>
52   - </frame>
53   - <frame id="JECLIP">
54   - <fullname>
55   - ECLIPJ2000 centered on Jupiter
56   - </fullname>
57   - <description>
58   - </description>
59   - </frame>
60   - <frame id="KECLIP">
61   - <fullname>
62   - ECLIPJ2000 centered on Saturn
63   - </fullname>
64   - <description>
65   - </description>
66   - </frame>
67   - <frame id="VSO">
68   - <fullname>
69   - Venus Solar Orbital
70   - </fullname>
71   - <description>
72   - </description>
73   - </frame>
74   - <frame id="GSE">
75   - <fullname>
76   - Geocentric Solar Ecliptic
77   - </fullname>
78   - <description>
79   - </description>
80   - </frame>
81   - <frame id="JSO">
82   - <fullname>
83   - Jovian Solar Orbital
84   - </fullname>
85   - <description>
86   - </description>
87   - </frame>
88   - <frame id="KSO">
89   - <fullname>
90   - Kronian Solar Orbital
91   - </fullname>
92   - <description>
93   - </description>
94   - </frame>
95   - <frame id="LSE">
96   - <fullname>
97   - Selenocentric Solar Ecliptic
98   - </fullname>
99   - <description>
100   - </description>
101   - </frame>
102   - <frame id="GSM">
103   - <fullname>
104   - Geocentric Solar Magnetospheric
105   - </fullname>
106   - <description>
107   - </description>
108   - </frame>
109   - <frame id="KSM">
110   - <fullname>
111   - Kronian Solar Magnetospheric
112   - </fullname>
113   - <description>
114   - </description>
115   - </frame>
116   - <frame id="JSM">
117   - <fullname>
118   - Jovian Solar Magnetospheric
119   - </fullname>
120   - <description>
121   - </description>
122   - </frame>
123   - <frame id="MAG">
124   - <fullname>
125   - Geomagnetic coordinate system
126   - </fullname>
127   - <description>
128   - </description>
129   - </frame>
130   - <frame id="SM">
131   - <fullname>
132   - Solar Magnetic coordinates
133   - </fullname>
134   - <description>
135   - </description>
136   - </frame>
137   - <frame id="GSEQ">
138   - <fullname>
139   - Geocentric Solar Equatorial
140   - </fullname>
141   - <description>
142   - </description>
143   - </frame>
144   - <frame id="ECLIPDATE">
145   - <fullname>
146   - Earth Mean Ecliptic and Equinox
147   - </fullname>
148   - <description/>
149   - </frame>
150   - <frame id="67PCG_EME">
151   - <fullname>
152   - EME2000 centered on comet Churyumov Gerasimenko
153   - </fullname>
154   - <description/>
155   - </frame>
156   - <frame id="LUTETIA_EME">
157   - <fullname>
158   - EME2000 centered on asteroid LUTETIA
159   - </fullname>
160   - <description/>
161   - </frame>
162   - <frame id="STEINS_EME">
163   - <fullname>
164   - EME2000 centered on asteroid STEINS
165   - </fullname>
166   - <description/>
167   - </frame>
168   - <frame id="HEEQ">
169   - <fullname>
170   - Heliocentric Earth Equatorial
171   - </fullname>
172   - <description/>
173   - </frame>
174   - <frame id="HCI">
175   - <fullname>
176   - Heliocentric Inertial
177   - </fullname>
178   - <description/>
179   - </frame>
180   - <frame id="MSO">
181   - <fullname>
182   - Mars-centric Solar Orbital
183   - </fullname>
184   - <description/>
185   - </frame>
186   - <frame id="MEME">
187   - <fullname>
188   - EME2000 centered on Mercury
189   - </fullname>
190   - <description/>
191   - </frame>
192   - <frame id="MECLIP">
193   - <fullname>
194   - ECLIPJ2000 centered on Mercury
195   - </fullname>
196   - <description/>
197   - </frame>
198   - <frame id="MESO">
199   - <fullname>
200   - Mercury-centric Solar Orbital
201   - </fullname>
202   - <description/>
203   - </frame>
204   - <frame id="J2000">
205   - <fullname>
206   - Earth mean equator, dynamical equinox of J2000
207   - </fullname>
208   - <description/>
209   - </frame>
210   - <frame id="ECLIPJ2000">
211   - <fullname>
212   - Ecliptic coordinates based upon the J2000 frame
213   - </fullname>
214   - <description/>
215   - </frame>
216   - <frame id="GPHIO">
217   - <fullname>
218   - Ganymede Phi-Omega
219   - </fullname>
220   - <description/>
221   - </frame>
222   - </frames>
  3 + <frames>
  4 + <frame id="EME">
  5 + <fullname>
  6 + Earth Mean Equator and Equinox
  7 + </fullname>
  8 + <description>
  9 + The Earth Mean Equator and Equinox of Date frame is defined as follows:
  10 +
  11 + - +Z axis is aligned with the north-pointing vector normal to the
  12 + mean equatorial plane of the Earth;
  13 +
  14 + - +X axis points along the ``mean equinox'', which is defined as the
  15 + intersection of the Earth's mean orbital plane with the Earth's mean
  16 + equatorial plane. It is aligned with the cross product of the
  17 + north-pointing vectors normal to the Earth's mean equator and mean
  18 + orbit plane of date;
  19 +
  20 + - +Y axis is the cross product of the Z and X axes and completes the
  21 + right-handed frame;
  22 +
  23 + - the origin of this frame is the Earth's center of mass.
  24 +
  25 + The mathematical model used to obtain the orientation of the Earth's mean
  26 + equator and equinox of date frame is the 1976 IAU precession model, built
  27 + into SPICE.
  28 +
  29 + The base frame for the 1976 IAU precession model is J2000.
  30 + </description>
  31 + </frame>
  32 + <frame id="JEME">
  33 + <fullname>
  34 + J2000 centered on Jupiter
  35 + </fullname>
  36 + <description>
  37 + Earth mean equator, dynamical equinox of J2000 centered on Jupiter
  38 + </description>
  39 + </frame>
  40 + <frame id="KEME">
  41 + <fullname>
  42 + J2000 centered on Saturn
  43 + </fullname>
  44 + <description>
  45 + </description>
  46 + </frame>
  47 + <frame id="VME">
  48 + <fullname>
  49 + Venus Mean Equator
  50 + </fullname>
  51 + <description>
  52 + The Venus Mean Equatorial of Date frame (also known as Venus Mean
  53 + Equator and IAU vector of Date frame) is defined as follows :
  54 +
  55 + - X-Y plane is defined by the Venus equator of date, and
  56 + the +Z axis is parallel to the Venus' rotation axis of date,
  57 + pointing toward the North side of the invariant plane;
  58 +
  59 + - +X axis is defined by the intersection of the Venus' equator
  60 + of date with the Earth Mean Equator of J2000;
  61 +
  62 + - +Y axis completes the right-handed system;
  63 +
  64 + - the origin of this frame is Venus' center of mass.
  65 +
  66 + All vectors are geometric: no corrections are used.
  67 + </description>
  68 + </frame>
  69 + <frame id="MME">
  70 + <fullname>
  71 + Mars Mean Equator
  72 + </fullname>
  73 + <description>
  74 + The Mars Mean Equator of Date frame (also known as Mars Mean Equator
  75 + and IAU vector of Date frame) is defined as follows :
  76 +
  77 + - X-Y plane is defined by the Mars equator of date: the
  78 + +Z axis, primary vector, is parallel to the Mars' rotation
  79 + axis of date, pointing toward the North side of the invariant
  80 + plane;
  81 +
  82 + - +X axis is defined by the intersection of the Mars' equator of
  83 + date with the J2000 equator;
  84 +
  85 + - +Y axis completes the right-handed system;
  86 +
  87 + - the origin of this frame is Mars' center of mass.
  88 +
  89 +
  90 + All vectors are geometric: no corrections are used.
  91 + </description>
  92 + </frame>
  93 + <frame id="LME">
  94 + <fullname>
  95 + Moon Mean Equator
  96 + </fullname>
  97 + <description>
  98 + The Moon Mean Equator of Date frame (also known as Moon Mean Equator
  99 + and IAU vector of Date frame) is defined as follows :
  100 +
  101 + - X-Y plane is defined by the Moon equator of date, and the
  102 + +Z axis, primary vector of this frame, is parallel to the
  103 + Moon's rotation axis of date, pointing toward the North side
  104 + of the invariant plane;
  105 +
  106 + - +X axis is defined by the intersection of the Moon's equator
  107 + of date with the Earth Mean Equator of J2000;
  108 +
  109 + - +Y axis completes the right-handed system;
  110 +
  111 + - the origin of this frame is Moon's center of mass.
  112 +
  113 + All vectors are geometric: no corrections are used.
  114 + </description>
  115 + </frame>
  116 + <frame id="HEE">
  117 + <fullname>
  118 + Heliocentric Earth Ecliptic
  119 + </fullname>
  120 + <description>
  121 + The Heliocentric Earth Ecliptic frame is defined as follows (from [3]):
  122 +
  123 + - X-Y plane is defined by the Earth Mean Ecliptic plane of date,
  124 + therefore, the +Z axis is the primary vector,and it defined as
  125 + the normal vector to the Ecliptic plane that points toward the
  126 + north pole of date;
  127 +
  128 + - +X axis is the component of the Sun-Earth vector that is
  129 + orthogonal to the +Z axis;
  130 +
  131 + - +Y axis completes the right-handed system;
  132 +
  133 + - the origin of this frame is the Sun's center of mass.
  134 +
  135 + All vectors are geometric: no aberration corrections are used.
  136 +
  137 + </description>
  138 + </frame>
  139 + <frame id="JECLIP">
  140 + <fullname>
  141 + ECLIPJ2000 centered on Jupiter
  142 + </fullname>
  143 + <description>
  144 + </description>
  145 + </frame>
  146 + <frame id="KECLIP">
  147 + <fullname>
  148 + ECLIPJ2000 centered on Saturn
  149 + </fullname>
  150 + <description>
  151 + </description>
  152 + </frame>
  153 + <frame id="VSO">
  154 + <fullname>
  155 + Venus Solar Orbital
  156 + </fullname>
  157 + <description>
  158 + The Venus-centric Solar Orbital frame is defined as follows:
  159 +
  160 + - The position of the Sun relative to Venus is the primary vector:
  161 + +X axis points from Venus to the Sun;
  162 +
  163 + - The inertially referenced velocity of the Sun relative to Venus
  164 + is the secondary vector: +Y axis is the component of this
  165 + velocity vector orthogonal to the +X axis;
  166 +
  167 + - +Z axis completes the right-handed system;
  168 +
  169 + - the origin of this frame is Venus center of mass.
  170 +
  171 + All vectors are geometric: no corrections are used.
  172 + </description>
  173 + </frame>
  174 + <frame id="GSE">
  175 + <fullname>
  176 + Geocentric Solar Ecliptic
  177 + </fullname>
  178 + <description>
  179 + The Earth-centric Solar Ecliptic frame is defined as follows :
  180 +
  181 + - X-Y plane is defined by the Earth Mean Ecliptic plane of date:
  182 + the +Z axis, primary vector, is the normal vector to this plane,
  183 + always pointing toward the North side of the invariant plane;
  184 +
  185 + - +X axis is the component of the Earth-Sun vector that is orthogonal
  186 + to the +Z axis;
  187 +
  188 + - +Y axis completes the right-handed system;
  189 +
  190 + - the origin of this frame is the Sun's center of mass.
  191 +
  192 + All the vectors are geometric: no aberration corrections are used.
  193 + </description>
  194 + </frame>
  195 + <frame id="JSO">
  196 + <fullname>
  197 + Jovian Solar Orbital
  198 + </fullname>
  199 + <description>
  200 + The Jupiter-centric Solar Orbital frame is defined as follows:
  201 +
  202 + - The position of the Sun relative to Jupiter is the primary vector:
  203 + +X axis points from Jupiter to the Sun;
  204 +
  205 + - The inertially referenced velocity of the Sun relative to Jupiter
  206 + is the secondary vector: +Y axis is the component of this
  207 + velocity vector orthogonal to the +X axis;
  208 +
  209 + - +Z axis completes the right-handed system;
  210 +
  211 + - the origin of this frame is Jupiter center of mass.
  212 +
  213 + All vectors are geometric: no corrections are used.
  214 + </description>
  215 + </frame>
  216 + <frame id="KSO">
  217 + <fullname>
  218 + Kronian Solar Orbital
  219 + </fullname>
  220 + <description>
  221 + The Saturn-centric Solar Orbital frame is defined as follows:
  222 +
  223 + - The position of the Sun relative to Saturn is the primary vector:
  224 + +X axis points from Saturn to the Sun;
  225 +
  226 + - The inertially referenced velocity of the Sun relative to Saturn
  227 + is the secondary vector: +Y axis is the component of this
  228 + velocity vector orthogonal to the +X axis;
  229 +
  230 + - +Z axis completes the right-handed system;
  231 +
  232 + - the origin of this frame is Saturn center of mass.
  233 +
  234 + All vectors are geometric: no corrections are used.
  235 + </description>
  236 + </frame>
  237 + <frame id="LSE">
  238 + <fullname>
  239 + Selenocentric Solar Ecliptic
  240 + </fullname>
  241 + <description>
  242 + The Moon-centric Solar Ecliptic frame is defined as follows:
  243 +
  244 + - The position of the Sun relative to Moon is the primary vector:
  245 + +X axis points from Moon to the Sun;
  246 +
  247 + - The inertially referenced velocity of the Sun relative to Moon
  248 + is the secondary vector: +Y axis is the component of this
  249 + velocity vector orthogonal to the +X axis;
  250 +
  251 + - +Z axis completes the right-handed system;
  252 +
  253 + - the origin of this frame is Moon's center of mass.
  254 +
  255 + All vectors are geometric: no corrections are used.
  256 + </description>
  257 + </frame>
  258 + <frame id="GSM">
  259 + <fullname>
  260 + Geocentric Solar Magnetospheric
  261 + </fullname>
  262 + <description>
  263 + Geocentric Solar Magnetospheric - A coordinate system where
  264 + the X axis is from Earth to Sun, Z axis is northward in a plane
  265 + containing the X axis and the geomagnetic dipole axis.
  266 + See Russell, 1971
  267 +
  268 + Thus, +X is identical as GSE +X and is the primary, and +Z is the
  269 + secondary and is the MAG +Z.
  270 + </description>
  271 + </frame>
  272 + <frame id="KSM">
  273 + <fullname>
  274 + Kronian Solar Magnetospheric
  275 + </fullname>
  276 + <description>
  277 + The KSM frame is defined as follows:
  278 +
  279 + Kronocentric Solar Magnetospheric Coordinates (KSM)
  280 + ---------------------------------------------------
  281 + A coordinate system where the X axis is from Saturn to Sun,
  282 + Z axis is northward in a plane containing the X axis and the
  283 + Kronian dipole axis.
  284 +
  285 + Some sources refers magnetic dipole at 180 degrees longitude, 89.99 degrees latitude
  286 + in the IAU_SATURN frame. Other source make assume that the dipole axis is
  287 + parallel to the spin axis.
  288 + </description>
  289 + </frame>
  290 + <frame id="JSM">
  291 + <fullname>
  292 + Jovian Solar Magnetospheric
  293 + </fullname>
  294 + <description>
  295 + The JSM frame is defined as follows:
  296 +
  297 + Jovian Solar Magnetospheric (JSM)
  298 + ---------------------------------------------------
  299 + A coordinate system where the X axis is from Jupiter to Sun,
  300 + Z axis is northward in a plane containing the X axis and the Jovian dipole axis.
  301 +
  302 + Dipole is 159 longitude and 80 latitude.
  303 + </description>
  304 + </frame>
  305 + <frame id="MAG">
  306 + <fullname>
  307 + Geomagnetic coordinate system
  308 + </fullname>
  309 + <description>
  310 + MAG Frame: from http://rbsp.space.umn.edu/data/rbsp/teams/spice/fk/rbsp_general011.tf
  311 + ---------------------------------------------------------
  312 +
  313 + Definition :
  314 +
  315 + Geomagnetic - geocentric. Z axis is parallel to the geomagnetic
  316 + dipole axis, positive north. X is in the plane defined by the Z axis
  317 + and the Earth's rotation axis. If N is a unit vector from the Earth's
  318 + center to the north geographic pole, the signs of the X and Y axes are
  319 + given by Y = N x Z, X = Y x Z.. See Russell, 1971
  320 +
  321 +
  322 + The implementation of this frame is complicated in that the definition
  323 + of the IGRF dipole is a function of time and the IGRF model cannot be
  324 + directly incorporated into Spice. However, Spice does allow one to define
  325 + time dependent Euler angles. Meaning, you can define an Euler angle
  326 + that rotates GEO to MAG for a given ephemeris time t:
  327 +
  328 + V = r(t) * V
  329 + GEI MAG
  330 +
  331 + where r(t) is a time dependent Euler angle representation of a
  332 + rotation. Spice allows for the time dependence to be represented by a
  333 + polynomial expansion. This expansion can be fit using the IGRF model,
  334 + thus representing the IGRF dipole axis.
  335 +
  336 + IGRF-11 (the 11th version) was fit for the period of 1990-2020, which
  337 + should encompass the mission and will also make this kernel useful for
  338 + performing Magnetic dipole frame transformations for the 1990's and
  339 + the 2000's. However, IGRF-11 is not as accurate for this entire time
  340 + interval. The years between 1945-2005 are labeled definitive, although
  341 + only back to 1990 was used in the polynomial fit. 2005-2010 is
  342 + provisional, and may change with IGRF-12. 2010-2015 was only a
  343 + prediction. Beyond 2015, the predict is so far in the future as to not
  344 + be valid. So to make the polynomials behave nicely in this region (in
  345 + case someone does try to use this frame during that time), the
  346 + 2015 prediction was extended until 2020. So for low precision, this
  347 + kernel can be used for the years 2015-2020. Any times less than 1990
  348 + and greater than 2020 were not used in the fit, and therefore may be
  349 + vastly incorrect as the polynomials may diverge outside of this region.
  350 + These coefficients will be refit when IGRF-12 is released.
  351 +
  352 + Also, since the rest of the magnetic dipole frames are defined from
  353 + this one, similar time ranges should be used for those frames.
  354 +
  355 + Definitive Provisional Predict Not Valid
  356 + |------------------------------|+++++++++++|###########|???????????|
  357 + 1990 2005 2010 2015 2020
  358 +
  359 + In addition to the error inherit in the model itself, the polynomial
  360 + expansion cannot perfectly be fit the IGRF dipole. The maximum error
  361 + on the fit is .2 milliradians, or .01 degrees.
  362 +
  363 + The MAG frame is achieved by first rotating the GEO frame about Z by
  364 + the longitude degrees, and then rotating about the Y axis by the
  365 + amount of latitude. This matches the new frame to Russell's definition.
  366 + </description>
  367 + </frame>
  368 + <frame id="SM">
  369 + <fullname>
  370 + Solar Magnetic coordinates
  371 + </fullname>
  372 + <description>
  373 + Solar Magnetic - A geocentric coordinate system where the
  374 + Z axis is northward along Earth's dipole axis,
  375 + X axis is in plane of z axis and Earth-Sun line, positive sunward.
  376 + See Russell, 1971.
  377 +
  378 + Thus, this is much like GSM, except that now the +Z axis is the
  379 + primary, meaning it is parallel to the dipole vector, and +X is the
  380 + secondary. Since the X-Z plane is the same as GSM's X-Z plane, the Y
  381 + axis is the same as GSM.
  382 + </description>
  383 + </frame>
  384 + <frame id="GSEQ">
  385 + <fullname>
  386 + Geocentric Solar Equatorial
  387 + </fullname>
  388 + <description>
  389 + The Geocentric Solar Equatorial frame is defined as follows :
  390 +
  391 + - +X axis is the position of the Sun relative to the Earth; it's
  392 + the primary vector and points from the Earth to the Sun;
  393 +
  394 + - +Z axis is the component of the Sun's north pole of date orthogonal
  395 + to the +X axis;
  396 +
  397 + - +Y axis completes the right-handed reference frame;
  398 +
  399 + - the origin of this frame is the Earth's center of mass.
  400 +
  401 + All the vectors are geometric: no aberration corrections are used.
  402 + </description>
  403 + </frame>
  404 + <frame id="ECLIPDATE">
  405 + <fullname>
  406 + Earth Mean Ecliptic and Equinox
  407 + </fullname>
  408 + <description>
  409 + The Earth Mean Ecliptic and Equinox of Date frame is defined as follows:
  410 +
  411 + - +Z axis is aligned with the north-pointing vector normal to the
  412 + mean orbital plane of the Earth;
  413 +
  414 + - +X axis points along the ``mean equinox'', which is defined as the
  415 + intersection of the Earth's mean orbital plane with the Earth's mean
  416 + equatorial plane. It is aligned with the cross product of the
  417 + north-pointing vectors normal to the Earth's mean equator and mean
  418 + orbit plane of date;
  419 +
  420 + - +Y axis is the cross product of the Z and X axes and completes the
  421 + right-handed frame;
  422 +
  423 + - the origin of this frame is the Earth's center of mass.
  424 +
  425 + The mathematical model used to obtain the orientation of the Earth's mean
  426 + equator and equinox of date frame is the 1976 IAU precession model, built
  427 + into SPICE.
  428 +
  429 + The mathematical model used to obtain the mean orbital plane of the Earth
  430 + is the 1980 IAU obliquity model, also built into SPICE.
  431 +
  432 + The base frame for the 1976 IAU precession model is J2000.
  433 + </description>
  434 + </frame>
  435 + <frame id="67PCG_EME">
  436 + <fullname>
  437 + J2000 centered on comet Churyumov Gerasimenko
  438 + </fullname>
  439 + <description>
  440 + </description>
  441 + </frame>
  442 + <frame id="LUTETIA_EME">
  443 + <fullname>
  444 + J2000 centered on asteroid LUTETIA
  445 + </fullname>
  446 + <description>
  447 + </description>
  448 + </frame>
  449 + <frame id="STEINS_EME">
  450 + <fullname>
  451 + J2000 centered on asteroid STEINS
  452 + </fullname>
  453 + <description>
  454 + </description>
  455 + </frame>
  456 + <frame id="HEEQ">
  457 + <fullname>
  458 + Heliocentric Earth Equatorial
  459 + </fullname>
  460 + <description>
  461 + The Heliocentric Earth Equatorial frame is defined as follows:
  462 +
  463 + - X-Y plane is the solar equator of date, therefore, the +Z axis
  464 + is the primary vector and it is aligned to the Sun's north pole
  465 + of date;
  466 +
  467 + - +X axis is defined by the intersection between the Sun equatorial
  468 + plane and the solar central meridian of date as seen from the Earth.
  469 + The solar central meridian of date is defined as the meridian of the
  470 + Sun that is turned toward the Earth. Therefore, +X axis is the
  471 + component of the Sun-Earth vector that is orthogonal to the +Z axis;
  472 +
  473 + - +Y axis completes the right-handed system;
  474 +
  475 + - the origin of this frame is the Sun's center of mass.
  476 +
  477 + All vectors are geometric: no aberration corrections are used.
  478 + </description>
  479 + </frame>
  480 + <frame id="HCI">
  481 + <fullname>
  482 + Heliocentric Inertial
  483 + </fullname>
  484 + <description>
  485 + The Heliocentric Inertial Frame is defined as follows (from [3]):
  486 +
  487 + - X-Y plane is defined by the Sun's equator of epoch J2000: the +Z
  488 + axis, primary vector, is parallel to the Sun's rotation axis of
  489 + epoch J2000, pointing toward the Sun's north pole;
  490 +
  491 + - +X axis is defined by the ascending node of the Sun's equatorial
  492 + plane on the ecliptic plane of J2000;
  493 +
  494 + - +Y completes the right-handed frame;
  495 +
  496 + - the origin of this frame is the Sun's center of mass.
  497 + </description>
  498 + </frame>
  499 + <frame id="MSO">
  500 + <fullname>
  501 + Mars-centric Solar Orbital
  502 + </fullname>
  503 + <description>
  504 + The Mars-centric Solar Orbital frame is defined as follows:
  505 +
  506 + - The position of the Sun relative to Mars is the primary vector:
  507 + +X axis points from Mars to the Sun;
  508 +
  509 + - The inertially referenced velocity of the Sun relative to Mars
  510 + is the secondary vector: +Y axis is the component of this
  511 + velocity vector orthogonal to the +X axis;
  512 +
  513 + - +Z axis completes the right-handed system;
  514 +
  515 + - the origin of this frame is Mars' center of mass.
  516 +
  517 + All vectors are geometric: no corrections are used.
  518 + </description>
  519 + </frame>
  520 + <frame id="MEME">
  521 + <fullname>
  522 + J2000 centered on Mercury
  523 + </fullname>
  524 + <description>
  525 + </description>
  526 + </frame>
  527 + <frame id="MECLIP">
  528 + <fullname>
  529 + ECLIPJ2000 centered on Mercury
  530 + </fullname>
  531 + <description>
  532 + </description>
  533 + </frame>
  534 + <frame id="MESO">
  535 + <fullname>
  536 + Mercury-centric Solar Orbital
  537 + </fullname>
  538 + <description>
  539 + The Mercury-centric Solar Orbital frame is defined as follows:
  540 +
  541 + - The position of the Sun relative to Mercury is the primary vector:
  542 + +X axis points from Mercury to the Sun;
  543 +
  544 + - The inertially referenced velocity of the Sun relative to Mercury
  545 + is the secondary vector: +Y axis is the component of this
  546 + velocity vector orthogonal to the +X axis;
  547 +
  548 + - +Z axis completes the right-handed system;
  549 +
  550 + - the origin of this frame is Mercury center of mass.
  551 +
  552 + All vectors are geometric: no corrections are used.
  553 + </description>
  554 + </frame>
  555 + <frame id="J2000">
  556 + <fullname>
  557 + Earth mean equator, dynamical equinox of J2000
  558 + </fullname>
  559 + <description>
  560 + </description>
  561 + </frame>
  562 + <frame id="ECLIPJ2000">
  563 + <fullname>
  564 + Ecliptic coordinates based upon the J2000 frame
  565 + </fullname>
  566 + <description>The value for the obliquity of the
  567 + ecliptic at J2000 is taken from
  568 + of 'Explanatory Supplement to the Astronomical Almanac'
  569 + edited by P. Kenneth Seidelmann. University Science
  570 + Books, 20 Edgehill Road, Mill Valley, CA 94941 (1992)
  571 + page 114 equation 3.222-1
  572 + </description>
  573 + </frame>
  574 + <frame id="GPHIO">
  575 + <fullname>
  576 + Ganymede Phi-Omega
  577 + </fullname>
  578 + <description>
  579 + </description>
  580 + </frame>
  581 + <frame id="IAU_SUN">
  582 + <fullname>Body-Fixed Frame</fullname>
  583 + <description>
  584 + </description>
  585 + </frame>
  586 + <frame id="MESE">
  587 + <fullname>Mercury-centric Solar Ecliptic</fullname>
  588 + <description>
  589 + The Mercury-centric Solar Ecliptic frame is defined as follows :
  590 +
  591 + - X-Y plane is defined by the Earth Mean Ecliptic plane of date:
  592 + the +Z axis, primary vector, is the normal vector to this plane,
  593 + always pointing toward the North side of the invariant plane;
  594 +
  595 + - +X axis is the component of the Mercury-Sun vector that is orthogonal
  596 + to the +Z axis;
  597 +
  598 + - +Y axis completes the right-handed system;
  599 +
  600 + - the origin of this frame is the Sun's center of mass.
  601 +
  602 + All the vectors are geometric: no aberration corrections are used.
  603 + </description>
  604 + </frame>
  605 + <frame id="MESEQ">
  606 + <fullname>Mercury-centric Solar Equatorial</fullname>
  607 + <description>
  608 + The Mercury-centric Solar Equatorial frame is defined as follows :
  609 +
  610 + - +X axis is the position of the Sun relative to the Mercury; it's
  611 + the primary vector and points from the Mercury to the Sun;
  612 +
  613 + - +Z axis is the component of the Sun's north pole of date orthogonal
  614 + to the +X axis;
  615 +
  616 + - +Y axis completes the right-handed reference frame;
  617 +
  618 + - the origin of this frame is the Mercury's center of mass.
  619 +
  620 + All the vectors are geometric: no aberration corrections are used.
  621 + </description>
  622 + </frame>
  623 + <frame id="IAU_MERCURY">
  624 + <fullname>Body-Fixed Frame</fullname>
  625 + <description>
  626 + </description>
  627 + </frame>
  628 + <frame id="IAU_VENUS">
  629 + <fullname>Body-Fixed Frame</fullname>
  630 + <description>
  631 + </description>
  632 + </frame>
  633 + <frame id="IAU_EARTH">
  634 + <fullname>Body-Fixed Frame</fullname>
  635 + <description>
  636 + </description>
  637 + </frame>
  638 + <frame id="IAU_MOON">
  639 + <fullname>Body-Fixed Frame</fullname>
  640 + <description>
  641 + </description>
  642 + </frame>
  643 + <frame id="IAU_MARS">
  644 + <fullname>Body-Fixed Frame</fullname>
  645 + <description>
  646 + </description>
  647 + </frame>
  648 + <frame id="PSE">
  649 + <fullname>Phobos-centric Solar Ecliptic</fullname>
  650 + <description>
  651 + The Moon-centric Solar Ecliptic frame is defined as follows:
  652 +
  653 + - The position of the Sun relative to Phobos is the primary vector:
  654 + +X axis points from Moon to the Sun;
  655 +
  656 + - The inertially referenced velocity of the Sun relative to Phobos
  657 + is the secondary vector: +Y axis is the component of this
  658 + velocity vector orthogonal to the +X axis;
  659 +
  660 + - +Z axis completes the right-handed system;
  661 +
  662 + - the origin of this frame is Phobos' center of mass.
  663 +
  664 + All vectors are geometric: no corrections are used.
  665 + </description>
  666 + </frame>
  667 + <frame id="PME">
  668 + <fullname>Phobos Mean Equator</fullname>
  669 + <description>
  670 + The Phobos Mean Equator of Date frame (also known as Phobos Mean Equator
  671 + and IAU vector of Date frame) is defined as follows :
  672 +
  673 + - X-Y plane is defined by the Phobos equator of date, and the
  674 + +Z axis, primary vector of this frame, is parallel to the
  675 + Moon's rotation axis of date, pointing toward the North side
  676 + of the invariant plane;
  677 +
  678 + - +X axis is defined by the intersection of the Moon's equator
  679 + of date with the Earth Mean Equator of J2000;
  680 +
  681 + - +Y axis completes the right-handed system;
  682 +
  683 + - the origin of this frame is Phobos' center of mass.
  684 +
  685 + All vectors are geometric: no corrections are used.
  686 + </description>
  687 + </frame>
  688 + <frame id="DSE">
  689 + <fullname>Deimos-centric Solar Ecliptic</fullname>
  690 + <description>
  691 + The Moon-centric Solar Ecliptic frame is defined as follows:
  692 +
  693 + - The position of the Sun relative to Deimos is the primary vector:
  694 + +X axis points from Moon to the Sun;
  695 +
  696 + - The inertially referenced velocity of the Sun relative to Deimos
  697 + is the secondary vector: +Y axis is the component of this
  698 + velocity vector orthogonal to the +X axis;
  699 +
  700 + - +Z axis completes the right-handed system;
  701 +
  702 + - the origin of this frame is Deimos' center of mass.
  703 +
  704 + All vectors are geometric: no corrections are used.
  705 + </description>
  706 + </frame>
  707 + <frame id="DME">
  708 + <fullname>Deimos Mean Equator</fullname>
  709 + <description>
  710 + The Deimos Mean Equator of Date frame (also known as Deimos Mean Equator
  711 + and IAU vector of Date frame) is defined as follows :
  712 +
  713 + - X-Y plane is defined by the Deimos equator of date, and the
  714 + +Z axis, primary vector of this frame, is parallel to the
  715 + Moon's rotation axis of date, pointing toward the North side
  716 + of the invariant plane;
  717 +
  718 + - +X axis is defined by the intersection of the Moon's equator
  719 + of date with the Earth Mean Equator of J2000;
  720 +
  721 + - +Y axis completes the right-handed system;
  722 +
  723 + - the origin of this frame is Deimos' center of mass.
  724 +
  725 + All vectors are geometric: no corrections are used.
  726 + </description>
  727 + </frame>
  728 + <frame id="SYSTEM_3">
  729 + <fullname>Body-Fixed Frame, same as IAU_JUPITER</fullname>
  730 + <description>
  731 + System 3 frame is the body fixed frame known in SPICE as IAU_JUPITER
  732 + </description>
  733 + </frame>
  734 + <frame id="IAU_JUPITER">
  735 + <fullname>Body-Fixed Frame</fullname>
  736 + <description>
  737 + Same as SYSTEM_3
  738 + </description>
  739 + </frame>
  740 + <frame id="IPHIO">
  741 + <fullname>Io Phi-Omega</fullname>
  742 + <description>
  743 +In those Cartesian coordinate system (referred to as MphiO - M is Moon prefix -),
  744 +X is along the flow direction, Y is along the Moon-Jupiter vector, and Z is along the spin axis.
  745 +These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of
  746 +flow of the solar wind onto Earth's environment
  747 + </description>
  748 + </frame>
  749 + <frame id="EPHIO">
  750 + <fullname>Europa Phi-Omega</fullname>
  751 + <description>
  752 +In those Cartesian coordinate system (referred to as MphiO - M is Moon prefix -),
  753 +X is along the flow direction, Y is along the Moon-Jupiter vector, and Z is along the spin axis.
  754 +These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of
  755 +flow of the solar wind onto Earth's environment </description>
  756 + </frame>
  757 + <frame id="CPHIO">
  758 + <fullname>Callisto Phi-Omega</fullname>
  759 + <description>
  760 +In those Cartesian coordinate system (referred to as MphiO - M is Moon prefix -),
  761 +X is along the flow direction, Y is along the Moon-Jupiter vector, and Z is along the spin axis.
  762 +These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of
  763 +flow of the solar wind onto Earth's environment </description>
  764 + </frame>
  765 + <frame id="IAU_SATURN">
  766 + <fullname>Body-Fixed Frame</fullname>
  767 + <description>
  768 + </description>
  769 + </frame>
  770 + <frame id="MIIS">
  771 + <fullname>Mimas Inter-action coordinate System</fullname>
  772 + <description>
  773 + The Moon Inter-action coordinate System frame is defined as follows:
  774 +
  775 + - The inertially referenced velocity of Saturn relative to Moon
  776 + is the primary vector: +X;
  777 +
  778 + - The position of Saturn relative to Moon is the secondary vector:
  779 + +Y axis points from Moon to the Saturn;
  780 +
  781 + - +Z axis completes the right-handed system;
  782 +
  783 + - the origin of this frame is Moon's center of mass.
  784 +
  785 + All vectors are geometric: no corrections are used.
  786 + </description>
  787 + </frame>
  788 + <frame id="ENIS">
  789 + <fullname>Enceladus Inter-action coordinate System</fullname>
  790 + <description>
  791 + The Moon Inter-action coordinate System frame is defined as follows:
  792 +
  793 + - The inertially referenced velocity of Saturn relative to Moon
  794 + is the primary vector: +X;
  795 +
  796 + - The position of Saturn relative to Moon is the secondary vector:
  797 + +Y axis points from Moon to the Saturn;
  798 +
  799 + - +Z axis completes the right-handed system;
  800 +
  801 + - the origin of this frame is Moon's center of mass.
  802 +
  803 + All vectors are geometric: no corrections are used.
  804 + </description>
  805 + </frame>
  806 + <frame id="TEIS">
  807 + <fullname>Tethys Inter-action coordinate System</fullname>
  808 + <description>
  809 + The Moon Inter-action coordinate System frame is defined as follows:
  810 +
  811 + - The inertially referenced velocity of Saturn relative to Moon
  812 + is the primary vector: +X;
  813 +
  814 + - The position of Saturn relative to Moon is the secondary vector:
  815 + +Y axis points from Moon to the Saturn;
  816 +
  817 + - +Z axis completes the right-handed system;
  818 +
  819 + - the origin of this frame is Moon's center of mass.
  820 +
  821 + All vectors are geometric: no corrections are used.
  822 + </description>
  823 + </frame>
  824 + <frame id="DIIS">
  825 + <fullname>Dione Inter-action coordinate System</fullname>
  826 + <description>
  827 + The Moon Inter-action coordinate System frame is defined as follows:
  828 +
  829 + - The inertially referenced velocity of Saturn relative to Moon
  830 + is the primary vector: +X;
  831 +
  832 + - The position of Saturn relative to Moon is the secondary vector:
  833 + +Y axis points from Moon to the Saturn;
  834 +
  835 + - +Z axis completes the right-handed system;
  836 +
  837 + - the origin of this frame is Moon's center of mass.
  838 +
  839 + All vectors are geometric: no corrections are used.
  840 + </description>
  841 + </frame>
  842 + <frame id="RHIS">
  843 + <fullname>Rhea Inter-action coordinate System</fullname>
  844 + <description>
  845 + The Moon Inter-action coordinate System frame is defined as follows:
  846 +
  847 + - The inertially referenced velocity of Saturn relative to Moon
  848 + is the primary vector: +X;
  849 +
  850 + - The position of Saturn relative to Moon is the secondary vector:
  851 + +Y axis points from Moon to the Saturn;
  852 +
  853 + - +Z axis completes the right-handed system;
  854 +
  855 + - the origin of this frame is Moon's center of mass.
  856 +
  857 + All vectors are geometric: no corrections are used.
  858 + </description>
  859 + </frame>
  860 + <frame id="TIIS">
  861 + <fullname>TItan Inter-action coordinate System</fullname>
  862 + <description>
  863 + The Moon Inter-action coordinate System frame is defined as follows:
  864 +
  865 + - The inertially referenced velocity of Saturn relative to Moon
  866 + is the primary vector: +X;
  867 +
  868 + - The position of Saturn relative to Moon is the secondary vector:
  869 + +Y axis points from Moon to the Saturn;
  870 +
  871 + - +Z axis completes the right-handed system;
  872 +
  873 + - the origin of this frame is Moon's center of mass.
  874 +
  875 + All vectors are geometric: no corrections are used.
  876 + </description>
  877 + </frame>
  878 + <frame id="UEME">
  879 + <fullname>J2000 centered on Uranus</fullname>
  880 + <description>
  881 + </description>
  882 + </frame>
  883 + <frame id="UECLIP">
  884 + <fullname>ECLIPJ2000 centered on Uranus</fullname>
  885 + <description>
  886 + </description>
  887 + </frame>
  888 + <frame id="USO">
  889 + <fullname>Uranus-centric Solar Orbital Coordinates</fullname>
  890 + <description>
  891 + The Uranus-centric Solar Orbital frame is defined as follows:
  892 +
  893 + - The position of the Sun relative to Uranus is the primary vector:
  894 + +X axis points from Uranus to the Sun;
  895 +
  896 + - The inertially referenced velocity of the Sun relative to Uranus
  897 + is the secondary vector: +Y axis is the component of this
  898 + velocity vector orthogonal to the +X axis;
  899 +
  900 + - +Z axis completes the right-handed system;
  901 +
  902 + - the origin of this frame is Uranus center of mass.
  903 +
  904 + All vectors are geometric: no corrections are used.
  905 + </description>
  906 + </frame>
  907 + <frame id="IAU_URANUS">
  908 + <fullname>Body-Fixed Frame</fullname>
  909 + <description>
  910 + </description>
  911 + </frame>
  912 + <frame id="NEME">
  913 + <fullname>J2000 centered on Neptune</fullname>
  914 + <description>
  915 + </description>
  916 + </frame>
  917 + <frame id="NECLIP">
  918 + <fullname>ECLIPJ2000 centered on Neptune</fullname>
  919 + <description>
  920 + </description>
  921 + </frame>
  922 + <frame id="NSO">
  923 + <fullname>Neptune-centric Solar Orbital Coordinates</fullname>
  924 + <description>
  925 + The Neptune-centric Solar Orbital frame is defined as follows:
  926 +
  927 + - The position of the Sun relative to Neptune is the primary vector:
  928 + +X axis points from Neptune to the Sun;
  929 +
  930 + - The inertially referenced velocity of the Sun relative to Neptune
  931 + is the secondary vector: +Y axis is the component of this
  932 + velocity vector orthogonal to the +X axis;
  933 +
  934 + - +Z axis completes the right-handed system;
  935 +
  936 + - the origin of this frame is Neptune center of mass.
  937 +
  938 + All vectors are geometric: no corrections are used.
  939 + </description>
  940 + </frame>
  941 + <frame id="IAU_NEPTUNE">
  942 + <fullname>Body-Fixed Frame</fullname>
  943 + <description>
  944 + </description>
  945 + </frame>
  946 + <frame id="PEME">
  947 + <fullname>EME2000 centered on Pluto</fullname>
  948 + <description>
  949 + </description>
  950 + </frame>
  951 + <frame id="PECLIP">
  952 + <fullname>ECLIPJ2000 centered on Pluto</fullname>
  953 + <description>
  954 + </description>
  955 + </frame>
  956 + <frame id="PSO">
  957 + <fullname>Pluto-centric Solar Orbital Coordinates</fullname>
  958 + <description>
  959 + The Pluto-centric Solar Orbital frame is defined as follows:
  960 +
  961 + - The position of the Sun relative to Pluto is the primary vector:
  962 + +X axis points from Pluto to the Sun;
  963 +
  964 + - The inertially referenced velocity of the Sun relative to Pluto
  965 + is the secondary vector: +Y axis is the component of this
  966 + velocity vector orthogonal to the +X axis;
  967 +
  968 + - +Z axis completes the right-handed system;
  969 +
  970 + - the origin of this frame is Pluto center of mass.
  971 +
  972 + All vectors are geometric: no corrections are used.
  973 + </description>
  974 + </frame>
  975 + <frame id="IAU_PLUTO">
  976 + <fullname>Body-Fixed Frame</fullname>
  977 + <description>
  978 + </description>
  979 + </frame>
  980 + <frame id="67PCG_CSO">
  981 + <fullname>Comet solar orbital centered on comet churyumov gerasimenko</fullname>
  982 + <description>
  983 + Comet frames are defined as a two-vector style dynamic frames as follows:
  984 +
  985 + - The position of the sun relative to the comet is the primary
  986 + vector: the X axis points from the comet to the sun.
  987 +
  988 + - The inertially referenced velocity of the sun relative to the
  989 + comet is the secondary vector: the Y axis is the component of
  990 + this velocity vector orthogonal to the X axis.
  991 +
  992 + - The Z axis is X cross Y, completing the right-handed reference
  993 + frame.
  994 +
  995 + - All vectors are geometric: no aberration corrections are used.
  996 + </description>
  997 + </frame>
  998 + <frame id="LUTETIA_CSO">
  999 + <fullname>Comet solar orbital centered on asteroid LUTETIA</fullname>
  1000 + <description>
  1001 + Comet frames are defined as a two-vector style dynamic frames as follows:
  1002 +
  1003 + - The position of the sun relative to the comet is the primary
  1004 + vector: the X axis points from the comet to the sun.
  1005 +
  1006 + - The inertially referenced velocity of the sun relative to the
  1007 + comet is the secondary vector: the Y axis is the component of
  1008 + this velocity vector orthogonal to the X axis.
  1009 +
  1010 + - The Z axis is X cross Y, completing the right-handed reference
  1011 + frame.
  1012 +
  1013 + - All vectors are geometric: no aberration corrections are used.
  1014 + </description>
  1015 + </frame>
  1016 + <frame id="STEINS_CSO">
  1017 + <fullname>Comet solar orbital centered on asteroid STEINS</fullname>
  1018 + <description>
  1019 + Comet frames are defined as a two-vector style dynamic frames as follows:
  1020 +
  1021 + - The position of the sun relative to the comet is the primary
  1022 + vector: the X axis points from the comet to the sun.
  1023 +
  1024 + - The inertially referenced velocity of the sun relative to the
  1025 + comet is the secondary vector: the Y axis is the component of
  1026 + this velocity vector orthogonal to the X axis.
  1027 +
  1028 + - The Z axis is X cross Y, completing the right-handed reference
  1029 + frame.
  1030 +
  1031 + - All vectors are geometric: no aberration corrections are used.
  1032 + </description>
  1033 + </frame>
  1034 + <frame id="HALLEY_EME">
  1035 + <fullname>J2000 centered on asteroid HALLEY</fullname>
  1036 + <description>
  1037 + </description>
  1038 + </frame>
  1039 + <frame id="HALLEY_CSO">
  1040 + <fullname>Comet solar orbital centered on asteroid HALLEY</fullname>
  1041 + <description>
  1042 + Comet frames are defined as a two-vector style dynamic frames as follows:
  1043 +
  1044 + - The position of the sun relative to the comet is the primary
  1045 + vector: the X axis points from the comet to the sun.
  1046 +
  1047 + - The inertially referenced velocity of the sun relative to the
  1048 + comet is the secondary vector: the Y axis is the component of
  1049 + this velocity vector orthogonal to the X axis.
  1050 +
  1051 + - The Z axis is X cross Y, completing the right-handed reference
  1052 + frame.
  1053 +
  1054 + - All vectors are geometric: no aberration corrections are used.
  1055 + </description>
  1056 + </frame>
  1057 + <frame id="GRIGGSKELL_EME">
  1058 + <fullname>J2000 centered on asteroid GRIGG-SKJELLERUP</fullname>
  1059 + <description>
  1060 + </description>
  1061 + </frame>
  1062 + <frame id="GRIGGSKELL_CSO">
  1063 + <fullname>Comet solar orbital centered on asteroid GRIGG-SKJELLERUP</fullname>
  1064 + <description>
  1065 + Comet frames are defined as a two-vector style dynamic frames as follows:
  1066 +
  1067 + - The position of the sun relative to the comet is the primary
  1068 + vector: the X axis points from the comet to the sun.
  1069 +
  1070 + - The inertially referenced velocity of the sun relative to the
  1071 + comet is the secondary vector: the Y axis is the component of
  1072 + this velocity vector orthogonal to the X axis.
  1073 +
  1074 + - The Z axis is X cross Y, completing the right-handed reference
  1075 + frame.
  1076 +
  1077 + - All vectors are geometric: no aberration corrections are used.
  1078 + </description>
  1079 + </frame>
  1080 + </frames>
223 1081 </treps>
... ...