Get_amda_tao_datasets.ipynb 2.6 KB
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "52949b59-f206-410f-92fa-265bb161aaf2",
   "metadata": {},
   "outputs": [],
   "source": [
    "from speasy import amda"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8506952c-8f5d-47b1-97e8-f0c3450b0b34",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "start_date = '20221201'\n",
    "stop_date = '20221215'\n",
    "# tao_mercury_sw_dataset =  amda.get_dataset('tao-mercury-sw', start_date, stop_date)\n",
    "# so_pas_momgr1_sw_dataset =  amda.get_dataset('so-pas-momgr1', start_date, stop_date)\n",
    "tao_mars_dsc_dataset =  amda.get_dataset('tao-mars-dsc', start_date, stop_date)\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "63cda766-930e-4014-94fb-a23ca527c5b1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "density\n",
      "velocity\n",
      "temperature\n",
      "dynamic pressure\n",
      "b tangential\n",
      "b radial\n",
      "angle Mars-Sun-Earth\n"
     ]
    }
   ],
   "source": [
    "for k in tao_mars_dsc_dataset.variables.keys():\n",
    "    print(k)\n",
    "# print(so_pas_momgr1_sw_dataset.variables)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61f3aed2-abd1-46a1-a86b-31e0ed5498d0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "382151f8-4d73-43df-a855-02a8a0f7b5ab",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                               pas_mom_n\n",
      "2023-02-01 00:00:03.421999872        NaN\n",
      "2023-02-01 00:00:07.421999872        NaN\n",
      "2023-02-01 00:00:11.421999872        NaN\n",
      "2023-02-01 00:00:15.421999872        5.6\n",
      "2023-02-01 00:00:19.421999872        5.7\n"
     ]
    }
   ],
   "source": [
    "print(my_df.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b3ebc65-a98a-4100-ae67-8925f34e7ca1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}