Commit c53c9b588aef29c459d94c08d23ead9268bc3e66

Authored by Elena.Budnik
1 parent 0f497e35

work

Instrument/AMDA/ACE/MAG.xml
... ... @@ -5,7 +5,7 @@
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/ACE/MAG</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>MFI</ResourceName>
8   - <AlternateName>ACE Magnetic Field Instrument</AlternateName>
  8 + <AlternateName>Magnetic Field Instrument</AlternateName>
9 9 <AlternateName>ACE Magnetometer</AlternateName>
10 10 <AlternateName>ACE MAG</AlternateName>
11 11 <AlternateName>ACE MFI</AlternateName>
... ...
Instrument/AMDA/ACE/SWEPAM.xml
... ... @@ -5,7 +5,7 @@
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/ACE/SWEPAM</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>SWEPAM</ResourceName>
8   - <AlternateName>ACE Solar Wind Electron, Proton and Alpha Monitor</AlternateName>
  8 + <AlternateName>Solar Wind Electron, Proton and Alpha Monitor</AlternateName>
9 9 <AlternateName>ACE SWEPAM</AlternateName>
10 10 <ReleaseDate>2010-02-04T12:34:56.789</ReleaseDate>
11 11 <Description>The Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) instrument sensors measure solar wind electrons at 1 - 900 eV energy and ions at 0.26 - 35 keV. The instrument consists of separate electron and ion analyzers originally built as spares for the Ulysses mission. The two sensors both utilizes curved-plate electrostatic analyzers (ESAs) consisting of spherical sections cut into sectors. Biased channel electron multipliers (CEMS) are spaced along the exit apertures of the ESAs for ion and electron detection. Different CEMs sample different portions of the fan-shaped fields of view. The ion sensor consists of a 105-degree bending angle ESA with an average radius of 100 mm and a plate spacing of 2.84 mm. Sixteen CEMs contiguously spaced along the exit gap of the ESA give about 5-degree polar angular resolution over the approximately 70-degree opening angle of the acceptance fan. The electron sensor consists of a 120-degree bending angle ESA with an average radius of 41.9 mm and a plate spacing of 3.5 mm. Seven large-funnel CEMs along the exit gap give about 20-degree angular resolution over a 160-degree fan angle. The sensor geometric factors are 0.002 cm2-sr for isotropic response and 0.009 cm2 for unidirectional. Energy resolution is five percent for ions and twelve percent for electrons. SWEPAM data consists of ion and electron rates collected at each energy/charge (E/Q) step, polar lock direction, and azimuthal spin direction. A single spacecraft spin period of 12 seconds is sufficient for accumulation of count matricies to fully calculate the electron and ion distribution functions from which bulk moments (solar wind speed, density, temperature) can be calculated by ground data processing. Accumulated counts will actually be summed over one-minute intervals for increased statistical accuracy and for reduction of telemetry requirements. Limited data from single spins will be provided for timing of the passage of transient solar wind structures.</Description>
... ...
Instrument/AMDA/Cassini/Ephemeris.xml
... ... @@ -4,7 +4,7 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cassini/Ephemeris</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Ephemeris</ResourceName>
  7 + <ResourceName>Ephemeris @ Iowa</ResourceName>
8 8 <AlternateName></AlternateName>
9 9 <ReleaseDate>2009-05-20T21:10:13Z</ReleaseDate>
10 10 <Description>
... ...
Instrument/AMDA/Cassini/MAG.xml
... ... @@ -4,9 +4,19 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cassini/MAG</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Cassini Magnetometer</ResourceName>
  7 + <ResourceName>MAG</ResourceName>
8 8 <ReleaseDate>2009-05-20T21:10:13Z</ReleaseDate>
9   - <Description>MAG includes both a flux gate magnetometer and a vector/scalar helium magnetometer. Because magnetometers are sensitive to electric currents and ferrous metal components, they are generally placed on an extended boom, as far from the spacecraft as possible. On Cassini, the flux gate magnetometer is located midway out on the 11-meter (36-foot) magnetometer boom extending out from the spacecraft, and the vector/scalar helium magnetometer is located at the end of the boom. The boom itself, composed of thin, nonmetallic rods, was folded during launch and deployed about two years after launch. The magnetometer electronics are located in a bay in the Cassini orbiter's spacecraft body.</Description>
  9 + <Description>MAG includes both a flux gate magnetometer and a
  10 + vector/scalar helium magnetometer.
  11 + Because magnetometers are sensitive to electric currents and
  12 + ferrous metal components, they are generally placed on an extended boom,
  13 + as far from the spacecraft as possible. On Cassini, the flux gate magnetometer is
  14 + located midway out on the 11-meter (36-foot) magnetometer boom extending out
  15 + from the spacecraft, and the vector/scalar helium magnetometer is located at the
  16 + end of the boom. The boom itself, composed of thin, nonmetallic rods, was folded
  17 + during launch and deployed about two years after launch.
  18 + The magnetometer electronics are located in a bay in the Cassini
  19 + orbiter's spacecraft body.</Description>
10 20 <Acknowledgement/>
11 21 <Contact>
12 22 <PersonID>spase://SMWG/Person/David.J.Southwood</PersonID>
... ...
NumericalData/AMDA/ACE/MFI/ace-imf-all.xml
... ... @@ -4,8 +4,8 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/ACE/MFI/ace-imf-all</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>imf final-preliminary</ResourceName>
8   - <AlternateName>ACE Magnetic Field 16-Second Level 2 Data</AlternateName>
  7 + <ResourceName>final/preliminary</ResourceName>
  8 + <AlternateName>Magnetic Field 16-Second Level 2/1 Data</AlternateName>
9 9 <ReleaseDate>2015-10-12T10:48:29Z</ReleaseDate>
10 10 <Description>
11 11 ACE Magnetometer level 2 data, 16-second averages of field magnitude and GSE and GSM Cartesian components.
... ... @@ -65,7 +65,7 @@
65 65 The quality of ACE level 2 data is such that it is suitable for serious scientific study. However, to avoid confusion and misunderstanding, it is recommended that users consult with the appropriate ACE team members before publishing work derived from the data. The ACE team has worked hard to ensure that the level 2 data are free from errors, but the team cannot accept responsibility for erroneous data, or for misunderstandings about how the data may be used. This is especially true if the appropriate ACE team members are not consulted before publication. At the very least, preprints should be forwarded to the ACE team before publication.
66 66 </Caveats>
67 67 <Parameter>
68   - <Name>Bmagnitude</Name>
  68 + <Name>|b|</Name>
69 69 <ParameterKey>imf_mag</ParameterKey>
70 70 <Description>Magnetic field magnitude</Description>
71 71 <Ucd>phys.magField</Ucd>
... ... @@ -84,7 +84,7 @@
84 84 </Field>
85 85 </Parameter>
86 86 <Parameter>
87   - <Name>B GSE</Name>
  87 + <Name>b_gse</Name>
88 88 <ParameterKey>imf</ParameterKey>
89 89 <Description>
90 90 Magnetic field vector in GSE Cartesian coordinates (16 sec)
... ... @@ -102,7 +102,7 @@
102 102 <Structure>
103 103 <Size>3</Size>
104 104 <Element>
105   - <Name>Bx GSE</Name>
  105 + <Name>bx</Name>
106 106 <Qualifier>Component.I</Qualifier>
107 107 <Index>1</Index>
108 108 <ParameterKey>imf(0)</ParameterKey>
... ... @@ -111,7 +111,7 @@
111 111 <FillValue>-1.0E31</FillValue>
112 112 </Element>
113 113 <Element>
114   - <Name>By GSE</Name>
  114 + <Name>by</Name>
115 115 <Qualifier>Component.J</Qualifier>
116 116 <Index>2</Index>
117 117 <ParameterKey>imf(1)</ParameterKey>
... ... @@ -120,7 +120,7 @@
120 120 <FillValue>-1.0E31</FillValue>
121 121 </Element>
122 122 <Element>
123   - <Name>Bz GSE</Name>
  123 + <Name>bz</Name>
124 124 <Qualifier>Component.K</Qualifier>
125 125 <Index>3</Index>
126 126 <ParameterKey>imf(2)</ParameterKey>
... ... @@ -138,7 +138,7 @@
138 138 </Field>
139 139 </Parameter>
140 140 <Parameter>
141   - <Name>B GSM</Name>
  141 + <Name>b gsm</Name>
142 142 <ParameterKey>imf_gsm</ParameterKey>
143 143 <Description>
144 144 Magnetic field vector in GSM Cartesian coordinates (16 sec)
... ... @@ -156,7 +156,7 @@
156 156 <Structure>
157 157 <Size>3</Size>
158 158 <Element>
159   - <Name>Bx GSM</Name>
  159 + <Name>bx</Name>
160 160 <Qualifier>Component.I</Qualifier>
161 161 <Index>1</Index>
162 162 <ParameterKey>imf_gsm(0)</ParameterKey>
... ... @@ -165,7 +165,7 @@
165 165 <FillValue>-1.0E31</FillValue>
166 166 </Element>
167 167 <Element>
168   - <Name>By GSM</Name>
  168 + <Name>by</Name>
169 169 <Qualifier>Component.J</Qualifier>
170 170 <Index>2</Index>
171 171 <ParameterKey>imf_gsm(1)</ParameterKey>
... ... @@ -174,7 +174,7 @@
174 174 <FillValue>-1.0E31</FillValue>
175 175 </Element>
176 176 <Element>
177   - <Name>Bz GSM</Name>
  177 + <Name>bz</Name>
178 178 <Qualifier>Component.K</Qualifier>
179 179 <Index>3</Index>
180 180 <ParameterKey>imf_gsm(2)</ParameterKey>
... ...
NumericalData/AMDA/ACE/MFI/ace-mag-real.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/ACE/MFI/ace-mag-real</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>ACE Magnetic Field 60-Second Level 2 Data</ResourceName>
  7 + <ResourceName>real time</ResourceName>
8 8 <ReleaseDate>2015-10-12T14:48:29Z</ReleaseDate>
9 9 <Description>
10 10 ACE Magnetometer level 2 data, 60-second averages of field magnitude and GSE and GSM Cartesian components.
... ... @@ -64,7 +64,7 @@
64 64 The quality of ACE level 2 data is such that it is suitable for serious scientific study. However, to avoid confusion and misunderstanding, it is recommended that users consult with the appropriate ACE team members before publishing work derived from the data. The ACE team has worked hard to ensure that the level 2 data are free from errors, but the team cannot accept responsibility for erroneous data, or for misunderstandings about how the data may be used. This is especially true if the appropriate ACE team members are not consulted before publication. At the very least, preprints should be forwarded to the ACE team before publication.
65 65 </Caveats>
66 66 <Parameter>
67   - <Name>Bmagnitude</Name>
  67 + <Name>|b|</Name>
68 68 <ParameterKey>imf_real_mag</ParameterKey>
69 69 <Description>Magnetic field magnitude</Description>
70 70 <Units>nT</Units>
... ... @@ -83,7 +83,7 @@
83 83 </Parameter>
84 84 <Parameter>
85 85 <Name>B GSE</Name>
86   - <ParameterKey>imf_real_gse</ParameterKey>
  86 + <ParameterKey>b_gse</ParameterKey>
87 87 <Description>
88 88 Magnetic field vector in GSE Cartesian coordinates (60 sec)
89 89 </Description>
... ... @@ -99,7 +99,7 @@
99 99 <Structure>
100 100 <Size>3</Size>
101 101 <Element>
102   - <Name>Bx GSE</Name>
  102 + <Name>bx</Name>
103 103 <Qualifier>Component.I</Qualifier>
104 104 <Index>1</Index>
105 105 <ParameterKey>imf_real_gse(0)</ParameterKey>
... ... @@ -108,7 +108,7 @@
108 108 <FillValue>-1.0E31</FillValue>
109 109 </Element>
110 110 <Element>
111   - <Name>By GSE</Name>
  111 + <Name>by</Name>
112 112 <Qualifier>Component.J</Qualifier>
113 113 <Index>2</Index>
114 114 <ParameterKey>imf_real_gse(1)</ParameterKey>
... ... @@ -117,7 +117,7 @@
117 117 <FillValue>-1.0E31</FillValue>
118 118 </Element>
119 119 <Element>
120   - <Name>Bz GSE</Name>
  120 + <Name>bz</Name>
121 121 <Qualifier>Component.K</Qualifier>
122 122 <Index>3</Index>
123 123 <ParameterKey>imf_real_gse(2)</ParameterKey>
... ... @@ -135,7 +135,7 @@
135 135 </Field>
136 136 </Parameter>
137 137 <Parameter>
138   - <Name>B GSM</Name>
  138 + <Name>b_gsm</Name>
139 139 <ParameterKey>imf_real_gsm</ParameterKey>
140 140 <Description>
141 141 Magnetic field vector in GSM Cartesian coordinates (60 sec)
... ... @@ -152,7 +152,7 @@
152 152 <Structure>
153 153 <Size>3</Size>
154 154 <Element>
155   - <Name>Bx GSM</Name>
  155 + <Name>bx</Name>
156 156 <Qualifier>Component.I</Qualifier>
157 157 <Index>1</Index>
158 158 <ParameterKey>imf_real_gsm(0)</ParameterKey>
... ... @@ -161,7 +161,7 @@
161 161 <FillValue>-1.0E31</FillValue>
162 162 </Element>
163 163 <Element>
164   - <Name>By GSM</Name>
  164 + <Name>by</Name>
165 165 <Qualifier>Component.J</Qualifier>
166 166 <Index>2</Index>
167 167 <ParameterKey>imf_real_gsm(1)</ParameterKey>
... ... @@ -170,7 +170,7 @@
170 170 <FillValue>-1.0E31</FillValue>
171 171 </Element>
172 172 <Element>
173   - <Name>Bz GSM</Name>
  173 + <Name>bz</Name>
174 174 <Qualifier>Component.K</Qualifier>
175 175 <Index>3</Index>
176 176 <ParameterKey>imf_real_gsm(2)</ParameterKey>
... ...
Observatory/AMDA/ACE.xml
... ... @@ -8,7 +8,7 @@
8 8 <AlternateName>Advanced Composition Explorer, NASA</AlternateName>
9 9 <AlternateName>1997-045A</AlternateName>
10 10 <AlternateName>Explorer 71</AlternateName>
11   - <ReleaseDate>2010-08-05T18:19:16Z</ReleaseDate>
  11 + <ReleaseDate>2015-12-31T18:19:16Z</ReleaseDate>
12 12 <Description>Advanced Composition Explorer (ACE) observes particles of solar,
13 13 interplanetary, interstellar, and galactic origins, spanning the energy range
14 14 from solar wind ions to galactic cosmic ray nuclei. &lt;br/&gt;&lt;br/&gt;
... ...
Observatory/AMDA/POLAR.xml
... ... @@ -9,7 +9,18 @@
9 9 <AlternateName>GGS/Polar</AlternateName>
10 10 <AlternateName>ISTP/Polar</AlternateName>
11 11 <ReleaseDate>2010-08-05T18:19:11Z</ReleaseDate>
12   - <Description>POLAR is one of four spacecraft in the Global Geospace Science (GGS) program. These are among the six spacecraft in the International Solar Terrestrial Physics (ISTP) program. POLAR provides multi-wavelength imaging of the aurora, measuring plasma entry into the polar magnetosphere and geomagnetic tail, the flow of plasmas to and from the ionosphere, and the deposition of particle energy in the ionosphere and upper atmosphere. POLAR has on-board propulsion systems and a design lifetime of three to five years, with redundant subsystems. POLAR is cylindrical, approximately 2.8 m in diameter by 1.25 m high (plus 1.25 m for its two despun platforms), with body-mounted solar cells, weighs 1250 kg and uses 333 W of power. The spin rate is 10 rpm around an axis approximately normal to the orbital plane. It has long wire spin-plane antennas, inertial booms, and spin-plane appendages to support sensors. POLAR has two despun gimbaled instrument platforms, and booms are deployed along both Z axes. Data are stored using on-board tape recorders and are relayed to the Deep Space Network at 600 kbps maximum (250 kbps nominal) although the average real-time data rate for POLAR is 41.6 kbps. POLAR has a 22.6-h polar orbit (90 deg inclination), with perigee and apogee of 11,500 and 57,000 km. Polar was launched to observe the polar magnetosphere and, as its orbit has precessed with time, has observed the equatorial inner magnetosphere and is now carrying out an extended period of southern hemisphere coverage. Details on the POLAR mission and instrumentation are provided in Space Science Reviews (Vol. 71, Nos. 1-4, 1995) and reprinted in The Global Geospace Mission, edited by C. T. Russell (Kluwer, 1995).</Description>
  12 + <Description>POLAR is one of four spacecraft in the Global Geospace Science (GGS) program.
  13 + These are among the six spacecraft in the International Solar Terrestrial Physics (ISTP)
  14 + program. POLAR provides multi-wavelength imaging of the aurora, measuring plasma entry
  15 + into the polar magnetosphere and geomagnetic tail, the flow of plasmas to and from the
  16 + ionosphere, and the deposition of particle energy in the ionosphere and upper atmosphere.
  17 + POLAR has on-board propulsion systems and a design lifetime of three to five years, with
  18 + redundant subsystems. POLAR is cylindrical, approximately 2.8 m in diameter by 1.25 m
  19 + high (plus 1.25 m for its two despun platforms), with body-mounted solar cells,
  20 + weighs 1250 kg and uses 333 W of power. The spin rate is 10 rpm around an axis
  21 + approximately normal to the orbital plane. It has long wire spin-plane antennas,
  22 + inertial booms, and spin-plane appendages to support sensors.
  23 + POLAR has two despun gimbaled instrument platforms, and booms are deployed along both Z axes. Data are stored using on-board tape recorders and are relayed to the Deep Space Network at 600 kbps maximum (250 kbps nominal) although the average real-time data rate for POLAR is 41.6 kbps. POLAR has a 22.6-h polar orbit (90 deg inclination), with perigee and apogee of 11,500 and 57,000 km. Polar was launched to observe the polar magnetosphere and, as its orbit has precessed with time, has observed the equatorial inner magnetosphere and is now carrying out an extended period of southern hemisphere coverage. Details on the POLAR mission and instrumentation are provided in Space Science Reviews (Vol. 71, Nos. 1-4, 1995) and reprinted in The Global Geospace Mission, edited by C. T. Russell (Kluwer, 1995).</Description>
13 24 <Contact>
14 25 <!-- John Sigwarth -->
15 26 <PersonID>spase://SMWG/Person/John.B.Sigwarth</PersonID>
... ...