Commit 25893306a6c71554c7340793a816046fdefcabf5

Authored by Elena.Budnik
1 parent 66437f33

work

Instrument/AMDA/VEX/ELS.xml
... ... @@ -16,12 +16,20 @@ analyzer in a very compact design.</Description>
16 16 <PersonID>spase://SMWG/Person/Stas.Barabash</PersonID>
17 17 <Role>PrincipalInvestigator</Role>
18 18 </Contact>
  19 + <Contact>
  20 + <PersonID>spase://CDPP/Person/Rudy.Frahm</PersonID>
  21 + <Role>GeneralContact</Role>
  22 + </Contact>
  23 + <InformationURL>
  24 + <Name>ESA Venus-Express ASPERA-4 description</Name>
  25 + <URL>http://sci.esa.int/venus-express/33964-instruments/?fbodylongid=1442</URL>
  26 + </InformationURL>
19 27 <InformationURL>
20 28 <Name>PSA ASPERA web page</Name>
21 29 <URL>ftp://psa.esac.esa.int/pub/mirror/VENUS-EXPRESS/ASPERA4/VEX-V-SW-ASPERA-2-ELS-V1.0/CATALOG/INST.CAT</URL>
22 30 </InformationURL>
23 31 </ResourceHeader>
24   - <InstrumentType>Spectrometer</InstrumentType>
  32 + <InstrumentType>ElectrostaticAnalyser</InstrumentType>
25 33 <InvestigationName>ASPERA4</InvestigationName>
26 34 <ObservatoryID>spase://CDPP/Observatory/AMDA/VEX</ObservatoryID>
27 35 </Instrument>
... ...
Instrument/AMDA/VEX/MAG.xml
... ... @@ -5,13 +5,23 @@
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/VEX/MAG</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>MAG</ResourceName>
8   - <AlternateName></AlternateName>
  8 + <AlternateName>Fluxgate Magnetometer</AlternateName>
9 9 <ReleaseDate>2009-05-20T21:10:13Z</ReleaseDate>
10   - <Description></Description>
  10 + <Description> MAG, the magnetometer instrument, is designed to make measurements of magnetic field strength and direction. This information is used to identify boundaries between the various plasma regions, study the interaction of the solar wind with the atmosphere of Venus and provide support data for measurements made by other instruments.
  11 +
  12 + The magnetometer instrument consists of two tri-axial fluxgate magnetometers, one mounted on the outer surface of the spacecraft and one on the end of a 1 metre long deployable boom, and an electronic control unit. The use of two sensors reduces the effect of the intrinsic magnetic field of the spacecraft on the measurements.</Description>
11 13 <Contact>
12   - <PersonID></PersonID>
13   - <Role>MetadataContact</Role>
  14 + <PersonID>spase://SMWG/Person/Tielong.Zhang</PersonID>
  15 + <Role>PrincipalInvestigator</Role>
14 16 </Contact>
  17 + <Contact>
  18 + <PersonID>spase://CDPP/Person/Magda.Delva</PersonID>
  19 + <Role>GeneralContact</Role>
  20 + </Contact>
  21 + <InformationURL>
  22 + <Name>ESA Venus-Express MAG description</Name>
  23 + <URL>http://sci.esa.int/venus-express/33964-instruments/?fbodylongid=1443</URL>
  24 + </InformationURL>
15 25 </ResourceHeader>
16 26 <InstrumentType>Magnetometer</InstrumentType>
17 27 <InvestigationName></InvestigationName>
... ...
NumericalData/AMDA/MEX/ELS/mex-els-all.xml
... ... @@ -20,11 +20,7 @@ Institute of Space Physics, PI, and the European Space Agency&lt;/Acknowledgement&gt;
20 20 <Contact>
21 21 <PersonID>spase://CDPP/Person/Elena.Budnik</PersonID>
22 22 <Role>TechnicalContact</Role>
23   - </Contact>
24   - <InformationURL>
25   - <Name>Project-Archive Interface Control Document</Name>
26   - <URL>http://pds-ppi.igpp.ucla.edu/search/view/?f=yes&amp;id=pds://PPI/MEXASP_1100/DOCUMENT/MEX_ASPERA3_PSA_ICD_V01_02</URL>
27   - </InformationURL>
  23 + </Contact>
28 24 </ResourceHeader>
29 25 <AccessInformation>
30 26 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -51,11 +47,8 @@ Institute of Space Physics, PI, and the European Space Agency&lt;/Acknowledgement&gt;
51 47 <Cadence_Max>PT4S</Cadence_Max>
52 48 </TemporalDescription>
53 49 <ObservedRegion>Mars</ObservedRegion>
54   - <Caveats>
55   - * Concerning ELS NEV Data
56   -
57   -
58   - Before 2003/190 (09 July 2003), operational engineering tests were being executed on the ELS instrument. Before 2100 hours on that date,
  50 + <Caveats><!--
  51 + * Concerning ELS NEV Data :Before 2003/190 (09 July 2003), operational engineering tests were being executed on the ELS instrument. Before 2100 hours on that date,
59 52 the ELS science data should be all zero (except for day 2003/183,
60 53 02 July 2003, between 0100 hours and 0200 hours). For all times other
61 54 than the 2003/183 (2003-07-02) time listed above, ELS was undergoing the
... ... @@ -65,7 +58,6 @@ science data were all zero. If ELS science data had not been zero, it
65 58 would have been an indication that there was something wrong with the
66 59 instrument. Thus, the zeroes in the ELS science data are normal and
67 60 expected during these times.
68   -
69 61 The exception for day 2003/183 (02 July 2003) between 0100 hours and 0200 hours was when the deflection plates were not stepping and the
70 62 instrument voltages were increased such that a science signal could be seen. Since the ELS was not sweeping but held at a fixed value, there
71 63 should be science data only at one energy (although the numeric value for
... ... @@ -76,13 +68,9 @@ software prevented sweeping. This was not fixed until after 2100 hours
76 68 on day 2003/190 (09 July 2003).
77 69  
78 70  
79   - * Concerning ELS January 2004 Data:
80   -
81   - The Mars Express commissioning period for ASPERA-3 occurred in January 2004. Since operational engineering tests were being executed on the ELS instrument during this time, some of the ELS science data are all zeroes. The zeroes are normal and expected during January 5, 12, and 14, 2004. If the ELS science data had not been zero during these times, it would have been an indication that there was something wrong with the instrument.
  71 + * Concerning ELS January 2004 Data: The Mars Express commissioning period for ASPERA-3 occurred in January 2004. Since operational engineering tests were being executed on the ELS instrument during this time, some of the ELS science data are all zeroes. The zeroes are normal and expected during January 5, 12, and 14, 2004. If the ELS science data had not been zero during these times, it would have been an indication that there was something wrong with the instrument.
82 72  
83   - * Note on Noise Levels:
84   -
85   - The ELS sectors which view across the spacecraft and into the spacecraft
  73 + * Note on Noise Levels: The ELS sectors which view across the spacecraft and into the spacecraft
86 74 body measure electrons escaping the spacecraft either due to outgassing by
87 75 the spacecraft, emissions from the spacecraft surfaces, scattered primary
88 76 electrons reflected from the spacecraft, or secondary electrons that had
... ... @@ -119,9 +107,7 @@ that there are fewer electrons generated by the MCP during the cascade
119 107 been compensated for by the relative calibration factors for this sector.
120 108  
121 109  
122   - * Note on Artificial Peaks in Spectra:
123   -
124   - At about 150 eV, there is an artificial effect which is caused by the
  110 + * Note on Artificial Peaks in Spectra: At about 150 eV, there is an artificial effect which is caused by the
125 111 transition between control states of the ELS power supplies. This
126 112 artificial effect appears as a peak, drifting in amplitude, shape, and
127 113 affected energy range. The artificial peak occurs because the controlling
... ... @@ -156,7 +142,7 @@ fluctuation on the higher voltage side of the low range. The ELS sweep is
156 142 a decay step from its highest voltage value to its lowest voltage. The
157 143 spike is seen by the observer because it is highlighted by the transition
158 144 between the sweep high range (larger fractional error) to the low range
159   -(smaller fractional error). </Caveats>
  145 +(smaller fractional error). --></Caveats>
160 146 <Parameter>
161 147 <Name>spectra</Name>
162 148 <ParameterKey>mex_els_spec</ParameterKey>
... ...
NumericalData/AMDA/VEX/ELS/vex-els-all.xml
... ... @@ -4,12 +4,18 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/VEX/ELS/vex-els-all</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>electron spectra</ResourceName>
8   - <ReleaseDate>2015-10-13T17:00:00</ReleaseDate>
9   - <Description>Venus Express (VEX) ASPERA-4 ELectron Spectrometer (ELS) data (spectrogram)</Description>
  7 + <ResourceName>electron spectra : 16 anods</ResourceName>
  8 + <ReleaseDate>2016-10-13T17:00:00</ReleaseDate>
  9 + <Description>Level2 data. This dataset is generated directly from the VEX telemetry with IRAP software </Description>
  10 + <Acknowledgement>The Venus Express ASPERA team, S.Barabash, Swedish
  11 + Institute of Space Physics, PI, and the European Space Agency</Acknowledgement>
  12 + <Contact>
  13 + <PersonID>spase://SMWG/Person/Stas.Barabash</PersonID>
  14 + <Role>PrincipalInvestigator</Role>
  15 + </Contact>
10 16 <Contact>
11 17 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12   - <Role>GeneralContact</Role>
  18 + <Role>TechnicalContact</Role>
13 19 </Contact>
14 20 </ResourceHeader>
15 21 <AccessInformation>
... ... @@ -23,18 +29,18 @@
23 29 </AccessInformation>
24 30 <ProviderName>IRAP</ProviderName>
25 31 <InstrumentID>spase://CDPP/Instrument/AMDA/VEX/ELS</InstrumentID>
26   - <MeasurementType>EnergeticParticles</MeasurementType>
  32 + <MeasurementType>ThermalPlasma</MeasurementType>
27 33 <TemporalDescription>
28 34 <TimeSpan>
29 35 <StartDate>2005-03-03T01:48:33Z</StartDate>
30 36 <StopDate>2014-11-27T09:25:59Z</StopDate>
31 37 </TimeSpan>
32   - <Cadence>PT4S</Cadence>
  38 + <Cadence_Min>PT1S</Cadence_Min>
  39 + <Cadence_Max>PT4S</Cadence_Max>
33 40 </TemporalDescription>
34 41 <ObservedRegion>Venus</ObservedRegion>
35 42 <Keyword>plasma</Keyword>
36   - <Keyword>electron</Keyword>
37   - <Keyword>solar wind</Keyword>
  43 + <Keyword>electron</Keyword>
38 44 <Parameter>
39 45 <Name>spectra</Name>
40 46 <ParameterKey>vex_els_spec</ParameterKey>
... ...
NumericalData/AMDA/VEX/MAG/vex-mag-all.xml
... ... @@ -5,11 +5,11 @@
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/VEX/MAG/vex-mag-all</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>4 sec</ResourceName>
8   - <ReleaseDate>2015-10-13T11:09:00Z</ReleaseDate>
9   - <Description/>
  8 + <ReleaseDate>2016-10-13T11:09:00Z</ReleaseDate>
  9 + <Description>resampled calibrated data</Description>
10 10 <Contact>
11   - <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12   - <Role>TechnicalContact</Role>
  11 + <PersonID>spase://CDPP/Person/Magda.Delva</PersonID>
  12 + <Role>GeneralContact</Role>
13 13 </Contact>
14 14 </ResourceHeader>
15 15 <AccessInformation>
... ... @@ -22,6 +22,7 @@
22 22 <Format>NetCDF</Format>
23 23 </AccessInformation>
24 24 <ProviderName>PSA</ProviderName>
  25 + <ProviderResourceName>VEX-V-Y-MAG-4-xxxx-V1.0</ProviderResourceName>
25 26 <InstrumentID>spase://CDPP/Instrument/AMDA/VEX/MAG</InstrumentID>
26 27 <MeasurementType>MagneticField</MeasurementType>
27 28 <TemporalDescription>
... ...
NumericalData/AMDA/VEX/MAG/vex-mag-hz.xml
... ... @@ -6,11 +6,15 @@
6 6 <ResourceHeader>
7 7 <ResourceName>1 sec</ResourceName>
8 8 <ReleaseDate>2015-10-13T10:46:00Z</ReleaseDate>
9   - <Description/>
  9 + <Description>calibrated_data, 1 Hz data-resolution</Description>
10 10 <Contact>
11   - <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12   - <Role>TechnicalContact</Role>
  11 + <PersonID>spase://CDPP/Person/Magda.Delva</PersonID>
  12 + <Role>GeneralContact</Role>
13 13 </Contact>
  14 + <InformationURL>
  15 + <Name>PSA dataset descriotion</Name>
  16 + <URL>ftp://psa.esac.esa.int/pub/mirror/VENUS-EXPRESS/MAG/VEX-V-Y-MAG-4-V1.0/DOCUMENT/VE-MAG-EAICD-IWF.PDF</URL>
  17 + </InformationURL>
14 18 </ResourceHeader>
15 19 <AccessInformation>
16 20 <RepositoryID>spase://CDPP/Repository/AMDA</RepositoryID>
... ... @@ -22,6 +26,7 @@
22 26 <Format>NetCDF</Format>
23 27 </AccessInformation>
24 28 <ProviderName>PSA</ProviderName>
  29 + <ProviderResourceName>VEX-V-Y-MAG-3-xxxx-V1.0</ProviderResourceName>
25 30 <InstrumentID>spase://CDPP/Instrument/AMDA/VEX/MAG</InstrumentID>
26 31 <MeasurementType>MagneticField</MeasurementType>
27 32 <TemporalDescription>
... ...
Observatory/AMDA/Galileo.xml
... ... @@ -6,159 +6,27 @@
6 6 <ResourceHeader>
7 7 <ResourceName>Galileo</ResourceName>
8 8 <AlternateName>Galileo Orbiter</AlternateName>
9   - <AlternateName>Jupiter Orbiter-Probe</AlternateName>
10   - <ReleaseDate>2012-11-27T00:00:00Z</ReleaseDate>
11   - <Description>
12   -Science Objectives
13   -==================
14   -The Galileo mission consists of two spacecraft: an orbiter and an atmospheric probe. The orbiter will be the sixth spacecraft to explore the Jovian magnetosphere, but the first to be placed into orbit around the giant planet. Scientific objectives addressed by the orbiter are to: (1) investigate the circulation and dynamics of the Jovian atmosphere; (2) investigate the upper Jovian atmosphere and ionosphere; (3) characterize the morphology, geology, and physical state of the Galilean satellites; (4) investigate the composition and distribution of surface minerals on the Galilean satellites; (5) determine the gravitational and magnetic fields and dynamic properties of the Galilean satellites; (6) study the atmospheres, ionospheres, and extended gas clouds of the Galilean satellites; (7) study the interaction of the Jovian magnetosphere with the Galilean satellites; and, (8) characterize the vector magnetic field and the energy spectra, composition, and angular distribution of energetic particles and plasma to a distance of 150 Rj.
  9 + <ReleaseDate>2016-09-27T00:00:00Z</ReleaseDate>
  10 + <Description>The Galileo mission consists of two spacecraft: an orbiter and an atmospheric probe. The orbiter is the sixth spacecraft to explore the Jovian magnetosphere, but the first to be placed into orbit around the giant planet. Scientific objectives addressed by the orbiter are to: (1) investigate the circulation and dynamics of the Jovian atmosphere; (2) investigate the upper Jovian atmosphere and ionosphere; (3) characterize the morphology, geology, and physical state of the Galilean satellites; (4) investigate the composition and distribution of surface minerals on the Galilean satellites; (5) determine the gravitational and magnetic fields and dynamic properties of the Galilean satellites; (6) study the atmospheres, ionospheres, and extended gas clouds of the Galilean satellites; (7) study the interaction of the Jovian magnetosphere with the Galilean satellites; and, (8) characterize the vector magnetic field and the energy spectra, composition, and angular distribution of energetic particles and plasma to a distance of 150 Rj.
15 11  
16   -Spacecraft Overview
17   -===================
18 12  
19   -The structure of the orbiter is divided into two sections. The main body of the spacecraft, comprised of the electronics bays, propellant system, RTG and science booms, and high-gain antenna, rotates at rates of 3.25 or 10.5 rpm. The despun section, aft of the main body, uses an electric motor to drive it counter to the rotation of the main section. This dual spin attitude control system accommodates instruments which require stable, accurate pointing (the imaging instruments) and those which benefit from repetitive, broad-angular coverage (the various particles and fields instruments). The length of the spacecraft is 9 m and, with the high-gain antenna (HGA) deployed, is 4.6 m in diameter.
  13 +Venus flyby: Feb. 10, 1990, at altitude of 16,000 km
20 14  
21   -Power is provided to the spacecraft through the use of two radioisotope thermal generators (RTGs), each of which is located at the end of a short boom. The magnetometer sensors and plasma wave antenna are located on yet another boom, 10.9 m in length.
  15 +Earth flybys: Dec. 8, 1990, at altitude of 960 km; Dec. 8, 1992 at altitude of 303 km
22 16  
23   -Although it was intended that communications with the Deep Space Network (DSN) would be primarily through the HGA (which would remain pointing toward the Earth at all times), thermal constraints forced the use of the two low-gain antennas prior to the first Earth flyby. HGA deployment was planned thereafter, but at least three of the HGA "ribs" were unable to be moved much beyond their launch configurations, thereby jeopardizing the total science return of the mission. Several attempts have been made to deploy the antenna through a variety of techniques.
  17 +Asteroid Gaspra flyby: Oct. 29, 1991, at 1,601 km
24 18  
25   -QUICK FACTS
26   -===========
  19 +Comet Shoemaker-Levy 9: Impacts of comet fragments into Jupiter observed while en route in July 1994
27 20  
28   -Spacecraft
29   -==========
  21 +Asteroid Ida flyby: Aug. 28, 1993, at 2,400 km
30 22  
31   -Dimensions: 5.3 meters (17 feet) high; magnetometer boom extends 11 meters (36 feet) to one side
32   -
33   -Weight: 2,223 kilograms (2.5 tons, or 4,902 pounds), including 118 kilograms (260 pounds) of science instruments and 925 kilograms (2040 pounds) of propellant
34   -
35   -Power: 570 watts (at launch) from radioisotope thermoelectric generators
36   -
37   -Science instruments: Solid-state imaging camera, near-infrared mapping spectrometer,
38   -ultraviolet spectrometer, photopolarimeter radiometer, magnetometer, energetic particles detector, plasma investigation, plasma wave subsystem, dust detector, heavy ion counter
39   -
40   -Atmospheric Probe
41   -=================
42   -
43   -Size: 127 centimeters (50 inches) diameter, 91 centimeters (36 inches) high
44   -
45   -Weight: 339 kilograms (750 pounds)
46   -
47   -Science instruments: Atmospheric structure, neutral mass spectrometer, helium abundance,
48   -nephelometer, net flux radiometer, lightning/energetic particles, doppler wind experiment
49   -
50   -Mission
51   -=======
52   -
53   -Launch: Oct. 18, 1989 from Kennedy Space Center, Fla., on space shuttle Atlantis on mission STS-34
54   -
55   -End of Mission: Sep. 21, 2003
56   -
57   -Primary mission: October 1989 to December 1997
58   -
59   -Extended missions: Three, from 1997 to 2003
60   -
61   -Venus flyby: Feb. 10, 1990, at altitude of 16,000 km (10,000 mi)
62   -
63   -Earth flybys: Dec. 8, 1990, at altitude of 960 km (597 mi); Dec. 8, 1992 at altitude of
64   -303 km (188 mi)
65   -
66   -Asteroid Gaspra flyby: Oct. 29, 1991, at 1,601 km (1,000 mi)
67   -
68   -Comet Shoemaker-Levy 9: Impacts of comet fragments into Jupiter observed while en route
69   -in July 1994
70   -
71   -Asteroid Ida flyby: Aug. 28, 1993, at 2,400 km (1,400 mi)
72   -
73   -Atmospheric probe release: July 12, 1995
74   -
75   -Probe speed into Jupiter's atmosphere: 47.6 km per second (106,000 mi per hour) Jupiter arrival and orbit insertion: Dec. 7, 1995
76   -
77   -Probe atmospheric entry and relay: Dec. 7, 1995
78 23  
79 24 Number of Jupiter orbits during entire mission: 34
80 25  
81 26 Number of flybys of Jupiter moons: Io 7, Callisto 8, Ganymede 8, Europa 11, Amalthea 1
82   -
83   - Mission Overview
84   - ================
85   -
86   -The Galileo mission utilizes a single launch of a combined
87   - Orbiter and Probe using the space shuttle Atlantis and an
88   - inertial upper stage (IUS) to inject the Galileo spacecraft
89   - on its interplanetary trajectory to Jupiter. The launch
90   - window occurs from October 12, 1989 to November 21, 1989.
91   - Since the IUS does not have the energy to inject Galileo on
92   - a direct trajectory to Jupiter, the spacecraft will instead
93   - be launched first towards Venus for the first leg of its
94   - Venus-Earth-Earth gravity assist (VEEGA) trajectory to
95   - Jupiter. Target-of-opportunity science observations will be
96   - made at Venus (closest approach February 10, 1990), the
97   - first Earth encounter (closest approach to Earth and Moon
98   - December 8, 1990), the asteroid Gaspra (closest approach
99   - October 29, 1991), the second Earth encounter (closest
100   - approach to Earth and Moon December 8, 1992), and the
101   - asteroid Ida (closest approach August 28, 1993).
102   -
103   - At about 150 days before Galileo arrives at Jupiter, the
104   - Probe is separated from the Orbiter. From this moment in
105   - time, the Probe is on a ballistic trajectory to the Probe
106   - entry point, about 6 degrees north latitude, into the
107   - atmosphere of Jupiter. Using its 400 Newton engine for the
108   - first time, the Orbiter executes an Orbiter deflection
109   - maneuver to keep from following the Probe into the
110   - atmosphere of Jupiter, and to retarget the Orbiter to the
111   - proper encounter conditions required for the Jupiter Orbit
112   - Insertion phase of the mission.
113   -
114   - A close flyby (about 1,000 kilometer altitude) of the Jovian
115   - satellite Io occurs in this phase for the purpose of science
116   - observations as well as to slow the Orbiter down relative to
117   - Jupiter by nearly 200 meters/second in order to reduce the
118   - propellant required during the Jupiter Orbit Insertion (JOI)
119   - 400 Newton engine burn to capture Galileo into Jupiter's
120   - orbit. Perijove of about 4 Jupiter radii occurs about 4
121   - hours after Io encounter. A few minutes after perijove
122   - passage, the Probe entry and beginning of the relay of data
123   - from the Probe to the Orbiter occurs.
124   -
125   - The Probe mission and data relay lasts 75 minutes, after
126   - which JOI is performed, slowing the Orbiter down relative to
127   - Jupiter by about 630 meters/second. The initial orbit period
128   - is about 200 days. A large 400 Newton engine burn is
129   - performed at the first apojove in order to raise perijove
130   - from 4 Jupiter radii to about 9 Jupiter radii, thus allowing
131   - at least 11 orbits with 10 targeted satellite encounters to
132   - be completed by the Orbiter without exceeding the allowed
133   - total accumulated radiation exposure at the spacecraft. Only
134   - three orbits would be allowed before exceeding this limit if
135   - perijove were allowed to stay at 4 Jupiter radii, where the
136   - radiation environment is very severe. Also during this
137   - perijove raise maneuver, Galileo is targeted to the
138   - satellite Ganymede, the first of its Galilean satellite
139   - encounters following JOI.
140   -
141   - At this point, the targeting to satellite encounters begins,
142   - such that a satellite tour consisting of a minimum of 10
143   - targeted satellite encounters is achieved within the 23
144   - month period allotted for the satellite tour. During the
145   - course of the satellite tour, the orientation, shape and
146   - size of the spacecraft orbits around the Jovian system,
147   - referred to as petals because of how the spacecraft orbits
148   - appear on a plan view of the Jovian satellite tour
149   - trajectory, is controlled almost exclusively by gravity
150   - assists of the satellites themselves. The orbit periods are
151   - pumped down by successive encounters with the satellites
152   - from the initial 200 days to approximately 35-40 days
153   - between encounters. At the 8th orbit, when the orbit petal
154   - orientation is approximately in the anti-sun direction, the
155   - period is again pumped up to about 100 days, allowing one of
156   - the primary objectives, probing the Jovian magnetotail, to
157   - be accomplished. After this magnetotail orbit, the period is
158   - again pumped down, by gravity assist encounters with the
159   - Jovian satellites, to 35-40 days for the final 2-3 targeted
160   - encounters.
161   - </Description>
  27 +
  28 +
  29 + </Description>
162 30 <Acknowledgement/>
163 31 <Contact>
164 32 <PersonID>spase://SMWG/Person/Torrence.V.Johnson</PersonID>
... ... @@ -172,11 +40,13 @@ The Galileo mission utilizes a single launch of a combined
172 40 </ResourceHeader>
173 41 <Location>
174 42 <ObservatoryRegion>Jupiter</ObservatoryRegion>
175   - <ObservatoryRegion>Jupiter</ObservatoryRegion>
176 43 <ObservatoryRegion>Asteroid</ObservatoryRegion>
177 44 <ObservatoryRegion>Heliosphere</ObservatoryRegion>
178   - <ObservatoryRegion>Earth.Magnetosphere</ObservatoryRegion>
179   - <ObservatoryRegion>Earth.Magnetosphere.Magnetotail</ObservatoryRegion>
180 45 </Location>
  46 + <OperatingSpan>
  47 + <StartDate>1989-10-18T12:00:00</StartDate>
  48 + <StopDate>2003-09-21T12:00:00</StopDate>
  49 + <Note>Jupiter arrival : 1995-12-07</Note>
  50 + </OperatingSpan>
181 51 </Observatory>
182 52 </Spase>
... ...
Person/Andrey.Fedorov
... ... @@ -2,8 +2,9 @@
2 2 <Spase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.spase-group.org/data/schema" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2_2_0.xsd">
3 3 <Version>2.2.0</Version>
4 4 <Person>
5   - <ResourceID>spase://SMWG/Person/Andrey.Fedorov</ResourceID>
  5 + <ResourceID>spase://CDPP/Person/Andrey.Fedorov</ResourceID>
6 6 <PersonName>Dr. Andrey Fedorov</PersonName>
7   - <OrganizationName>Russian Academy of Sciences</OrganizationName>
  7 + <OrganizationName>IRAP, Toulouse</OrganizationName>
  8 + <Email>Andrei.Fedorov@irap.omp.eu</Email>
8 9 </Person>
9 10 </Spase>
... ...
Person/Magda.Delva 0 → 100644
... ... @@ -0,0 +1,10 @@
  1 +<?xml version="1.0" encoding="UTF-8"?>
  2 +<Spase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.spase-group.org/data/schema" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2_2_0.xsd">
  3 + <Version>2.2.0</Version>
  4 + <Person>
  5 + <ResourceID>spase://CDPP/Person/Magda.Delva</ResourceID>
  6 + <PersonName>Dr. Magda Delva</PersonName>
  7 + <OrganizationName>IWF, Graz</OrganizationName>
  8 + <Email>magda.delva@oeaw.ac.at</Email>
  9 + </Person>
  10 +</Spase>
... ...
Person/Tielong.Zhang 0 → 100644
... ... @@ -0,0 +1,9 @@
  1 +<?xml version="1.0" encoding="UTF-8"?>
  2 +<Spase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.spase-group.org/data/schema" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2_2_0.xsd">
  3 + <Version>2.2.0</Version>
  4 + <Person>
  5 + <ResourceID>spase://SMWG/Person/Tielong.Zhang</ResourceID>
  6 + <PersonName>Dr. Tielong Zhang</PersonName>
  7 + <OrganizationName>Institut fur Weltraumforschung</OrganizationName>
  8 + </Person>
  9 +</Spase>
... ...