Commit 032d1325d0737ad0651a649e282b9dcf2dc3c879

Authored by Elena.Budnik
1 parent bb9c1c7c

work

Showing 31 changed files with 250 additions and 171 deletions   Show diff stats
Instrument/AMDA/Cluster-Rumba/CIS-CODIF.xml
... ... @@ -5,7 +5,7 @@
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Rumba/CIS-CODIF</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>CIS-CODIF</ResourceName>
8   - <AlternateName>Cluster Ion Spectrometry (CIS-CODIF)</AlternateName>
  8 + <AlternateName>Cluster Ion Spectrometry : Composition Distribution Function</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:46Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02--40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Cluster Ion Spectrometry Experiment,'' by H. Reme et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Cluster-Rumba/CIS-HIA.xml
... ... @@ -5,7 +5,7 @@
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Rumba/CIS-HIA</ResourceID>
6 6 <ResourceHeader>
7 7 <ResourceName>CIS-HIA</ResourceName>
8   - <AlternateName>Cluster Ion Spectrometry (CIS-HIA)</AlternateName>
  8 + <AlternateName>Cluster Ion Spectrometry : Hot Ion Analyser</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:46Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02--40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Cluster Ion Spectrometry Experiment,'' by H. Reme et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Cluster-Samba/CIS-CODIF.xml 0 → 100644
... ... @@ -0,0 +1,26 @@
  1 +<?xml version="1.0" encoding="UTF-8"?>
  2 +<Spase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.spase-group.org/data/schema" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2_2_6.xsd">
  3 + <Version>2.2.6</Version>
  4 + <Instrument>
  5 + <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS-CODIF</ResourceID>
  6 + <ResourceHeader>
  7 + <ResourceName>CIS-CODIF</ResourceName>
  8 + <AlternateName>Cluster Ion Spectrometry : Composition Distribution Function</AlternateName>
  9 + <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
  10 + <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02--40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Cluster Ion Spectrometry Experiment,'' by H. Reme et al., from which this information was obtained.</Description>
  11 + <Contact>
  12 + <PersonID>spase://SMWG/Person/Henri.Reme</PersonID>
  13 + <Role>PrincipalInvestigator</Role>
  14 + </Contact>
  15 + <InformationURL>
  16 + <Name>NSSDC's Master Catalog</Name>
  17 + <URL>http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=2000-041A&amp;ex=2</URL>
  18 + <Description>Information about the Cluster Ion Spectrometry (CIS) experiment on the Cluster 2/FM7 (Samba) mission.</Description>
  19 + </InformationURL>
  20 + <PriorID>spase://SMWG/Instrument/Cluster2-Samba/CIS</PriorID>
  21 + </ResourceHeader>
  22 + <InstrumentType>EnergeticParticleInstrument</InstrumentType>
  23 + <InvestigationName>Cluster Ion Spectrometry (CIS) on Cluster 2/FM7 (Samba)</InvestigationName>
  24 + <ObservatoryID>spase://CDPP/Observatory/AMDA/Cluster-Samba</ObservatoryID>
  25 + </Instrument>
  26 +</Spase>
... ...
Instrument/AMDA/Cluster-Samba/CIS-HIA.xml 0 → 100644
... ... @@ -0,0 +1,26 @@
  1 +<?xml version="1.0" encoding="UTF-8"?>
  2 +<Spase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.spase-group.org/data/schema" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2_2_6.xsd">
  3 + <Version>2.2.6</Version>
  4 + <Instrument>
  5 + <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS-HIA</ResourceID>
  6 + <ResourceHeader>
  7 + <ResourceName>CIS-HIA</ResourceName>
  8 + <AlternateName>Cluster Ion Spectrometry : Hot Ion Analyser</AlternateName>
  9 + <ReleaseDate>2011-02-04T15:37:46Z</ReleaseDate>
  10 + <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02--40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Cluster Ion Spectrometry Experiment,'' by H. Reme et al., from which this information was obtained.</Description>
  11 + <Contact>
  12 + <PersonID>spase://SMWG/Person/Henri.Reme</PersonID>
  13 + <Role>PrincipalInvestigator</Role>
  14 + </Contact>
  15 + <InformationURL>
  16 + <Name>NSSDC's Master Catalog</Name>
  17 + <URL>http://nssdc.gsfc.nasa.gov/database/MasterCatalog?sc=2000-045A&amp;ex=2</URL>
  18 + <Description>Information about the Cluster Ion Spectrometry (CIS) experiment on the Cluster 2/FM5 (Rumba) mission.</Description>
  19 + </InformationURL>
  20 + <PriorID>spase://SMWG/Instrument/Cluster2-Samba/CIS</PriorID>
  21 + </ResourceHeader>
  22 + <InstrumentType>EnergeticParticleInstrument</InstrumentType>
  23 + <InvestigationName>Cluster Ion Spectrometry (CIS) on Cluster 2/FM7 (Samba)</InvestigationName>
  24 + <ObservatoryID>spase://CDPP/Observatory/AMDA/Cluster-Samba</ObservatoryID>
  25 + </Instrument>
  26 +</Spase>
... ...
Instrument/AMDA/Cluster-Samba/EFW.xml
... ... @@ -4,7 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/EFW</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Electric Field and Waves (EFW)</ResourceName>
  7 + <ResourceName>EFW</ResourceName>
  8 + <AlternateName>Electric Field and Waves</AlternateName>
8 9 <AlternateName>EFW</AlternateName>
9 10 <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
10 11 <Description>The EFW (Electric Field and Waves) instrument consists of four orthogonal spherical sensors deployed from 50 m cable booms in the spin plane of the spacecraft, plus four deployment units and a main electronics unit. Each deployment unit deploys a multiconductor cable and tip-mounted spherical sensor. Each opposing pair of cables will be symmetrically deployed to a tip-to-tip distance of approximately 100 m, except for about a week at the beginning of the mission when 70 m will be used for one boom pair (the Z-booms) and 100 m for the other pair. The potentials of the spherical sensor and nearby conductors are controlled by the microprocessor to minimize errors associated with photoelectron fluxes to and from the spheres. Output signals from the sensor preamplifiers are provided to the wave instruments for analysis of high frequency wave phenomena. There is a 1 MB burst memory and tow fast A/D conversion circuits for recording electric field wave forms for time resolutions of up to 36,000 samples/s. Data gathered in the burst memory will be played back through the telemetry stream allocated to the instrument by pre-empting a portion of the real-time data. Incoming data are continuously monitored by algorithms in the software to determine whether to trigger the burst-playback mode. A large number of sampling modes is possible, yielding four possible telemetry rates from 1.440--29.440 Kbps. This data stream is transferred via the DWP instrument. The main measured quantities will be, in various modes: (1) the instantaneous spin-plane components of the electric field vector, from 0.1--700 V/Km, with time resolution down to 0.1 ms, in four frequency ranges from DC to upper limits of 10 Hz, 180 Hz, 4 KHz, or 32 KHz; (2) the AC electric field components from 10 Hz to 8 KHz, within the dynamic range of ~3 mV/Km to 10 V/Km; (3) plasma density fluctuations within the range of 1--100/cm and in three frequency ranges from 0 Hz to upper limits of 10 Hz, 180 Hz, or 4 KHz; and, (4) density and temperature (in Langmuir sweeps) in the eV range, with a dynamic range of 1--100/cm. There is also a frequency counter covering the range 10--200 KHz. On-board calculations of least-square fits to the electric field data over one spacecraft spin period (4 s) will provide a baseline of high-quality two-dimensional electric field components that are present in the telemetry stream, except for periods when three or four sensors are in current mode. The spacecraft potential is calculated and transmitted via DWP to other instruments on board. The three components from the search coil instrument (WHISPER) are also available in EFW with a bandwidth of 4 KHz. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The Spherical Probe Electric Field and Wave Experiment for the Cluster Mission,'' by G. Gustafsson et al., from which this information was obtained.</Description>
... ...
Instrument/AMDA/Cluster-Samba/PEACE.xml
... ... @@ -4,8 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/PEACE</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Plasma Electron and Current Experiment (PEACE)</ResourceName>
8   - <AlternateName>PEACE</AlternateName>
  7 + <ResourceName>PEACE</ResourceName>
  8 + <AlternateName>Plasma Electron and Current Experiment</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
10 10 <Description>The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment) is to obtain the velocity moments of the distribution function of electrons as frequently and as accurately as the spacecraft telemetry will allow. Detector counts are collected in energy, polar-angle, and azimuth-angle bins to form a three-dimensional matrix. Two sensors are used: LEEA (low-energy electron analyzer) and HEEA (high-energy electron analyzer). The energy coverage is from 0.67 eV to 30 KeV in 92 levels. The first 16 levels are equally spaced linearly up to 10.7 eV; the remainder are logarithmically spaced. Both sensors can use the full range, but the HEEA will normally operate over a higher energy range than the LEEA. The LEEA specializes in coverage of the energies from 0.7--10 eV, and has a geometric factor one fifth that of the HEAA. Both sensors consist of hemispherical electrostatic analyzers of the top-hat type and a detector in the form of an annular micro-channel plate with a position-sensitive readout. Each sensor covers the range 0--180 degrees with respect to the spin axis, and they are mounted opposite each other with a view perpendicular to the spin axis, thus covering the complete angular range in a half rotation of the spacecraft. The field of view perpendicular to the fan is 2 degrees for the LEEA and 5.6 degrees for the HEEA. Energy resolution (Delta-E)/E is 0.13 for LEEA and 0.16 for HEEA. There are four sweep modes, synchronized to the spin period (4 s), to vary the azimuthal angular resolution. The spin phasing can be made coincident with that of the CIS instrument, to ensure that the electron and ion moments will be measured simultaneously. On-board processing is used to calculate the moments of the distribution with an accuracy of 1% and to select suitable parts of the complete distribution for transmission. The normal science data format is based on one spin period, and consists of core data followed by other optional distributions as can be fit into the available telemetry for that spin. The core data (moments, spacecraft potential, and pitch angle distribution) are always transmitted (if the spin is nominal). The next distribution is transmitted if, before the end of the spin, all the previous data have been sent. Thus the next spin of data will be transmitted slightly late, but all of its core data will be transmitted before the following spin of data is started on. Eventually the transmission will catch up and be able to transmit the distribution after the core again, but only after some time. This applies at all telemetry rates. The instrument can adapt automatically to six different telemetry rates: a basic 1.52 Kbps rate (CIS priority); a normal 2.52 Kbps rate; an enhanced PEACE priority rate of 3.54 Kbps; and three burst mode rates, with a maximum of 15.98 Kbps. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``PEACE: a Plasma Electron and Current Experiment,'' by A. D. Johnstone et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Cluster-Samba/RAPID.xml
... ... @@ -4,8 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/RAPID</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Research with Adaptive Particle Imaging Detectors (RAPID)</ResourceName>
8   - <AlternateName>RAPID</AlternateName>
  7 + <ResourceName>RAPID</ResourceName>
  8 + <AlternateName>Research with Adaptive Particle Imaging Detectors</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
10 10 <Description>The dual-sensor spectrometer RAPID (Research with Adaptive Particle Imaging Detectors) analyzes suprathermal plasma distributions in the energy range from 20--400 KeV for electrons and from 2 KeV/nucleon to 1.50 MeV/nucleon for ions. Angular distributions are measured over a range of 180 degrees in polar angle for either species. Electrons are identified by the well-known energy-range relationship. The detection principle for ions is based on a two-dimensional analysis of a particle's velocity and energy. Moderate mass resolution of about four (for oxygen ions) permits the identification of ions and ion groups of significance. Particle species identified are electrons, protons, He and CNO group ions, and energetic neutral atoms of energies 10--100 KeV. RAPID science data are transmitted through a complex data format, using 17 Kbps in the telemetry nominal mode. Time resolution is as high as 16 samples/spin for certain elements. The nominal spin period for the spacecraft is 4 s. The RAPID field of view covers a range of 180 degrees with respect to the spin vector. The sensor systems, IIMS and IES, scan the full range of the solid angle as the spacecraft rotates. The data returned will be used to project the intensity distribution in distant particle sources on a spherical or plane image area with 192 pixels for IIMS and 144 pixels for IES. The Imaging Ion Mass Spectrometer (IIMS) sensor system is composed of three identical SCENIC (Spectroscopic Camera for Electrons, Neutral and Ion Composition) heads. The sensor systems of IIMS are identical to those in the HEP-LD instrument included in the Japanese Geotail spacecraft. The IIMS uses two-dimensional time-of-flight/energy analysis to determine particle mass. The addition of position-sensing techniques on the entrance foil, in combination with a geometrically small stop detector at the end of the flight path provides directional sensitivity. This approach divides the 180 degree polar segment into twelve contiguous angular intervals. Sectoring the spacecraft spin plane with a maximum of sixteen azimuthal intervals covers the unit sphere in velocity space completely with a total of 192 angular bins. The Imaging Electron Spectrometer (IES) achieves directional sensitivity by using novel microstrip solid-state devices in combination with a pin-hole acceptance. This technique divides the 180 degree polar range into nine angular intervals which, with sixteen sectors in the spin plane, corresponds to a total of 144 bins on the unit sphere. The RAPID spectrometer is connected to the magnetic field instrument FGM through the inter-experiment link. FGM sends 64 uncorrected magnetic field vectors per spacecraft rotation. These are used by the data processor to determine, for each of the sixteen azimuthal sectors, which look directions in the IIMS and IES fans are perpendicular to the current magnetic field vector. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``RAPID: The Imaging Energetic Particle Spectrometer on Cluster,'' by B. Wilken et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Cluster-Samba/STAFF.xml
... ... @@ -4,8 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/STAFF</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Spatio-Temporal Analysis of Magnetic Field Fluctuations (STAFF)</ResourceName>
8   - <AlternateName>STAFF</AlternateName>
  7 + <ResourceName>STAFF</ResourceName>
  8 + <AlternateName>Spatio-Temporal Analysis of Magnetic Field Fluctuations</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
10 10 <Description>This experiment (STAFF: Spatio-Temporal Analysis of Field Fluctuations) is one of the five complementary experiments which form the Wave Experiment Consortium (WEC) on Cluster. STAFF consists of: (1) a triaxial boom-mounted search-coil magnetometer to measure the magnetic components of electromagnetic fluctuations (up to 4 KHz); and, (2) a spectrum analyzer to compute the 25 auto- and cross-correlation coefficients of the spectral matrix, using three magnetic and two electric components of the waves. The magnetic waveform (up to either 10 Hz or 180 Hz) is also transmitted. The Z-axis sensor is parallel to the spacecraft spin axis. Each sensor consists of a high-permeability core embedded inside two solenoids. The frequency response of the main winding is flattened by a secondary winding through a flux feedback effect, in the range 40--4000 Hz. Further, the secondary winding is used as a calibration loop to which an external AC signal is applied. In normal bit rate the wave-form data cover the 0.1--10 Hz frequency range, and the spectrum analyzer covers the range 8 Hz to 4 KHz. In high bit rate, the wave-form data cover 0.1--180 Hz and the spectrum analyzer covers 64 Hz to 4 KHz, using only the two highest frequency bands. In the base mode in normal bit rate the auto-spectra are averaged over 1 s, and the complete 25-component matrix is averaged over 4 s for five components. In high bit rate, only the two highest frequency bands are analyzed. In the fast modes, time resolution is 1 s for the cross-spectra, and either 0.125 s or 0.25 s for the auto-spectra. Other modes are also defined. The analysis will also use electric field waveform data from the EFW (part of WEC), and the hardware of the two instruments was designed to optimize correlation: low-pass filters are identical, sampling frequency is the same, and there is a synchronization signal for simultaneous sampling. The output signals of the STAFF magnetic preamplifiers are also sent to two other instruments: the WBD (part of WEC) and the EDI. Some of the magnetospheric structures to be studied are of small scale, and where the signature duration is of the order 1 s or less, the STAFF search coil data are complementary to those of the fluxgate magnetometer (FGM). For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``The STAFF (Spatio-Temporal Analysis of Field Fluctuations) Experiment for the Cluster Mission'', by N. Cornilleau-Wehrlin et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Cluster-Samba/WHISPER.xml
... ... @@ -4,8 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Cluster-Samba/WHISPER</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Waves of HF and Sounder for Probing Electron Density by Relaxation (WHISPER)</ResourceName>
8   - <AlternateName>WHISPER</AlternateName>
  7 + <ResourceName>WHISPER</ResourceName>
  8 + <AlternateName>Waves High Frequency and Sounder</AlternateName>
9 9 <ReleaseDate>2011-02-04T15:37:07Z</ReleaseDate>
10 10 <Description>This instrument (WHISPER: Waves of HIgh frequency and Sounder for Probing of the Electron density by Relaxation) is part of the Wave Experiment Consortium (WEC) on Cluster. Its objectives are to: (1) measure the electron density via active sounding of plasma resonances; and, (2) record via passive wave analysis the natural wave emissions in the high-frequency range, from 4--80 KHz. An active sounder can provide the total local electron density, including the cold component, which is the dominant one in many of the regions to be explored. Most of the time, this cold component cannot be obtained from particle experiments, owing to the satellite's electric potential and photoelectron sheath disturbance. The sounder consists of three main parts: (1) a sensitive double-sphere antenna, measuring the AC electric field, provided as part of the EFW experiment; (2) a transmitter, a receiver, a digital spectrum analyzer, and a controller unit, which form the WHISPER instrument itself; and, (3) command and data processing systems, which are part of the DWP experiment, which also takes care of command and telemetry for the entire WEC unit. During the active part of WHISPER operation, in each frequency step a short (1 ms in normal mode; 0.5 ms also possible) wave train at the fixed frequency is transmitted. The receiver is then activated to receive until the end of the frequency step. This is repeated for a series of frequencies, sweeping a designated range of frequencies. The frequency step duration is a multiple of 13.33 ms to allow good synchronization with the EFW instrument's sampling period, and ranges up to ~250 ms. The sweep duration is a number of steps, and ranges from 0.5 s to ~10 s. The total frequency range available for the active transmitter is from 4--80 KHz. Different signal strength levels can be selected, e.g. 50, 100, 200 V peak to peak. During passive operations, there is no short pulse transmitted. The receiver signal is measured each 13.33 ms, and after A/D conversion it is analyzed in frequency by the vector signal processor (VSP), which performs a fast Fourier transform and delivers 64 to 512 useful bins in the range 0--80 KHz. The 512-bin option is always used in sounding mode. The operational details of the instrument are managed by the microcontroller, which also handles the interface to the DWP. Extensive data compression is used, either in the DWP (normal) or within WHISPER itself as backup. There is a considerable number of WHISPER modes, with a corresponding range of frequency resolutions and final data rates. In the standard WEC modes, the telemetry rate is about 980 bps in routine and 5800 bps in high rate. Plasma densities from 0.2 to 80 cm**-3 are measured, with a time resolution of 4 s routine and 1 s at best. Natural wave electric fields are measured with a sensitivity of 0.05 microV/(m sqrt(Hz)). Time and frequency resolutions are 3 s and 640 Hz routine, and 100 ms and 320 Hz at best. In any given mode, the dynamic range is about 100 dB, but 124 dB absolute range can be reached by commanded gain change. For more details of the Cluster mission, the spacecraft, and its instruments, see the report ``Cluster: mission, payload and supporting activities,'' March 1993, ESA SP-1159, and the included article ``WHISPER, a Sounder and High-Frequency Wave Analyser Experiment,'' by P. M. E. Decreau et al., from which this information was obtained.</Description>
11 11 <Contact>
... ...
Instrument/AMDA/Ulysses/SWOOPS.xml
... ... @@ -4,7 +4,8 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Ulysses/SWOOPS</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Solar Wind Plasma (BAM/SWOOPS)</ResourceName>
  7 + <ResourceName>SWOOPS</ResourceName>
  8 + <AlternateName>Solar Wind Observations Over Poles of Sun</AlternateName>
8 9 <AlternateName>BAM</AlternateName>
9 10 <AlternateName>SWOOPS</AlternateName>
10 11 <ReleaseDate>2009-05-20T21:10:12Z</ReleaseDate>
... ...
Instrument/AMDA/Ulysses/URAP.xml
... ... @@ -4,9 +4,9 @@
4 4 <Instrument>
5 5 <ResourceID>spase://CDPP/Instrument/AMDA/Ulysses/URAP</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Unified Radio and Plasma Waves (STO/URAP)</ResourceName>
8   - <AlternateName>STO</AlternateName>
9   - <AlternateName>URAP</AlternateName>
  7 + <ResourceName>URAP</ResourceName>
  8 + <AlternateName>Unified Radio and Plasma Waves</AlternateName>
  9 + <AlternateName>STO/URAP</AlternateName>
10 10 <ReleaseDate>2009-05-20T21:10:12Z</ReleaseDate>
11 11 <Description>The objectives of this investigation are (1) to investigate source positions of travelling solar radio bursts in the range from dc to 1 MHz; (2) to investigate the large-scale magnetic field topology and the electron density along the exciter trajectory as a function of heliographic latitude and longitude at distances of 0.1 AU to approximately 5 AU; (3) to investigate Jovian radio source locations in the range from dc to 1 MHz; and (4) to investigate waves in the plasma between dc and 35 kHz, their instabilities, their energy transport mechanisms, and the thermal electron density. The instrument comprises three antenna systems (a 70 m tip-to-tip dipole in the equatorial plane, a monopole along the spin axis, and a pair of crossed-axis magnetic search coils) and four receiver systems (an rf receiver for the 1.25 kHz to 1 MHz range in two intervals from 1.25 to 48.5 kHz and from 52 to 940 kHz; a plasma frequency receiver covering from 0.57 to 35 kHz in 32 contiguous intervals; a fast envelope sampler from 10 Hz to 60 kHz with four commandable decade ranges to capture transient events; and a wave form analyzer, dc to 500 Hz, that operates in two frequency bands, from dc to 10 Hz and from 10 to 500 Hz). It also includes an active sounder for determining the ambient electron density. The instrument has a mass of 7.3 kg, excluding antennas and booms, and has a data rate of 116 bps in storage mode and 232 bps in tracking mode. It uses 9.9 W mean power and 10.4 W when the sounder is operated.</Description>
12 12 <Contact>
... ...
NumericalData/AMDA/ACE/SWEPAM/ace-swe-all.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/ACE/SWEPAM/ace-swp-all</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>final</ResourceName>
  7 + <ResourceName>sw : final</ResourceName>
8 8 <AlternateName>Solar Wind 64-Second Level 2 Data (AC_H0_SWE)</AlternateName>
9 9 <ReleaseDate>2015-10-12T10:49:29Z</ReleaseDate>
10 10 <Description>
... ...
NumericalData/AMDA/ACE/SWEPAM/ace-swepam-real.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/ACE/SWEPAM/ace-swepam-real</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>real time</ResourceName>
  7 + <ResourceName>sw : real time</ResourceName>
8 8 <AlternateName>Solar wind 60-sec real time data</AlternateName>
9 9 <ReleaseDate>2015-10-19T17:05:29Z</ReleaseDate>
10 10 <Description/>
... ...
NumericalData/AMDA/ACE/SWEPAM/ace-swp-all.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/ACE/SWEPAM/ace-swp-all</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>prelim</ResourceName>
  7 + <ResourceName>sw : prelim</ResourceName>
8 8 <AlternateName>Preliminary, 5-min averages (from AC_K0_SWE dataset)</AlternateName>
9 9 <ReleaseDate>2015-10-12T10:49:29Z</ReleaseDate>
10 10 <Description>
... ...
NumericalData/AMDA/Cluster/Cluster1/CIS-HIA/clust1-cis-prp.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA//Cluster/Cluster1/CIS-HIA/clust1-cis-prp</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>HIA prime parameters</ResourceName>
  7 + <ResourceName>ion moments : prime parameters</ResourceName>
8 8 <AlternateName>Cluster 1 Prime Parameter CIS data</AlternateName>
9 9 <ReleaseDate>2015-10-19T10:31:00Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.</Description>
... ...
NumericalData/AMDA/Cluster/Cluster1/CIS-HIA/clust1-hia-mom.xml
... ... @@ -4,8 +4,8 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Cluster/Cluster1/CIS-HIA/clust1-hia-mom</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>HIA moments</ResourceName>
8   - <AlternateName>Cluster 1 Prime Parameter CIS data</AlternateName>
  7 + <ResourceName>ion moments : final</ResourceName>
  8 + <AlternateName> </AlternateName>
9 9 <ReleaseDate>2015-10-19T10:51:45Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.</Description>
11 11 <Acknowledgement>NASA, Prof. Henri Reme, European Space Agency</Acknowledgement>
... ... @@ -44,7 +44,7 @@
44 44 <TemporalDescription>
45 45 <TimeSpan>
46 46 <StartDate>2001-01-10T16:57:51Z</StartDate>
47   - <StopDate>2011-12-31T14:13:14Z</StopDate>
  47 + <StopDate>2013-12-28T11:26:14Z</StopDate>
48 48 </TimeSpan>
49 49 <Cadence>PT4S</Cadence>
50 50 </TemporalDescription>
... ... @@ -71,7 +71,7 @@
71 71 <Keyword>magnetotail</Keyword>
72 72 <Keyword>lobe</Keyword>
73 73 <Parameter>
74   - <Name>Hot Ion Number Density</Name>
  74 + <Name>density</Name>
75 75 <ParameterKey>c1_hia_dens</ParameterKey>
76 76 <Description>Cluster II Rumba Prime Parameter Cluster Ion Spectrometry hot ion number density at spin time resolution</Description>
77 77 <Ucd>phys.density;phys.atmol.ionStage</Ucd>
... ... @@ -94,7 +94,7 @@
94 94 </Particle>
95 95 </Parameter>
96 96 <Parameter>
97   - <Name>Ion Bulk Velocity GSE</Name>
  97 + <Name>v_gse</Name>
98 98 <ParameterKey>c1_hia_v</ParameterKey>
99 99 <Description>Cluster II Rumba Prime Parameter Cluster Ion Spectrometry hot ion bulk velocity at spin time resolution</Description>
100 100 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -113,19 +113,19 @@
113 113 <Structure>
114 114 <Size>3</Size>
115 115 <Element>
116   - <Name>Vx GSE</Name>
  116 + <Name>vx</Name>
117 117 <Qualifier>Component.I</Qualifier>
118 118 <Index>1</Index>
119 119 <ParameterKey>c1_hia_v(0)</ParameterKey>
120 120 </Element>
121 121 <Element>
122   - <Name>Vy GSE</Name>
  122 + <Name>vy</Name>
123 123 <Qualifier>Component.J</Qualifier>
124 124 <Index>2</Index>
125 125 <ParameterKey>c1_hia_v(1)</ParameterKey>
126 126 </Element>
127 127 <Element>
128   - <Name>Vz GSE</Name>
  128 + <Name>vz</Name>
129 129 <Qualifier>Component.K</Qualifier>
130 130 <Index>3</Index>
131 131 <ParameterKey>c1_hia_v(2)</ParameterKey>
... ... @@ -141,7 +141,7 @@
141 141 </Particle>
142 142 </Parameter>
143 143 <Parameter>
144   - <Name>Ion Bulk Velocity GSM</Name>
  144 + <Name>v_gsm</Name>
145 145 <ParameterKey>c1_hia_v_gsm</ParameterKey>
146 146 <Description>Cluster II Rumba Prime Parameter Cluster Ion Spectrometry hot ion bulk velocity at spin time resolution</Description>
147 147 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -160,19 +160,19 @@
160 160 <Structure>
161 161 <Size>3</Size>
162 162 <Element>
163   - <Name>Vx GSM</Name>
  163 + <Name>vx</Name>
164 164 <Qualifier>Component.I</Qualifier>
165 165 <Index>1</Index>
166 166 <ParameterKey>c1_hia_v_gsm(0)</ParameterKey>
167 167 </Element>
168 168 <Element>
169   - <Name>Vy GSM</Name>
  169 + <Name>vy</Name>
170 170 <Qualifier>Component.J</Qualifier>
171 171 <Index>2</Index>
172 172 <ParameterKey>c1_hia_v_gsm(1)</ParameterKey>
173 173 </Element>
174 174 <Element>
175   - <Name>Vz GSM</Name>
  175 + <Name>vz</Name>
176 176 <Qualifier>Component.K</Qualifier>
177 177 <Index>3</Index>
178 178 <ParameterKey>c1_hia_v_gsm(2)</ParameterKey>
... ... @@ -188,7 +188,7 @@
188 188 </Particle>
189 189 </Parameter>
190 190 <Parameter>
191   - <Name>Velocity magnitude</Name>
  191 + <Name>|v|</Name>
192 192 <ParameterKey>c1_hia_vtot</ParameterKey>
193 193 <Description>Cluster Rumba Fluxgate Magnetometer Velocity magnitude at spin time resolution</Description>
194 194 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -205,7 +205,7 @@
205 205 </Particle>
206 206 </Parameter>
207 207 <Parameter>
208   - <Name>Ion Temperature</Name>
  208 + <Name>temperature</Name>
209 209 <ParameterKey>c1_hia_t</ParameterKey>
210 210 <Description>
211 211 Cluster II Tango Prime Parameter Cluster Ion Spectrometry hot ion parallel temperature at spin time resolution
... ... @@ -216,7 +216,7 @@
216 216 <RenderingHints>
217 217 <DisplayType>TimeSeries</DisplayType>
218 218 </RenderingHints>
219   - <FillValue>-1.0000e+31</FillValue>
  219 + <FillValue>-8.62069e+32</FillValue>
220 220 <Particle>
221 221 <ParticleType>Ion</ParticleType>
222 222 <Qualifier>Scalar</Qualifier>
... ... @@ -224,7 +224,7 @@
224 224 </Particle>
225 225 </Parameter>
226 226 <Parameter>
227   - <Name>Ion Parallel Temperature</Name>
  227 + <Name>t_para</Name>
228 228 <ParameterKey>c1_hia_tpar</ParameterKey>
229 229 <Description>
230 230 Cluster II Tango Prime Parameter Cluster Ion Spectrometry hot ion parallel temperature at spin time resolution
... ... @@ -235,7 +235,7 @@
235 235 <RenderingHints>
236 236 <DisplayType>TimeSeries</DisplayType>
237 237 </RenderingHints>
238   - <FillValue>-1.0000e+31</FillValue>
  238 + <FillValue>-8.62069e+32</FillValue>
239 239 <Particle>
240 240 <ParticleType>Ion</ParticleType>
241 241 <Qualifier>Scalar</Qualifier>
... ... @@ -243,7 +243,7 @@
243 243 </Particle>
244 244 </Parameter>
245 245 <Parameter>
246   - <Name>Ion Perpendicular Temperature</Name>
  246 + <Name>t_perp</Name>
247 247 <ParameterKey>c1_hia_tperp</ParameterKey>
248 248 <Description>
249 249 Cluster II Tango Prime Parameter Cluster Ion Spectrometry hot ion perpendicular temperature at spin time resolution
... ... @@ -254,7 +254,7 @@
254 254 <RenderingHints>
255 255 <DisplayType>TimeSeries</DisplayType>
256 256 </RenderingHints>
257   - <FillValue>-1.0000e+31</FillValue>
  257 + <FillValue>-8.62069e+32</FillValue>
258 258 <Particle>
259 259 <ParticleType>Ion</ParticleType>
260 260 <Qualifier>Scalar</Qualifier>
... ... @@ -262,7 +262,7 @@
262 262 </Particle>
263 263 </Parameter>
264 264 <Parameter>
265   - <Name>Pressure</Name>
  265 + <Name>pressure</Name>
266 266 <ParameterKey>c1_hia_press</ParameterKey>
267 267 <Ucd>phys.pressure;phys.atmol.ionStage</Ucd>
268 268 <Cadence>PT4S</Cadence>
... ... @@ -277,7 +277,7 @@
277 277 </Particle>
278 278 </Parameter>
279 279 <Parameter>
280   - <Name>Pressure Tensor</Name>
  280 + <Name>pressure_gse</Name>
281 281 <ParameterKey>c1_hia_prest</ParameterKey>
282 282 <Ucd>phys.pressure;phys.atmol.ionStage</Ucd>
283 283 <Cadence>PT4S</Cadence>
... ... @@ -292,17 +292,17 @@
292 292 <Structure>
293 293 <Size>3</Size>
294 294 <Element>
295   - <Name>pres_xx_gse</Name>
  295 + <Name>pres_xx</Name>
296 296 <Index>1</Index>
297 297 <ParameterKey>c1_hia_prest(0)</ParameterKey>
298 298 </Element>
299 299 <Element>
300   - <Name>pres_yy_gse</Name>
  300 + <Name>pres_yy</Name>
301 301 <Index>2</Index>
302 302 <ParameterKey>c1_hia_prest(4)</ParameterKey>
303 303 </Element>
304 304 <Element>
305   - <Name>pres_zz_gse</Name>
  305 + <Name>pres_zz</Name>
306 306 <Index>3</Index>
307 307 <ParameterKey>c1_hia_prest(8)</ParameterKey>
308 308 </Element>
... ...
NumericalData/AMDA/Cluster/Cluster1/CIS-HIA/clust1-hia-pad.xml
... ... @@ -4,8 +4,8 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Cluster/Cluster1/CIS-HIA/clust1-hia-pad</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>HIA pad</ResourceName>
8   - <AlternateName>Cluster 1 Prime Parameter CIS data</AlternateName>
  7 + <ResourceName>pitch angle distribution</ResourceName>
  8 + <AlternateName/>
9 9 <ReleaseDate>2015-10-19T10:51:45Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.</Description>
11 11 <Acknowledgement>NASA, Prof. Henri Reme, European Space Agency</Acknowledgement>
... ... @@ -40,7 +40,7 @@
40 40 <ProviderProcessingLevel>Calibrated</ProviderProcessingLevel>
41 41 <ProviderVersion>1</ProviderVersion>
42 42 <InstrumentID>spase://CDPP/Instrument/AMDA/Cluster-Rumba/CIS-HIA</InstrumentID>
43   - <MeasurementType>IonComposition</MeasurementType>
  43 + <MeasurementType>ThermalPlasma</MeasurementType>
44 44 <TemporalDescription>
45 45 <TimeSpan>
46 46 <StartDate>2001-01-31T01:02:11Z</StartDate>
... ...
NumericalData/AMDA/Cluster/Cluster1/PEACE/clust1-pea-mom.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Cluster/Cluster1/PEACE/clust1-pea-mom</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>PEACE moments</ResourceName>
  7 + <ResourceName>electron moments</ResourceName>
8 8 <AlternateName>Cluster 1 Prime Parameter PEACE Data</AlternateName>
9 9 <ReleaseDate>2015-10-16T16:51:44Z</ReleaseDate>
10 10 <Description>The primary task of this instrument (PEACE: Plasma Electrons and Currents Experiment)
... ... @@ -99,7 +99,7 @@
99 99 <Keyword>magnetotail</Keyword>
100 100 <Keyword>lobe</Keyword>
101 101 <Parameter>
102   - <Name>Electron Number Density</Name>
  102 + <Name>density</Name>
103 103 <ParameterKey>c1_pea_dens</ParameterKey>
104 104 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron number density at spin time resolution</Description>
105 105 <Ucd>phys.density;phys.electron</Ucd>
... ... @@ -122,7 +122,7 @@
122 122 </Particle>
123 123 </Parameter>
124 124 <Parameter>
125   - <Name>Electron Velocity</Name>
  125 + <Name>v_gse</Name>
126 126 <ParameterKey>c1_pea_vgse</ParameterKey>
127 127 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
128 128 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -141,19 +141,19 @@
141 141 <Structure>
142 142 <Size>3</Size>
143 143 <Element>
144   - <Name>Vx GSE</Name>
  144 + <Name>vx</Name>
145 145 <Qualifier>Component.I</Qualifier>
146 146 <Index>1</Index>
147 147 <ParameterKey>c1_pea_vgse(0)</ParameterKey>
148 148 </Element>
149 149 <Element>
150   - <Name>Vy GSE</Name>
  150 + <Name>vy</Name>
151 151 <Qualifier>Component.J</Qualifier>
152 152 <Index>2</Index>
153 153 <ParameterKey>c1_pea_vgse(1)</ParameterKey>
154 154 </Element>
155 155 <Element>
156   - <Name>Vz GSE</Name>
  156 + <Name>vz</Name>
157 157 <Qualifier>Component.K</Qualifier>
158 158 <Index>3</Index>
159 159 <ParameterKey>c1_pea_vgse(2)</ParameterKey>
... ... @@ -169,7 +169,7 @@
169 169 </Particle>
170 170 </Parameter>
171 171 <Parameter>
172   - <Name>Electron Velocity</Name>
  172 + <Name>v_gsm</Name>
173 173 <ParameterKey>c1_pea_vgsm</ParameterKey>
174 174 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
175 175 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -188,19 +188,19 @@
188 188 <Structure>
189 189 <Size>3</Size>
190 190 <Element>
191   - <Name>Vx GSM</Name>
  191 + <Name>vx</Name>
192 192 <Qualifier>Component.I</Qualifier>
193 193 <Index>1</Index>
194 194 <ParameterKey>c1_pea_vgsm(0)</ParameterKey>
195 195 </Element>
196 196 <Element>
197   - <Name>Vy GSM</Name>
  197 + <Name>vy</Name>
198 198 <Qualifier>Component.J</Qualifier>
199 199 <Index>2</Index>
200 200 <ParameterKey>c1_pea_vgsm(1)</ParameterKey>
201 201 </Element>
202 202 <Element>
203   - <Name>Vz GSM</Name>
  203 + <Name>vz</Name>
204 204 <Qualifier>Component.K</Qualifier>
205 205 <Index>3</Index>
206 206 <ParameterKey>c1_pea_vgsm(2)</ParameterKey>
... ... @@ -216,7 +216,7 @@
216 216 </Particle>
217 217 </Parameter>
218 218 <Parameter>
219   - <Name>Electron Velocity</Name>
  219 + <Name>v_para_gse</Name>
220 220 <ParameterKey>c1_pea_vpar</ParameterKey>
221 221 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
222 222 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -235,19 +235,19 @@
235 235 <Structure>
236 236 <Size>3</Size>
237 237 <Element>
238   - <Name>vx_par</Name>
  238 + <Name>vx</Name>
239 239 <Qualifier>Component.I</Qualifier>
240 240 <Index>1</Index>
241 241 <ParameterKey>c1_pea_vpar(0)</ParameterKey>
242 242 </Element>
243 243 <Element>
244   - <Name>vy_par</Name>
  244 + <Name>vy</Name>
245 245 <Qualifier>Component.J</Qualifier>
246 246 <Index>2</Index>
247 247 <ParameterKey>c1_pea_vpar(1)</ParameterKey>
248 248 </Element>
249 249 <Element>
250   - <Name>vz_par</Name>
  250 + <Name>vz</Name>
251 251 <Qualifier>Component.K</Qualifier>
252 252 <Index>3</Index>
253 253 <ParameterKey>c1_pea_vpar(2)</ParameterKey>
... ... @@ -263,7 +263,7 @@
263 263 </Particle>
264 264 </Parameter>
265 265 <Parameter>
266   - <Name>Electron Velocity</Name>
  266 + <Name>v_para_gsm</Name>
267 267 <ParameterKey>c1_pea_vpar_gsm</ParameterKey>
268 268 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
269 269 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -282,19 +282,19 @@
282 282 <Structure>
283 283 <Size>3</Size>
284 284 <Element>
285   - <Name>vx_par_gsm</Name>
  285 + <Name>vx</Name>
286 286 <Qualifier>Component.I</Qualifier>
287 287 <Index>1</Index>
288 288 <ParameterKey>c1_pea_vpar_gsm(0)</ParameterKey>
289 289 </Element>
290 290 <Element>
291   - <Name>vy_par</Name>
  291 + <Name>vy</Name>
292 292 <Qualifier>Component.J</Qualifier>
293 293 <Index>2</Index>
294 294 <ParameterKey>c1_pea_vpar_gsm(1)</ParameterKey>
295 295 </Element>
296 296 <Element>
297   - <Name>vz_par</Name>
  297 + <Name>vz</Name>
298 298 <Qualifier>Component.K</Qualifier>
299 299 <Index>3</Index>
300 300 <ParameterKey>c1_pea_vpar_gsm(2)</ParameterKey>
... ... @@ -310,7 +310,7 @@
310 310 </Particle>
311 311 </Parameter>
312 312 <Parameter>
313   - <Name>Electron Velocity</Name>
  313 + <Name>v_perp_gse</Name>
314 314 <ParameterKey>c1_pea_vperp</ParameterKey>
315 315 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
316 316 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -329,19 +329,19 @@
329 329 <Structure>
330 330 <Size>3</Size>
331 331 <Element>
332   - <Name>vx_perp</Name>
  332 + <Name>vx</Name>
333 333 <Qualifier>Component.I</Qualifier>
334 334 <Index>1</Index>
335 335 <ParameterKey>c1_pea_vperp(0)</ParameterKey>
336 336 </Element>
337 337 <Element>
338   - <Name>vy_par</Name>
  338 + <Name>vy</Name>
339 339 <Qualifier>Component.J</Qualifier>
340 340 <Index>2</Index>
341 341 <ParameterKey>c1_pea_vperp(1)</ParameterKey>
342 342 </Element>
343 343 <Element>
344   - <Name>vz_par</Name>
  344 + <Name>vz</Name>
345 345 <Qualifier>Component.K</Qualifier>
346 346 <Index>3</Index>
347 347 <ParameterKey>c1_pea_vperp(2)</ParameterKey>
... ... @@ -357,7 +357,7 @@
357 357 </Particle>
358 358 </Parameter>
359 359 <Parameter>
360   - <Name>Electron Velocity</Name>
  360 + <Name>v_perp_gsm</Name>
361 361 <ParameterKey>c1_pea_vperp_gsm</ParameterKey>
362 362 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment electron velocity at spin time resolution</Description>
363 363 <Ucd>phys.veloc;phys.electron</Ucd>
... ... @@ -376,19 +376,19 @@
376 376 <Structure>
377 377 <Size>3</Size>
378 378 <Element>
379   - <Name>vx_par_gsm</Name>
  379 + <Name>vx</Name>
380 380 <Qualifier>Component.I</Qualifier>
381 381 <Index>1</Index>
382 382 <ParameterKey>c1_pea_vperp_gsm(0)</ParameterKey>
383 383 </Element>
384 384 <Element>
385   - <Name>vy_par</Name>
  385 + <Name>vy</Name>
386 386 <Qualifier>Component.J</Qualifier>
387 387 <Index>2</Index>
388 388 <ParameterKey>c1_pea_vperp_gsm(1)</ParameterKey>
389 389 </Element>
390 390 <Element>
391   - <Name>vz_par</Name>
  391 + <Name>vz</Name>
392 392 <Qualifier>Component.K</Qualifier>
393 393 <Index>3</Index>
394 394 <ParameterKey>c1_pea_vperp_gsm(2)</ParameterKey>
... ... @@ -404,7 +404,7 @@
404 404 </Particle>
405 405 </Parameter>
406 406 <Parameter>
407   - <Name>Heat Flux</Name>
  407 + <Name>heat_flux_gse</Name>
408 408 <ParameterKey>c1_pea_flux</ParameterKey>
409 409 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment parallel electron heat flux at spin time resolution</Description>
410 410 <Ucd>phys.heatflux;phys.atmol.ionStage</Ucd>
... ... @@ -438,7 +438,7 @@
438 438 </Particle>
439 439 </Parameter>
440 440 <Parameter>
441   - <Name>Pressure tensor</Name>
  441 + <Name>pressure_gse</Name>
442 442 <ParameterKey>c1_pea_press</ParameterKey>
443 443 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment parallel pressure tensor at spin time resolution</Description>
444 444 <Ucd>phys.pressure</Ucd>
... ... @@ -454,17 +454,17 @@
454 454 <Structure>
455 455 <Size>3</Size>
456 456 <Element>
457   - <Name>pres_xx_gse</Name>
  457 + <Name>pres_xx</Name>
458 458 <Index>1</Index>
459 459 <ParameterKey>c1_pea_press(0)</ParameterKey>
460 460 </Element>
461 461 <Element>
462   - <Name>pres_yy_gse</Name>
  462 + <Name>pres_yy</Name>
463 463 <Index>2</Index>
464 464 <ParameterKey>c1_pea_press(4)</ParameterKey>
465 465 </Element>
466 466 <Element>
467   - <Name>pres_zz_gse</Name>
  467 + <Name>pres_zz</Name>
468 468 <Index>3</Index>
469 469 <ParameterKey>c1_pea_press(8)</ParameterKey>
470 470 </Element>
... ... @@ -476,7 +476,7 @@
476 476 </Particle>
477 477 </Parameter>
478 478 <Parameter>
479   - <Name>Parallel Electron Temperature</Name>
  479 + <Name>t_para</Name>
480 480 <ParameterKey>c1_pea_tpar</ParameterKey>
481 481 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment parallel electron temperature at spin time resolution</Description>
482 482 <Ucd>phys.temperature;phys.electron</Ucd>
... ... @@ -493,7 +493,7 @@
493 493 </Particle>
494 494 </Parameter>
495 495 <Parameter>
496   - <Name>Perpendicular Electron Temperature</Name>
  496 + <Name>t_perp</Name>
497 497 <ParameterKey>c1_pea_tperp</ParameterKey>
498 498 <Description>Cluster II Rumba Prime Parameter Plasma Electron and Current Experiment perpendicular electron temperature at spin time resolution</Description>
499 499 <Ucd>phys.temperature;phys.electron</Ucd>
... ...
NumericalData/AMDA/Cluster/Cluster3/CIS-HIA/clust3-hia-mom.xml
... ... @@ -4,8 +4,8 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Cluster/Cluster3/CIS-HIA/clust3-hia-mom</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>Cluster II Samba Prime Parameter Cluster Ion Spectrometry (CIS) Data</ResourceName>
8   - <AlternateName>Cluster 3 Prime Parameter CIS data</AlternateName>
  7 + <ResourceName>ion moments : final</ResourceName>
  8 + <AlternateName/>
9 9 <ReleaseDate>2015-10-19T15:51:45Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.</Description>
11 11 <Acknowledgement>NASA, Prof. Henri Reme, European Space Agency</Acknowledgement>
... ... @@ -21,11 +21,7 @@
21 21 <Name>NSSDC Master Catalog listing for Cluster II Samba Cluster Ion Spectrometry (CIS)</Name>
22 22 <URL>http://nssdc.gsfc.nasa.gov/nmc/experimentDisplay.do?id=2000-045A-02</URL>
23 23 <Description>This site provides information concerning the Cluster II Samba Cluster Ion Spectrometry Instrument.</Description>
24   - </InformationURL>
25   - <Association>
26   - <AssociationID>spase://SMWG/Observatory/Cluster-Samba</AssociationID>
27   - <AssociationType>ObservedBy</AssociationType>
28   - </Association>
  24 + </InformationURL>
29 25 </ResourceHeader>
30 26 <AccessInformation>
31 27 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -43,12 +39,12 @@
43 39 <ProviderResourceName>Cluster II Samba Prime Parameter Cluster Ion Spectrometry (CIS) Data</ProviderResourceName>
44 40 <ProviderProcessingLevel>Calibrated</ProviderProcessingLevel>
45 41 <ProviderVersion>1</ProviderVersion>
46   - <InstrumentID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS</InstrumentID>
  42 + <InstrumentID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS-HIA</InstrumentID>
47 43 <MeasurementType>IonComposition</MeasurementType>
48 44 <TemporalDescription>
49 45 <TimeSpan>
50 46 <StartDate>2001-01-09T17:50:46Z</StartDate>
51   - <StopDate>2009-11-11T08:17:01Z</StopDate>
  47 + <StopDate>2009-11-11T08:17:03Z</StopDate>
52 48 </TimeSpan>
53 49 <Cadence>PT4S</Cadence>
54 50 </TemporalDescription>
... ... @@ -75,7 +71,7 @@
75 71 <Keyword>magnetotail</Keyword>
76 72 <Keyword>lobe</Keyword>
77 73 <Parameter>
78   - <Name>Hot Ion Number Density</Name>
  74 + <Name>density</Name>
79 75 <ParameterKey>c3_hia_dens</ParameterKey>
80 76 <Description>Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion number density at spin time resolution</Description>
81 77 <Ucd>phys.density;phys.atmol.ionStage</Ucd>
... ... @@ -98,7 +94,7 @@
98 94 </Particle>
99 95 </Parameter>
100 96 <Parameter>
101   - <Name>Hot Ion Bulk Velocity</Name>
  97 + <Name>v_gse</Name>
102 98 <ParameterKey>c3_hia_v</ParameterKey>
103 99 <Description>Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion bulk velocity at spin time resolution</Description>
104 100 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -117,19 +113,19 @@
117 113 <Structure>
118 114 <Size>3</Size>
119 115 <Element>
120   - <Name>Vx GSE</Name>
  116 + <Name>vx</Name>
121 117 <Qualifier>Component.I</Qualifier>
122 118 <Index>1</Index>
123 119 <ParameterKey>c3_hia_v(0)</ParameterKey>
124 120 </Element>
125 121 <Element>
126   - <Name>Vy GSE</Name>
  122 + <Name>vy</Name>
127 123 <Qualifier>Component.J</Qualifier>
128 124 <Index>2</Index>
129 125 <ParameterKey>c3_hia_v(1)</ParameterKey>
130 126 </Element>
131 127 <Element>
132   - <Name>Vz GSE</Name>
  128 + <Name>vz</Name>
133 129 <Qualifier>Component.K</Qualifier>
134 130 <Index>3</Index>
135 131 <ParameterKey>c3_hia_v(2)</ParameterKey>
... ... @@ -145,7 +141,7 @@
145 141 </Particle>
146 142 </Parameter>
147 143 <Parameter>
148   - <Name>Hot Ion Bulk Velocity</Name>
  144 + <Name>v_gsm</Name>
149 145 <ParameterKey>c3_hia_v_gsm</ParameterKey>
150 146 <Description>Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion bulk velocity at spin time resolution</Description>
151 147 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -164,19 +160,19 @@
164 160 <Structure>
165 161 <Size>3</Size>
166 162 <Element>
167   - <Name>Vx GSM</Name>
  163 + <Name>vx</Name>
168 164 <Qualifier>Component.I</Qualifier>
169 165 <Index>1</Index>
170 166 <ParameterKey>c3_hia_v_gsm(0)</ParameterKey>
171 167 </Element>
172 168 <Element>
173   - <Name>Vy GSM</Name>
  169 + <Name>vy</Name>
174 170 <Qualifier>Component.J</Qualifier>
175 171 <Index>2</Index>
176 172 <ParameterKey>c3_hia_v_gsm(1)</ParameterKey>
177 173 </Element>
178 174 <Element>
179   - <Name>Vz GSM</Name>
  175 + <Name>vz</Name>
180 176 <Qualifier>Component.K</Qualifier>
181 177 <Index>3</Index>
182 178 <ParameterKey>c3_hia_v_gsm(2)</ParameterKey>
... ... @@ -192,7 +188,7 @@
192 188 </Particle>
193 189 </Parameter>
194 190 <Parameter>
195   - <Name>Velocity magnitude</Name>
  191 + <Name>|v|</Name>
196 192 <ParameterKey>c3_hia_vtot</ParameterKey>
197 193 <Description>Cluster Rumba Fluxgate Magnetometer Velocity magnitude at spin time resolution</Description>
198 194 <Ucd>phys.veloc;phys.atmol.ionStage</Ucd>
... ... @@ -209,7 +205,7 @@
209 205 </Particle>
210 206 </Parameter>
211 207 <Parameter>
212   - <Name>Hot Ion Temperature</Name>
  208 + <Name>temperature</Name>
213 209 <ParameterKey>c3_hia_t</ParameterKey>
214 210 <Description>
215 211 Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion parallel temperature at spin time resolution
... ... @@ -220,7 +216,7 @@
220 216 <RenderingHints>
221 217 <DisplayType>TimeSeries</DisplayType>
222 218 </RenderingHints>
223   - <FillValue>-1.0000e+31</FillValue>
  219 + <FillValue>-8.62069e+32</FillValue>
224 220 <Particle>
225 221 <ParticleType>Ion</ParticleType>
226 222 <Qualifier>Scalar</Qualifier>
... ... @@ -228,7 +224,7 @@
228 224 </Particle>
229 225 </Parameter>
230 226 <Parameter>
231   - <Name>Hot Ion Parallel Temperature</Name>
  227 + <Name>t_para</Name>
232 228 <ParameterKey>c3_hia_tpar</ParameterKey>
233 229 <Description>
234 230 Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion parallel temperature at spin time resolution
... ... @@ -239,7 +235,7 @@
239 235 <RenderingHints>
240 236 <DisplayType>TimeSeries</DisplayType>
241 237 </RenderingHints>
242   - <FillValue>-1.0000e+31</FillValue>
  238 + <FillValue>-8.62069e+32</FillValue>
243 239 <Particle>
244 240 <ParticleType>Ion</ParticleType>
245 241 <Qualifier>Scalar</Qualifier>
... ... @@ -247,7 +243,7 @@
247 243 </Particle>
248 244 </Parameter>
249 245 <Parameter>
250   - <Name>Hot Ion Perpendicular Temperature</Name>
  246 + <Name>t_perp</Name>
251 247 <ParameterKey>c3_hia_tperp</ParameterKey>
252 248 <Description>
253 249 Cluster II Samba Prime Parameter Cluster Ion Spectrometry hot ion perpendicular temperature at spin time resolution
... ... @@ -258,7 +254,7 @@
258 254 <RenderingHints>
259 255 <DisplayType>TimeSeries</DisplayType>
260 256 </RenderingHints>
261   - <FillValue>-1.0000e+31</FillValue>
  257 + <FillValue>-8.62069e+32</FillValue>
262 258 <Particle>
263 259 <ParticleType>Ion</ParticleType>
264 260 <Qualifier>Scalar</Qualifier>
... ... @@ -266,7 +262,7 @@
266 262 </Particle>
267 263 </Parameter>
268 264 <Parameter>
269   - <Name>Pressure</Name>
  265 + <Name>pressure</Name>
270 266 <ParameterKey>c3_hia_press</ParameterKey>
271 267 <Ucd>phys.pressure;phys.atmol.ionStage</Ucd>
272 268 <Cadence>PT4S</Cadence>
... ... @@ -281,7 +277,7 @@
281 277 </Particle>
282 278 </Parameter>
283 279 <Parameter>
284   - <Name>Pressure Tensor</Name>
  280 + <Name>pressure_gse</Name>
285 281 <ParameterKey>c3_hia_prest</ParameterKey>
286 282 <Ucd>phys.pressure;phys.atmol.ionStage</Ucd>
287 283 <Cadence>PT4S</Cadence>
... ... @@ -296,17 +292,17 @@
296 292 <Structure>
297 293 <Size>3</Size>
298 294 <Element>
299   - <Name>pres_xx_gse</Name>
  295 + <Name>pres_xx</Name>
300 296 <Index>1</Index>
301 297 <ParameterKey>c3_hia_prest(0)</ParameterKey>
302 298 </Element>
303 299 <Element>
304   - <Name>pres_yy_gse</Name>
  300 + <Name>pres_yy</Name>
305 301 <Index>2</Index>
306 302 <ParameterKey>c3_hia_prest(4)</ParameterKey>
307 303 </Element>
308 304 <Element>
309   - <Name>pres_zz_gse</Name>
  305 + <Name>pres_zz</Name>
310 306 <Index>3</Index>
311 307 <ParameterKey>c3_hia_prest(8)</ParameterKey>
312 308 </Element>
... ...
NumericalData/AMDA/Cluster/Cluster3/CIS-HIA/clust3-hia-pad.xml
... ... @@ -4,8 +4,8 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Cluster/Cluster3/CIS-HIA/clust3-hia-pad</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>HIA pad</ResourceName>
8   - <AlternateName>Cluster 3 Prime Parameter CIS data</AlternateName>
  7 + <ResourceName>pitch angle distribution</ResourceName>
  8 + <AlternateName>Pitch-Angle Distribution</AlternateName>
9 9 <ReleaseDate>2015-10-19T15:51:45Z</ReleaseDate>
10 10 <Description>This instrument (CIS: Cluster Ion Spectrometry) is capable of obtaining full 3D ion distributions with high time resolution (in one spacecraft spin) and mass-per-charge resolution. The experiment consists of two different instruments, a Hot Ion Analyzer (HIA) and a time-of-flight Ion Composition and Distribution Function analyzer (CODIF). Extensive on-board processing is done, within its dual-processor Data Processing System (DPS). CODIF determines the distributions of the major ion species with energies from spacecraft potential to 40 KeV/charge with an angular resolution of 22.5 x 10.25 degrees and with two different sensitivities. The CODIF instrument uses electrostatic deflection to select by energy per charge, with subsequent time-of-flight analysis. The sensor primarily covers the energy range 0.02-40 KeV/charge, but with additional pre-acceleration for energies below 25 eV/charge, the range is extended to energies as low as the spacecraft potential. The HIA does not measure mass, but extends the dynamic range to the highest ion fluxes, and has angular resolution capability of 5.6 x 5.6 degrees for ion-beam and solar-wind measurements. The HIA is a symmetric quadrispherical analyzer of top-hat geometry, and uses microchannel-plate electron multipliers and position encoding by discrete anodes. A 2D distribution is obtained once per 62.5 ms, and a full 3D distribution of ions in the energy range ~5 eV/charge to 32 KeV/charge is obtained every 4 s. For more details of the Cluster mission, the spacecraft, and its instruments, see the report Cluster: mission, payload and supporting activities, March 1993, ESA SP-1159, and the included article The Cluster Ion Spectrometry Experiment, by H. Reme et al., from which this information was obtained.</Description>
11 11 <Acknowledgement>NASA, Prof. Henri Reme, European Space Agency</Acknowledgement>
... ... @@ -21,11 +21,7 @@
21 21 <Name>NSSDC Master Catalog listing for Cluster II Samba Cluster Ion Spectrometry (CIS)</Name>
22 22 <URL>http://nssdc.gsfc.nasa.gov/nmc/experimentDisplay.do?id=2000-045A-02</URL>
23 23 <Description>This site provides information concerning the Cluster II Samba Cluster Ion Spectrometry Instrument.</Description>
24   - </InformationURL>
25   - <Association>
26   - <AssociationID>spase://SMWG/Observatory/Cluster-Samba</AssociationID>
27   - <AssociationType>ObservedBy</AssociationType>
28   - </Association>
  24 + </InformationURL>
29 25 </ResourceHeader>
30 26 <AccessInformation>
31 27 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -40,11 +36,11 @@
40 36 </AccessInformation>
41 37 <ProviderName>IRAP</ProviderName>
42 38 <ProcessingLevel>Calibrated</ProcessingLevel>
43   - <ProviderResourceName>Cluster II Samba Prime Parameter Cluster Ion Spectrometry (CIS) Data</ProviderResourceName>
  39 + <ProviderResourceName/>
44 40 <ProviderProcessingLevel>Calibrated</ProviderProcessingLevel>
45 41 <ProviderVersion>1</ProviderVersion>
46   - <InstrumentID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS</InstrumentID>
47   - <MeasurementType>IonComposition</MeasurementType>
  42 + <InstrumentID>spase://CDPP/Instrument/AMDA/Cluster-Samba/CIS-HIA</InstrumentID>
  43 + <MeasurementType>ThermalPlasma</MeasurementType>
48 44 <TemporalDescription>
49 45 <TimeSpan>
50 46 <StartDate>2001-01-31T01:02:10Z</StartDate>
... ...
NumericalData/AMDA/THEMIS/B/ESA/thb-peim-all.xml
... ... @@ -28,7 +28,7 @@
28 28 <TemporalDescription>
29 29 <TimeSpan>
30 30 <StartDate>2007-08-10T00:02:05Z</StartDate>
31   - <StopDate>2013-06-16T09:18:27Z</StopDate>
  31 + <StopDate>2016-03-04T03:32:34Z</StopDate>
32 32 </TimeSpan>
33 33 <Cadence>PT3S</Cadence>
34 34 </TemporalDescription>
... ...
NumericalData/AMDA/THEMIS/C/ESA/thc-peim-all.xml
... ... @@ -28,7 +28,7 @@
28 28 <TemporalDescription>
29 29 <TimeSpan>
30 30 <StartDate>2007-08-10T00:00:32Z</StartDate>
31   - <StopDate>2013-06-15T09:33:37Z</StopDate>
  31 + <StopDate>2016-03-04T06:29:40Z</StopDate>
32 32 </TimeSpan>
33 33 <Cadence>PT3S</Cadence>
34 34 </TemporalDescription>
... ...
NumericalData/AMDA/THEMIS/D/ESA/thd-peim-all.xml
... ... @@ -28,7 +28,7 @@
28 28 <TemporalDescription>
29 29 <TimeSpan>
30 30 <StartDate>2007-08-09T23:59:56Z</StartDate>
31   - <StopDate>2013-06-17T08:12:23Z</StopDate>
  31 + <StopDate>2016-03-05T19:38:49Z</StopDate>
32 32 </TimeSpan>
33 33 <Cadence>PT3S</Cadence>
34 34 </TemporalDescription>
... ...
NumericalData/AMDA/THEMIS/E/ESA/the-peim-all.xml
... ... @@ -28,7 +28,7 @@
28 28 <TemporalDescription>
29 29 <TimeSpan>
30 30 <StartDate>2007-08-10T00:00:17Z</StartDate>
31   - <StopDate>2013-06-17T07:07:13Z</StopDate>
  31 + <StopDate>2016-03-05T20:51:18Z</StopDate>
32 32 </TimeSpan>
33 33 <Cadence>PT3S</Cadence>
34 34 </TemporalDescription>
... ...
NumericalData/AMDA/ULYSSES/FGM/ulys-fgm-rtn.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/FGM/ulys-fgm-rtn</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>all mission (uy_1sec_VHM)</ResourceName>
  7 + <ResourceName>all mission</ResourceName>
8 8 <ReleaseDate>2015-10-13T15:08:29Z</ReleaseDate>
9 9 <Description>This data set contains high resolution samples at about one-second
10 10 intervals of the interplanetary magnetic field measured by the Ulysses
... ...
NumericalData/AMDA/ULYSSES/SWOOPS/ulys-bae-mom.xml
... ... @@ -4,7 +4,7 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/SWOOPS/ulys-bae-mom</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>sw_elec</ResourceName>
  7 + <ResourceName>sw electrons</ResourceName>
8 8 <ReleaseDate>2015-10-13T15:19:00</ReleaseDate>
9 9 <Description/>
10 10 <Contact>
... ... @@ -29,7 +29,7 @@
29 29 </AccessURL>
30 30 <Format>NetCDF</Format>
31 31 </AccessInformation>
32   - <ProviderName>CDAWeb</ProviderName>
  32 + <ProviderName>CDAWeb : UY_M0_BAE</ProviderName>
33 33 <InstrumentID>spase://CDPP/Instrument/AMDA/Ulysses/SWOOPS</InstrumentID>
34 34 <MeasurementType>ThermalPlasma</MeasurementType>
35 35 <TemporalDescription>
... ... @@ -37,13 +37,12 @@
37 37 <StartDate>1990-11-18T00:55:16Z</StartDate>
38 38 <StopDate>2004-12-31T00:00:00Z</StopDate>
39 39 </TimeSpan>
40   - <Cadence_Min>PT4M</Cadence_Min>
41   - <Cadence_Max>PT8M</Cadence_Max>
  40 + <Cadence_Min>PT3M</Cadence_Min>
  41 + <Cadence_Max>PT22M</Cadence_Max>
42 42 </TemporalDescription>
43   - <ObservedRegion>Heliosphere</ObservedRegion>
44   -
  43 + <ObservedRegion>Heliosphere</ObservedRegion>
45 44 <Parameter>
46   - <Name>density:tot,core,halo</Name>
  45 + <Name>density</Name>
47 46 <ParameterKey>ne_ulys</ParameterKey>
48 47 <Description>Solar wind electron plasma density</Description>
49 48 <Ucd>phys.density;phys.electron</Ucd>
... ... @@ -54,17 +53,17 @@
54 53 <Structure>
55 54 <Size>3</Size>
56 55 <Element>
57   - <Name>total</Name>
  56 + <Name>n_total</Name>
58 57 <Index>0</Index>
59 58 <ParameterKey>ne_ulys(0)</ParameterKey>
60 59 </Element>
61 60 <Element>
62   - <Name>core</Name>
  61 + <Name>n_core</Name>
63 62 <Index>1</Index>
64 63 <ParameterKey>ne_ulys(1)</ParameterKey>
65 64 </Element>
66 65 <Element>
67   - <Name>halo</Name>
  66 + <Name>n_halo</Name>
68 67 <Index>2</Index>
69 68 <ParameterKey>ne_ulys(2)</ParameterKey>
70 69 </Element>
... ... @@ -75,7 +74,7 @@
75 74 </Particle>
76 75 </Parameter>
77 76 <Parameter>
78   - <Name>temperature:tot,core,halo</Name>
  77 + <Name>temperature</Name>
79 78 <ParameterKey>te_ulys</ParameterKey>
80 79 <Description>solar wind plasma temperature</Description>
81 80 <Ucd>phys.temperature;phys.electron</Ucd>
... ... @@ -86,17 +85,17 @@
86 85 <Structure>
87 86 <Size>3</Size>
88 87 <Element>
89   - <Name>total</Name>
  88 + <Name>t_total</Name>
90 89 <Index>0</Index>
91 90 <ParameterKey>te_ulys(0)</ParameterKey>
92 91 </Element>
93 92 <Element>
94   - <Name>core</Name>
  93 + <Name>t_core</Name>
95 94 <Index>1</Index>
96 95 <ParameterKey>te_ulys(1)</ParameterKey>
97 96 </Element>
98 97 <Element>
99   - <Name>halo</Name>
  98 + <Name>t_halo</Name>
100 99 <Index>2</Index>
101 100 <ParameterKey>te_ulys(2)</ParameterKey>
102 101 </Element>
... ...
NumericalData/AMDA/ULYSSES/SWOOPS/ulys-bai-mom.xml
... ... @@ -4,9 +4,10 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/SWOOPS/ulys-bai-mom</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>sw_ions</ResourceName>
  7 + <ResourceName>sw ions</ResourceName>
8 8 <ReleaseDate>2015-10-13T15:17:00</ReleaseDate>
9   - <Description/>
  9 + <Description>The proton temperature has been estimated in two different ways, one of which will sometimes lead to an overestimate of the temperature and one of which will sometimes lead to an underestimate. T-large is the integral of the distribution in three-dimensional velocity space over all energy channels and angle bins that are statistically above noise. The criterion for noise determination is based upon the estimation of the total contribution from a shell that is spherically symmetric in velocity space. T-large has the drawback that at times when the solar wind is cold the angular responses of the instrument channels are as wide or wider than the beam, and the temperature is overestimated. T-small is estimated by summing over angle the observations at a fixed energy. The moments of the resulting one dimensional plasma spectrum are then summed and the resulting RR (radial) component of the temperature tensor is used as the estimate of proton temperature. Additionally, to avoid contamination from alpha particles, no channels further in velocity space from the proton peak than the minimum in flux between the proton and alpha particles peaks are used in the T-small estimate. T-large and T-small will generally bracket the true temperature. However, for very cold plasma, T-small may not be a true minimum.
  10 + </Description>
10 11 <Contact>
11 12 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12 13 <Role>GeneralContact</Role>
... ... @@ -29,7 +30,7 @@
29 30 </AccessURL>
30 31 <Format>NetCDF</Format>
31 32 </AccessInformation>
32   - <ProviderName>CDAWeb</ProviderName>
  33 + <ProviderName>CDAWeb ; UY_M0_BAI</ProviderName>
33 34 <InstrumentID>spase://CDPP/Instrument/AMDA/Ulysses/SWOOPS</InstrumentID>
34 35 <MeasurementType>ThermalPlasma</MeasurementType>
35 36 <TemporalDescription>
... ... @@ -42,7 +43,7 @@
42 43 </TemporalDescription>
43 44 <ObservedRegion>Heliosphere</ObservedRegion>
44 45 <Parameter>
45   - <Name>Proton density</Name>
  46 + <Name>density h+</Name>
46 47 <ParameterKey>n_p_ulys</ParameterKey>
47 48 <Description>Solar wind proton plasma density</Description>
48 49 <Ucd>phys.density;phys.atmol.ionStage</Ucd>
... ... @@ -56,7 +57,7 @@
56 57 </Particle>
57 58 </Parameter>
58 59 <Parameter>
59   - <Name>Alpha particle density</Name>
  60 + <Name>density he++</Name>
60 61 <ParameterKey>n_a_ulys</ParameterKey>
61 62 <Description>Solar wind alpha particle plasma density</Description>
62 63 <Ucd>phys.density;phys.atmol.ionStage</Ucd>
... ... @@ -109,7 +110,7 @@
109 110 </Particle>
110 111 </Parameter>
111 112 <Parameter>
112   - <Name>temp_proton</Name>
  113 + <Name>temperature h+</Name>
113 114 <ParameterKey>tp_ulys</ParameterKey>
114 115 <Description>solar wind plasma temperature</Description>
115 116 <Ucd>phys.temperature;phys.atmol.ionStage</Ucd>
... ... @@ -120,12 +121,12 @@
120 121 <Structure>
121 122 <Size>2</Size>
122 123 <Element>
123   - <Name>Large Temperature</Name>
  124 + <Name>t_large</Name>
124 125 <Index>0</Index>
125 126 <ParameterKey>tp_ulys(0)</ParameterKey>
126 127 </Element>
127 128 <Element>
128   - <Name>Small Temperature</Name>
  129 + <Name>t_small</Name>
129 130 <Index>1</Index>
130 131 <ParameterKey>tp_ulys(1)</ParameterKey>
131 132 </Element>
... ...
NumericalData/AMDA/ULYSSES/SWOOPS/ulys-swoops-jup.xml
... ... @@ -4,9 +4,17 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/SWOOPS/ulys-swoops-jup</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>sw_elec</ResourceName>
  7 + <ResourceName>flyby jupiter</ResourceName>
8 8 <ReleaseDate>2015-10-13T14:32:00</ReleaseDate>
9   - <Description/>
  9 + <Description>This data set contains data submitted to the Planetary Data System (PDS) by
  10 +the Ulysses SWOOPS investigators, for the Ulysses Jupiter Encounter,
  11 +1992-01-25 to 1992-02-17 (days 25-48 inclusive).
  12 +
  13 +Every effort has been made to assure that the data are of the best quality
  14 +available. However, the PDS and the Planetary Plasma Interactions (PPI) Node
  15 +in particular, assume no liability for this disk or its contents. All users
  16 +are encouraged to verify the 'correctness' of the data prior to submitting
  17 +any publications or other work based on these data</Description>
10 18 <Contact>
11 19 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12 20 <Role>GeneralContact</Role>
... ... @@ -29,7 +37,7 @@
29 37 </AccessURL>
30 38 <Format>NetCDF</Format>
31 39 </AccessInformation>
32   - <ProviderName>PDS</ProviderName>
  40 + <ProviderName>PDS : ULY-J-SWOOPS-5-RDR-PLASMA-HIRES</ProviderName>
33 41 <InstrumentID>spase://CDPP/Instrument/AMDA/Ulysses/SWOOPS</InstrumentID>
34 42 <MeasurementType>ThermalPlasma</MeasurementType>
35 43 <TemporalDescription>
... ... @@ -42,7 +50,7 @@
42 50 </TemporalDescription>
43 51 <ObservedRegion>Jupiter</ObservedRegion>
44 52 <Parameter>
45   - <Name>density_elec</Name>
  53 + <Name>density e-</Name>
46 54 <ParameterKey>ulys_swoopsjup_dens</ParameterKey>
47 55 <Ucd>phys.density;phys.electron</Ucd>
48 56 <Units>cm-3</Units>
... ... @@ -55,7 +63,7 @@
55 63 </Particle>
56 64 </Parameter>
57 65 <Parameter>
58   - <Name>temp_elec</Name>
  66 + <Name>temperature e-</Name>
59 67 <ParameterKey>ulys_swoopsjup_temp</ParameterKey>
60 68 <Ucd>phys.temperature;phys.electron</Ucd>
61 69 <Units>K</Units>
... ... @@ -78,17 +86,17 @@
78 86 <Structure>
79 87 <Size>3</Size>
80 88 <Element>
81   - <Name>v_x</Name>
  89 + <Name>vx</Name>
82 90 <Index>0</Index>
83 91 <ParameterKey>ulys_swoopsjup_vxyz(0)</ParameterKey>
84 92 </Element>
85 93 <Element>
86   - <Name>v_y</Name>
  94 + <Name>vy</Name>
87 95 <Index>1</Index>
88 96 <ParameterKey>ulys_swoopsjup_vxyz(1)</ParameterKey>
89 97 </Element>
90 98 <Element>
91   - <Name>v_z</Name>
  99 + <Name>vz</Name>
92 100 <Index>2</Index>
93 101 <ParameterKey>ulys_swoopsjup_vxyz(2)</ParameterKey>
94 102 </Element>
... ...
NumericalData/AMDA/ULYSSES/URAP/ulys-urap-dens.xml
... ... @@ -4,13 +4,23 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/URAP/ulys-urap-dens</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>dens_elec_QTN@LESIA</ResourceName>
  7 + <ResourceName>electron density</ResourceName>
8 8 <ReleaseDate>2015-10-13T14:50:00</ReleaseDate>
9   - <Description/>
  9 + <Description>The electron density measurements Ne are given in cm-3 and the given acquisition time for each value is dependant on three different measurement methods (flagged by 0,1 or 2). Ne_min and Ne_max stands for errors bars on the density measurements (which are also strongly depending on the measurements methods)
  10 +
  11 + The method #0 corresponds to densities deduced from the upper hybrid frequency peak detection, in the HF band of the URAP/RAR receiver (firstly published in Hoang et al., Planet. Space Sci.,Vol. 41, No. 11/12, pp. 1011-1020, 1993, and references therein). The given acquisition time is the elapsed time (UT) of the sweeping receiver at the f_uh peak acquisition.
  12 + The method #1 corresponds to density obtained by the minimum chi-square fitting of theoritical dispersion curves of Bernstein modes to the experimental dispersion curves derived from the URAP/RAR spectra, Ne and Te being the two free fitted parameters (Moncuquet et al., J. Geophys. Res., 100, 21697-21708 , 1995 and references therein); The given acquisition time for each density measurement is the elapsed time (UT) at mid-time of the whole spectrum acquisition (the acquisition duration of a whole spectrum is 128s). In this case, the determination of Ne and Te are synchronized , but they are not independently determined.
  13 + The method #2 corresponds to density obtained from detection of Bernstein "fQ" frequencies (Moncuquet et al.,J. Geophys. Res., 102, 2373-2379, 1997 and references therein). The given acquisition time is the elapsed time (UT) of the sweeping receiver at the lowest fQ acquisition.
  14 + </Description>
10 15 <Contact>
11 16 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12 17 <Role>GeneralContact</Role>
13 18 </Contact>
  19 + <Association>
  20 + <AssociationID>uly-urap-lesia</AssociationID>
  21 + <AssociationType>PartOf</AssociationType>
  22 + <Note>io torus QTN</Note>
  23 + </Association>
14 24 </ResourceHeader>
15 25 <AccessInformation>
16 26 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -23,7 +33,7 @@
23 33 </AccessInformation>
24 34 <ProviderName>LESIA</ProviderName>
25 35 <InstrumentID>spase://CDPP/Instrument/AMDA/Ulysses/URAP</InstrumentID>
26   - <MeasurementType>MagneticField</MeasurementType>
  36 + <MeasurementType>MagneticField</MeasurementType>
27 37 <TemporalDescription>
28 38 <TimeSpan>
29 39 <StartDate>1992-02-08T15:00:28Z</StartDate>
... ... @@ -32,9 +42,9 @@
32 42 <Cadence_Min>PT38S</Cadence_Min>
33 43 <Cadence_Max>PT576S</Cadence_Max>
34 44 </TemporalDescription>
35   - <ObservedRegion>Heliosphere</ObservedRegion>
  45 + <ObservedRegion>Jupiter</ObservedRegion>
36 46 <Parameter>
37   - <Name>Ne</Name>
  47 + <Name>density e-</Name>
38 48 <ParameterKey>ulys_urap_ne</ParameterKey>
39 49 <Ucd>phys.density;phys.electron</Ucd>
40 50 <Units>cm-3</Units>
... ... @@ -47,7 +57,7 @@
47 57 </Particle>
48 58 </Parameter>
49 59 <Parameter>
50   - <Name>Ne_min</Name>
  60 + <Name>density e- min</Name>
51 61 <ParameterKey>ulys_urap_nemin</ParameterKey>
52 62 <Ucd>phys.density;phys.electron</Ucd>
53 63 <Units>cm-3</Units>
... ... @@ -60,7 +70,7 @@
60 70 </Particle>
61 71 </Parameter>
62 72 <Parameter>
63   - <Name>Ne_max</Name>
  73 + <Name>density e- max</Name>
64 74 <ParameterKey>ulys_urap_nemax</ParameterKey>
65 75 <Ucd>phys.density;phys.electron</Ucd>
66 76 <Units>cm-3</Units>
... ...
NumericalData/AMDA/ULYSSES/URAP/ulys-urap-mag.xml
... ... @@ -4,13 +4,18 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/URAP/ulys-urap-mag</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>mag_QTN@LESIA</ResourceName>
  7 + <ResourceName>magnetic field</ResourceName>
8 8 <ReleaseDate>2015-10-22T11:50:00</ReleaseDate>
9   - <Description/>
  9 + <Description>The B magnitude measurements are given in nanoTesla and are obtained by the detection of power spectrum relative minima at the harmonics of the gyrofrequency (firstly published in Meyer et al., J. Geophys. Res., 98, 21163-21176,1993 and references therein) . The given acquisition time is the elapsed time (UT) of the sweeping receiver at the highest harmonic acquisition. </Description>
10 10 <Contact>
11 11 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12 12 <Role>GeneralContact</Role>
13 13 </Contact>
  14 + <Association>
  15 + <AssociationID>uly-urap-lesia</AssociationID>
  16 + <AssociationType>PartOf</AssociationType>
  17 + <Note>io torus QTN</Note>
  18 + </Association>
14 19 </ResourceHeader>
15 20 <AccessInformation>
16 21 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -32,9 +37,9 @@
32 37 <Cadence_Min>PT104S</Cadence_Min>
33 38 <Cadence_Max>PT324S</Cadence_Max>
34 39 </TemporalDescription>
35   - <ObservedRegion>Heliosphere</ObservedRegion>
  40 + <ObservedRegion>Jupiter</ObservedRegion>
36 41 <Parameter>
37   - <Name>b_mag</Name>
  42 + <Name>|b|</Name>
38 43 <ParameterKey>ulys_urap_bmag</ParameterKey>
39 44 <Ucd>phys.magField</Ucd>
40 45 <Units>nT</Units>
... ...
NumericalData/AMDA/ULYSSES/URAP/ulys-urap-temp.xml
... ... @@ -4,13 +4,23 @@
4 4 <NumericalData>
5 5 <ResourceID>spase://CDPP/NumericalData/AMDA/Ulysses/URAP/ulys-urap-temp</ResourceID>
6 6 <ResourceHeader>
7   - <ResourceName>temp_elec_QTN@LESIA</ResourceName>
  7 + <ResourceName>electron core temperature</ResourceName>
8 8 <ReleaseDate>2015-10-13T11:50:00</ReleaseDate>
9   - <Description/>
  9 + <Description>The electron core temperature measurements Te are given in K and are obtained by the minimum chi-square fitting of theoritical dispersion curves of Bernstein modes to the experimental dispersion curves derived from the URAP/RAR spectra,(Moncuquet et al., J. Geophys. Res., 100, 21697-21708 , 1995 and references therein). There is two cases for the fitting:
  10 +
  11 + from 15:02:30 UT to 17:06:59 UT, Ne is known independently and Te is the only free fitted parameter ;
  12 + from 17:09:06 UT to 17:50:37 UT, Ne and Te are the both free fitted parameters.
  13 +
  14 +The given acquisition time is the elapsed time (UT) of the sweeping receiver at mid-time of the whole spectrum acquisition (the acquisition duration of a whole spectrum is 128s). Te_min and Te_max stands for errors bars on the temperature measurements Te. </Description>
10 15 <Contact>
11 16 <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
12 17 <Role>GeneralContact</Role>
13 18 </Contact>
  19 + <Association>
  20 + <AssociationID>uly-urap-lesia</AssociationID>
  21 + <AssociationType>PartOf</AssociationType>
  22 + <Note>io torus QTN</Note>
  23 + </Association>
14 24 </ResourceHeader>
15 25 <AccessInformation>
16 26 <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
... ... @@ -32,9 +42,9 @@
32 42 <Cadence_Min>PT105S</Cadence_Min>
33 43 <Cadence_Max>PT619S</Cadence_Max>
34 44 </TemporalDescription>
35   - <ObservedRegion>Heliosphere</ObservedRegion>
  45 + <ObservedRegion>Jupiter</ObservedRegion>
36 46 <Parameter>
37   - <Name>Tc</Name>
  47 + <Name>temperature</Name>
38 48 <ParameterKey>ulys_urap_t</ParameterKey>
39 49 <Ucd>phys.temperature;phys.electron</Ucd>
40 50 <Units>K</Units>
... ... @@ -47,7 +57,7 @@
47 57 </Particle>
48 58 </Parameter>
49 59 <Parameter>
50   - <Name>Tc_min</Name>
  60 + <Name>temperature min</Name>
51 61 <ParameterKey>ulys_urap_tmin</ParameterKey>
52 62 <Ucd>phys.temperature;phys.electron</Ucd>
53 63 <Units>K</Units>
... ... @@ -60,7 +70,7 @@
60 70 </Particle>
61 71 </Parameter>
62 72 <Parameter>
63   - <Name>Tc_max</Name>
  73 + <Name>temperature max</Name>
64 74 <ParameterKey>ulys_urap_tmax</ParameterKey>
65 75 <Ucd>phys.temperature;phys.electron</Ucd>
66 76 <Units>K</Units>
... ...