ganymede-orb-all.xml
8.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
<?xml version="1.0" encoding="UTF-8"?>
<Spase xmlns="http://www.spase-group.org/data/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.spase-group.org/data/schema http://www.spase-group.org/data/schema/spase-2.4.1.xsd">
<Version>2.4.1</Version>
<NumericalData>
<ResourceID>spase://CNES/NumericalData/CDPP-AMDA/Ephemerides/ganymede-orb-all</ResourceID>
<ResourceHeader>
<ResourceName>Ganymede - 20 min</ResourceName>
<ReleaseDate>2018-09-07T11:33:03Z</ReleaseDate>
<Description>Ganymede orbits Jupiter at a distance of 1,070,400 km, third among the Galilean satellites,
and completes a revolution every seven days and three hours. Like most known moons,
Ganymede is tidally locked, with one side always facing toward the planet, hence its day is
seven days and three hours. Its orbit is very slightly eccentric and inclined to the Jovian
equator, with the eccentricity and inclination changing quasi-periodically due to solar and
planetary gravitational perturbations on a timescale of centuries.
The ranges of change are 0.0009–0.0022 and 0.05–0.32°, respectively.
These orbital variations cause the axial tilt to vary between 0 and 0.33°.
Ganymede participates in orbital resonances with Europa and Io: for every orbit of Ganymede,
Europa orbits twice and Io orbits four times. The superior conjunction between Io and Europa
always occurs when Io is at periapsis and Europa at apoapsis.
The superior conjunction between Europa and Ganymede occurs when Europa is at periapsis.
The longitudes of the Io–Europa and Europa–Ganymede conjunctions change with the same rate,
making triple conjunctions impossible. Such a complicated resonance is called the Laplace
resonance. </Description>
<Contact>
<PersonID>spase://CNES/Person/CDPP-AMDA/NAIF</PersonID>
<Role>PrincipalInvestigator</Role>
</Contact>
<Association>
<AssociationID>jup-moons-orb</AssociationID>
<AssociationType>PartOf</AssociationType>
<Note>Jupiter Moons</Note>
</Association>
</ResourceHeader>
<AccessInformation>
<RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
<Availability>Online</Availability>
<AccessRights>Open</AccessRights>
<AccessURL>
<Name>CDPP/AMDA HAPI Server</Name>
<URL>https://amda.irap.omp.eu/service/hapi</URL>
<Style>HAPI</Style>
<ProductKey>ganymede-orb-all</ProductKey>
<Description>Web Service to this product using the HAPI interface.</Description>
</AccessURL>
<Format>CSV</Format>
<Acknowledgement>Thank you for acknowledging the use of AMDA in publications with wording like "Data analysis was performed with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (CDPP) supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse". See the Rules of the road at https://amda.cdpp.eu/help/policy.html . Please acknowledge the Data Providers.</Acknowledgement>
</AccessInformation>
<AccessInformation>
<RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
<Availability>Online</Availability>
<AccessRights>Open</AccessRights>
<AccessURL>
<Name>CDPP/AMDA Web application</Name>
<URL>https://amda.cdpp.eu</URL>
<Description>Access to Data via CDPP/AMDA Web application.</Description>
</AccessURL>
<Format>CSV</Format>
<Format>VOTable</Format>
<Format>CDF</Format>
<Format>PNG</Format>
<Acknowledgement>Thank you for acknowledging the use of AMDA in publications with wording like "Data analysis was performed with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (CDPP) supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse". See the Rules of the road at https://amda.cdpp.eu/help/policy.html . Please acknowledge the Data Providers.</Acknowledgement>
</AccessInformation>
<ProviderName>SPICE</ProviderName>
<InstrumentID>spase://CNES/Instrument/CDPP-AMDA/Ephemerides</InstrumentID>
<MeasurementType>Ephemeris</MeasurementType>
<TemporalDescription>
<TimeSpan>
<StartDate>1970-01-01T00:00:05Z</StartDate>
<StopDate>2036-12-31T23:40:04Z</StopDate>
</TimeSpan>
<Cadence>PT20M</Cadence>
</TemporalDescription>
<ObservedRegion>Jupiter</ObservedRegion>
<ObservedRegion>Jupiter.Ganymede</ObservedRegion>
<Parameter>
<Name>xyz_jsm</Name>
<ParameterKey>gan_jup_jsm</ParameterKey>
<Units>Rj</Units>
<CoordinateSystem>
<CoordinateRepresentation>Cartesian</CoordinateRepresentation>
<CoordinateSystemName>JSM</CoordinateSystemName>
</CoordinateSystem>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>gan_jup_jsm(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>gan_jup_jsm(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>gan_jup_jsm(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>xyz_jso</Name>
<ParameterKey>gan_jup_jso</ParameterKey>
<Units>Rj</Units>
<CoordinateSystem>
<CoordinateRepresentation>Cartesian</CoordinateRepresentation>
<CoordinateSystemName>JSO</CoordinateSystemName>
</CoordinateSystem>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>gan_jup_jso(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>gan_jup_jso(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>gan_jup_jso(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>xyz_IAU_jupiter</Name>
<ParameterKey>gan_jup_xyz</ParameterKey>
<Units>Rj</Units>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>gan_jup_xyz(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>gan_jup_xyz(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>gan_jup_xyz(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>distance ganymede-jupiter</Name>
<ParameterKey>gan_jup_r</ParameterKey>
<Units>Rj</Units>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>latitude IAU_jupiter</Name>
<ParameterKey>gan_jup_lat</ParameterKey>
<Units>deg</Units>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>longitude IAU_jupiter</Name>
<ParameterKey>gan_jup_lon</ParameterKey>
<Units>deg</Units>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>mlat</Name>
<ParameterKey>gan_jup_mlat</ParameterKey>
<Description>mlat=10.31°xcos(196.61°-lon_iau_west)+lat_iau</Description>
<Units>deg</Units>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
</NumericalData>
</Spase>