ros-orb-comet.xml 5.92 KB
<?xml version="1.0" encoding="UTF-8"?>
<Spase xmlns="http://www.spase-group.org/data/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.spase-group.org/data/schema http://cdpp1.cesr.fr/AMDA-NG/public/schemas/spase-amda-1_2_0.xsd">
  <Version>2.2.6</Version>
  <NumericalData>
    <ResourceID>spase://CDPP/NumericalData/AMDA/Rosetta/Ephemeris/ros-orb-comet</ResourceID>
    <ResourceHeader>
      <ResourceName>orbit comet/C-G (67p)</ResourceName>
      <ReleaseDate>2015-10-16T16:25:29Z</ReleaseDate>
      <Description>CSO The body-Centered Solar Orbital frames for the Rosetta primary
   target comet 67P/Churyumov-Gerasimenko, incidental target comet
   45P/Honda-Mrkos-Pajdusakowa (Rosetta passed through its ion tail in
   July 2006), and secondary targets asteroids 2867/STEINS and
   21/LUTETIA are named '67P/C-G_CSO', '45P/H-M-P_CSO',
   '2867/STEINS_CSO', and '21/LUTETIA_CSO'. 
   These frames are defined as
   a two-vector style dynamic frames as follows:
 
      -  The position of the sun relative to the body is the primary
         vector: the X axis points from the body to the sun.

      -  The inertially referenced velocity of the sun relative to the
         body is the secondary vector: the Y axis is the component of
         this velocity vector orthogonal to the X axis.

      -  The Z axis is X cross Y, completing the right-handed reference
         frame.

      -  All vectors are geometric: no aberration corrections are used.
 
    

   CSEQ  The body-Centered Solar EQuatorial frames for the Rosetta
   primary target comet 67P/Churyumov-Gerasimenko and secondary target
   asteroid 21/LUTETIA are named '67P/C-G_CSEQ' and '21/LUTETIA_CSEQ'.
   These frames are defined as a two-vector style dynamic frames as
   follows:
 
      -  +X axis is the position of the Sun relative to the body; it's
         the primary vector and points from the body to the Sun;

      -  +Z axis is the component of the Sun's north pole of date
         orthogonal to the +X axis;

      -  +Y axis completes the right-handed reference frame;

      -  the origin of this frame is the body's center of mass.

   All the vectors are geometric: no aberration corrections are used.

   C_G-CK  C_G comet fixed frame (CK frame) 
 
     A body-fixed frame is defined using standard
     body-fixed, CK-based frame formation rules:
   
      -  +Z axis is toward the North pole;

      -  +X axis is toward the prime meridian;

      -  +Y axis completes the right hand frame;

      -  the origin of this frame is at the center of the body.

   The orientation of this frame is computed by evaluating
   corresponding C_G comet attitudes kernels. </Description>
      <Contact>
        <PersonID>spase://SMWG/Person/Elena.Budnik</PersonID>
        <Role>MetadataContact</Role>
      </Contact>
    </ResourceHeader>
    <AccessInformation>
      <RepositoryID>spase://SMWG/Repository/CDPP/AMDA</RepositoryID>
      <Availability>Online</Availability>
      <AccessRights>Open</AccessRights>
      <AccessURL>
        <URL>http://amda.cdpp.eu</URL>
      </AccessURL>
      <Format>NetCDF</Format>
    </AccessInformation>
    <ProviderName>PSA</ProviderName>
    <InstrumentID>spase://CDPP/Instrument/AMDA/Rosetta/Ephemeris</InstrumentID>
    <MeasurementType>Ephemeris</MeasurementType>
    <TemporalDescription>
      <TimeSpan>
        <StartDate>2014-01-01T00:00:00Z</StartDate>
        <StopDate>2016-09-10T23:59:00Z</StopDate>
      </TimeSpan>
      <Cadence>PT60S</Cadence>
    </TemporalDescription>
    <Parameter>
      <Name>xyz_cso</Name>
      <ParameterKey>ros_xyz_cso</ParameterKey>
      <Description/>
      <Ucd>pos.bodyrc;instr.obsty</Ucd>
      <Units>km</Units>
      <RenderingHints>
        <DisplayType>TimeSeries</DisplayType>
      </RenderingHints>
      <Structure>
        <Size>3</Size>
        <Element>
          <Name>x</Name>
          <Index>0</Index>
          <ParameterKey>ros_xyz_cso(0)</ParameterKey>
        </Element>
        <Element>
          <Name>y</Name>
          <Index>1</Index>
          <ParameterKey>ros_xyz_cso(1)</ParameterKey>
        </Element>
        <Element>
          <Name>z</Name>
          <Index>2</Index>
          <ParameterKey>ros_xyz_cso(2)</ParameterKey>
        </Element>
      </Structure>
      <Support>
        <SupportQuantity>Positional</SupportQuantity>
      </Support>
    </Parameter>
    <Parameter>
      <Name>xyz_cseq</Name>
      <ParameterKey>ros_xyz_cseq</ParameterKey>
      <Ucd>pos.bodyrc;instr.obsty</Ucd>
      <Units>km</Units>
      <RenderingHints>
        <DisplayType>TimeSeries</DisplayType>
      </RenderingHints>
      <Structure>
        <Size>3</Size>
        <Element>
          <Name>x</Name>
          <Index>0</Index>
          <ParameterKey>ros_xyz_cseq(0)</ParameterKey>
        </Element>
        <Element>
          <Name>y</Name>
          <Index>1</Index>
          <ParameterKey>ros_xyz_cseq(1)</ParameterKey>
        </Element>
        <Element>
          <Name>z</Name>
          <Index>2</Index>
          <ParameterKey>ros_xyz_cseq(2)</ParameterKey>
        </Element>
      </Structure>
      <Support>
        <SupportQuantity>Positional</SupportQuantity>
      </Support>
    </Parameter>      
    <Parameter>
      <Name>lat C-G_CK</Name>
      <ParameterKey>ros_xyz_fixed(2)</ParameterKey>
      <Ucd/>
      <Units>deg</Units>
      <RenderingHints>
        <DisplayType>TimeSeries</DisplayType>
      </RenderingHints>     
    </Parameter>   
    <Parameter>
      <Name>lon C-G_CK</Name>
      <ParameterKey>ros_xyz_fixed(1)</ParameterKey>
      <Ucd/>
      <Units>deg</Units>
      <RenderingHints>
        <DisplayType>TimeSeries</DisplayType>
      </RenderingHints>     
    </Parameter>
    <Parameter>
      <Name>distance ros-C-G</Name>
      <ParameterKey>ros_r_cso</ParameterKey>
      <Ucd/>
      <Units>km</Units>
      <RenderingHints>
        <DisplayType>TimeSeries</DisplayType>
      </RenderingHints>     
    </Parameter>
  </NumericalData>
</Spase>