ros-orb-cruise.xml
5.68 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
<?xml version="1.0" encoding="UTF-8"?>
<Spase xmlns="http://www.spase-group.org/data/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.spase-group.org/data/schema http://amda.irap.omp.eu/public/schemas/spase-2_3_1.xsd">
<Version>2.3.1</Version>
<NumericalData>
<ResourceID>spase://CNES/NumericalData/CDPP-AMDA/Rosetta/Ephemeris/ros-orb-cruise</ResourceID>
<ResourceHeader>
<ResourceName>cruise</ResourceName>
<ReleaseDate>2017-10-16T15:25:29Z</ReleaseDate>
<Description> Coordinate systems used for cruise phase:
* HCI (Heliocentric Inertial Frame) : All vectors are geometric: no aberration corrections are used. The solar rotation axis is the primary vector: the Z axis points in the solar north direction.The solar ascending node on the ecliptic of J2000 forms the X axis.The Y axis is Z cross X, completing the right-handed reference frame.
* HEE (Heliocentric Earth Ecliptic Frame) : All vectors are geometric: no aberration corrections are used. The position of the Earth relative to the Sun is the primary vector: the X axis points from the Sun to the Earth. The northern surface normal to the mean ecliptic of date is the secondary vector: the Z axis is the component of this vector orthogonal to the X axis. The Y axis is Z cross X, completing the right-handed reference frame.
* HEEQ (Heliocentric Earth Equatorial Frame) : All vectors are geometric: no aberration corrections are used. The solar rotation axis is the primary vector: the Z axis points in the solar north direction. The position of the Sun relative to the Earth is the secondary vector: the X axis is the component of this position vectororthogonal to the Z axis. The Y axis is Z cross X, completing the right-handed reference frame.
</Description>
<Contact>
<PersonID>spase://CNES/Person/Elena.Budnik</PersonID>
<Role>TechnicalContact</Role>
</Contact>
</ResourceHeader>
<AccessInformation>
<RepositoryID>spase://SMWG/Repository/CNES/CDPP-AMDA</RepositoryID>
<Availability>Online</Availability>
<AccessRights>Open</AccessRights>
<AccessURL>
<URL>http://amda.cdpp.eu</URL>
</AccessURL>
<Format>NetCDF</Format>
</AccessInformation>
<ProviderName>PSA</ProviderName>
<InstrumentID>spase://CNES/Instrument/CDPP-AMDA/Rosetta/Ephemeris</InstrumentID>
<MeasurementType>Ephemeris</MeasurementType>
<TemporalDescription>
<TimeSpan>
<StartDate>2004-03-03T00:00:00Z</StartDate>
<StopDate>2014-08-04T00:00:00Z</StopDate>
</TimeSpan>
<Cadence>PT1H</Cadence>
</TemporalDescription>
<Parameter>
<Name>xyz_hee</Name>
<ParameterKey>ros_xyz_hee</ParameterKey>
<Description>AU</Description>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>ros_xyz_hee(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>ros_xyz_hee(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>ros_xyz_hee(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>xyz_heeq</Name>
<ParameterKey>ros_xyz_heeq</ParameterKey>
<Ucd>pos.bodyrc;instr.obsty</Ucd>
<Units>AU</Units>
<CoordinateSystem>
<CoordinateRepresentation>Cartesian</CoordinateRepresentation>
<CoordinateSystemName>HEEQ</CoordinateSystemName>
</CoordinateSystem>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>ros_xyz_heeq(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>ros_xyz_heeq(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>ros_xyz_heeq(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>xyz_hci</Name>
<ParameterKey>ros_xyz_hci</ParameterKey>
<Ucd>pos.bodyrc;instr.obsty</Ucd>
<Units>AU</Units>
<CoordinateSystem>
<CoordinateRepresentation>Cartesian</CoordinateRepresentation>
<CoordinateSystemName>HCI</CoordinateSystemName>
</CoordinateSystem>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Structure>
<Size>3</Size>
<Element>
<Name>x</Name>
<Index>1</Index>
<ParameterKey>ros_xyz_hci(0)</ParameterKey>
</Element>
<Element>
<Name>y</Name>
<Index>2</Index>
<ParameterKey>ros_xyz_hci(1)</ParameterKey>
</Element>
<Element>
<Name>z</Name>
<Index>3</Index>
<ParameterKey>ros_xyz_hci(2)</ParameterKey>
</Element>
</Structure>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
<Parameter>
<Name>distance ros-sun</Name>
<ParameterKey>r_sun_ros</ParameterKey>
<Ucd/>
<Units>AU</Units>
<RenderingHints>
<DisplayType>TimeSeries</DisplayType>
</RenderingHints>
<Support>
<SupportQuantity>Positional</SupportQuantity>
</Support>
</Parameter>
</NumericalData>
</Spase>