usage.md
3.44 KB
NetCDF to CDF converter for AMDADB
- File: ./converter/nc2cdf.py
- Python interpreter: 2.7 or 3.6
Converting a Net-CDF file
Without output path:
Convert a NetCDF file and save the CDF file in a temp directory, then display its path:
CLI usage
./converter/nc2cdf.py <input_netcdf_file>
Python usage
from nc2cdf import NetCdf
netcdf = NetCdf('<input_netcdf_file>')
netcdf.get_cdf()
print('CDF path: ' + netcdf.get_cdf_path())
<input_netcdf_file>
: the NetCDF file you want to convert to CDF (can be a gzip archive containing the CDF file).
Working example:
./converter/nc2cdf.py examples/skr151150000.nc.gz File stored in "/tmp/skr151150000.cdf".
With output path
Convert a Net-CDF file and save the CDF file it in the specified path:
CLI usage
./nc2cdf.py <input_netcdf_file> <output_cdf_file>
Python usage
from nc2cdf import NetCdf
netcdf = NetCdf('<input_netcdf_file>')
netcdf.get_cdf('<output_cdf_file>')
<input_netcdf_file>
: the NetCDF file you want to convert (can be a gzip archive containing the CDF file);<output_cdf_file>
: the path where you want to save the CDF file.
Working example:
./converter/nc2cdf.py examples/skr151150000.nc.gz ./skr151150000.ncf
Describing a NetCDf file
Display information about a Net-CDF file, such as global attributes and variables information:
CLI usage
./nc2cdf.py -i <input_netcdf_file>
Python usage
from nc2cdf import NetCdf
netcdf = NetCdf('<input_netcdf_file>')
netcdf.describe()
<input_netcdf_file>
: the NetCDF file you want to display (can be a gzip archive containing the CDF file).
Working example:
./converter/nc2cdf.py -i examples/skr151150000.nc.gz == Time == - numpy type: |S1 ^ 2 - dimension(s): Time, TimeLength - size: 481x17 = 8177 == Received == - numpy type: float32 ^ 2 - dimension(s): Time, Data - size: 481x4 = 1924 - Attributes: - Order: RH 100-400kHz; LH 100-400kHz; RH 10-1000kHz; RH 10-1000kHz - Units: W/m^2 == Emitted == - numpy type: float32 ^ 2 - dimension(s): Time, Data - size: 481x4 = 1924 - Attributes: - Order: RH 100-400kHz; LH 100-400kHz; RH 10-1000kHz; RH 10-1000kHz - Units: W/sr == RH == - numpy type: float32 ^ 2 - dimension(s): Time, Spec - size: 481x48 = 23088 - Attributes: - Units: W/m^2/Hz == VR == - numpy type: float32 ^ 2 - dimension(s): Time, Spec - size: 481x48 = 23088 - Attributes: - desc: circular polarization degree; valid range: -1.1 - -0.2 == LH == - numpy type: float32 ^ 2 - dimension(s): Time, Spec - size: 481x48 = 23088 - Attributes: - Units: W/m^2/Hz == VL == - numpy type: float32 ^ 2 - dimension(s): Time, Spec - size: 481x48 = 23088 - Attributes: - desc: circular polarization degree; valid range: -1.1 - -0.2 == StartTime == - numpy type: |S1 ^ 1 - dimension(s): TimeLength - size: 17 = 17 - values: '2015115000000000', ... == StopTime == - numpy type: |S1 ^ 1 - dimension(s): TimeLength - size: 17 = 17 - values: '2015115235959000', ... == Global attributes == - Source: http://www.lesia.obspm.fr/kronos/ - note: Only fluxes and powers with |V| > 0.2 are taken into account - Created: Wed Jul 22 11:09:30 2015