Spectrum.hh 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */

/* 
 * File:   Spectrum.hh
 * Author: hacene
 *
 * Created on December 31, 2020, 10:14 AM
 */

#ifndef SPECTRUM_HH
#define SPECTRUM_HH

#include "Parameter.hh"
#include "ParamData.hh"
#include "DataTypeMath.hh"
#include "Operation.hh"
#include "AMDA_exception.hh"


#include <iterator>
namespace AMDA {
    namespace Parameters {
        namespace Spectrum {

            #define AVERAGE_TIME 1200 // (seconds)
            #define MAX_GAP_SIZE 3600 // (seconds)

            using namespace std;

            typedef enum {
                CENTER,
                FORWARD,
                BACKWARD,
            } samplingEnum;

            static std::map<std::string, samplingEnum> strToSamplingEnum{

                {"center", samplingEnum::CENTER},
                {"forward", samplingEnum::FORWARD},
                {"backward", samplingEnum::BACKWARD},};

            template<typename DataType, typename OutputType>
            class SpectrumBase : public Operation {
            public:

                /**
                 * @brief Constructor.
                 * @details Create the ParamData type of the input ParamData.
                 */
                SpectrumBase(Process& pProcess, TimeIntervalListSPtr pTimeIntervalList, ParamDataSpec<DataType >&paramInput, double windowtime, std::string sampling = "center") :
                Operation(pProcess),
                _timeIntervalList(pTimeIntervalList),
                _currentTimeInterval(pTimeIntervalList->begin()),
                _paramInput(paramInput),
                _paramOutput(new ParamDataSpec<std::vector<OutputType>>()),
                _windowtime(windowtime),
                _sampling(sampling),
                _needInit(true) {
                    _paramDataOutput = _paramOutput;
                };

                virtual ~SpectrumBase() {
                }

                double getWindowTime() {
                    return _windowtime;
                }

                bool inWindow(double time) {
                    return (time >= _minWindow && time <= _maxWindow);
                }

                double getIntStartTime() {
                    return _currentTimeInterval->_startTime;
                }

                double getIntStopTime() {
                    return _currentTimeInterval->_stopTime;
                }

                bool inInt(double time) {
                    return (time >= _currentTimeInterval->_startTime && time <= _currentTimeInterval->_stopTime);
                }

                double getTarget() {
                    return _target;
                }

                bool needInit() {
                    return _needInit;
                }

                void setNeedInit(bool needInit) {
                    _needInit = needInit;
                }

                bool setTarget(double time) {

                    if (!inInt(time)) {
                        return false;
                    }

                    _target = time;

                    switch (strToSamplingEnum[_sampling]) {
                        case samplingEnum::FORWARD:
                            _minWindow = _target;
                            if (_minWindow < _currentTimeInterval->_startTime) {
                                _minWindow = _currentTimeInterval->_startTime;
                            }
                            _maxWindow = _target + _windowtime;
                            if (_maxWindow > _currentTimeInterval->_stopTime) {
                                _maxWindow = _currentTimeInterval->_stopTime;
                            }
                        case samplingEnum::BACKWARD:
                            _minWindow = _target - _windowtime;
                            if (_minWindow < _currentTimeInterval->_startTime) {
                                _minWindow = _currentTimeInterval->_startTime;
                            }
                            _maxWindow = _target;
                            if (_maxWindow > _currentTimeInterval->_stopTime) {
                                _maxWindow = _currentTimeInterval->_stopTime;
                            }
                            break;
                        default:
                            _minWindow = _target - _windowtime / 2.;
                            if (_minWindow < _currentTimeInterval->_startTime) {
                                _minWindow = _currentTimeInterval->_startTime;
                            }
                            _maxWindow = _target + _windowtime / 2.;
                            if (_maxWindow > _currentTimeInterval->_stopTime) {
                                _maxWindow = _currentTimeInterval->_stopTime;
                            }
                            break;
                    }
                    return true;
                }

                /**
                 * @overload Operation::reset(double pStartTime, double pTimeInt)
                 * @brief reset static data to process another TimeInterval
                 */
                virtual void reset() {
                    Operation::reset();
                    if (_currentTimeInterval == _timeIntervalList->end()) {
                        return;
                    }
                    ++_currentTimeInterval;
                    _needInit = true;
                    resetFunc();
                }

                virtual void init() {
                    setTarget(getIntStartTime());
                    setNeedInit(false);
                }

                virtual bool nextTarget() {
                    double target = getTarget() + getWindowTime();
                    bool res = setTarget(target);
                    while (!_mem.empty() && !inWindow(_mem.front().first)) {
                        _mem.pop_front();
                    }
                    return res;
                }

                virtual bool needToChangeTarget(double crtTime) {
                    return !needInit() && !inWindow(crtTime);
                }

                virtual double getSampling() {
                    return getWindowTime();
                }

                virtual void pushData(double time, DataType& elem) {
                    _mem.push_back(std::make_pair(time, elem));
                }

                virtual void resetFunc() {
                    _mem.clear();
                }

                double getInputParamSampling() {
                    return _paramInput.getMinSampling();
                }

                virtual std::vector<OutputType> compute() = 0;

                /**
                 * @overload Operation::write(ParamDataIndexInfo &pParamDataIndexInfo)
                 */
                void write(ParamDataIndexInfo &pParamDataIndexInfo) {
                    if ((pParamDataIndexInfo._nbDataToProcess > 0)) {
                        for (unsigned int _index = pParamDataIndexInfo._startIndex;
                                _index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
                                ++_index) {
                            double crtTime = _paramInput.getTime(_index);
                            DataType crtVal = _paramInput.get(_index);
                            if (needToChangeTarget(crtTime)) {
                                _paramOutput->pushTime(getTarget());
                                _paramOutput->push(compute());
                                pushData(crtTime, crtVal);
                                nextTarget();
                                bool skip = false;
                                while (!skip && needToChangeTarget(crtTime)) {
                                    _paramOutput->pushTime(getTarget());
                                    _paramOutput->push(compute());
                                    skip = nextTarget();
                                }
                            } else {
                                pushData(crtTime, crtVal);
                                if (needInit()) {
                                    init();
                                }
                            }
                        }
                    }
                    if (pParamDataIndexInfo._timeIntToProcessChanged || pParamDataIndexInfo._noMoreTimeInt) {
                        if (!needInit()) {
                            do {
                                if (inInt(getTarget())) {
                                    _paramOutput->pushTime(getTarget());
                                    _paramOutput->push(compute());
                                }
                            } while (nextTarget());
                        }
                    }
                }
            protected:

                TimeIntervalListSPtr _timeIntervalList;

                TimeIntervalList::iterator _currentTimeInterval;

                ParamDataSpec<DataType>& _paramInput;

                ParamDataSpec<std::vector<OutputType>>*_paramOutput;

                double _windowtime;

                std::string _sampling;

                double _minWindow;

                double _maxWindow;

                double _target;

                bool _needInit;

                std::list<std::pair<double, DataType> > _mem;

            };

            template<typename DataType, typename OutputType>
            class SpectrumFourier : public SpectrumBase<DataType, OutputType> {
            public:

                SpectrumFourier(Process& pProcess, TimeIntervalListSPtr pTimeIntervalList, ParamDataSpec<DataType >&paramInput, double windowtime, std::string sampling = "center") :
                SpectrumBase<DataType, OutputType>(pProcess, pTimeIntervalList, paramInput, windowtime, sampling = "center") {
                    _spectroSize = std::ceil(windowtime / paramInput.getMinSampling()) - 1;
                }

                virtual ~SpectrumFourier() {
                }

                virtual void init() {
                    if (!_targets.empty()) {
                        SpectrumBase<DataType, OutputType>::setTarget(_targets.front());
                        SpectrumBase<DataType, OutputType>::setNeedInit(false);
                        _targets.pop_front();
                    }
                }

                virtual bool nextTarget() {
                    if (!_targets.empty()) {
                        bool res = SpectrumBase<DataType, OutputType>::setTarget(_targets.front());
                        _targets.pop_front();
                        while (!_mem.empty() && !SpectrumBase<DataType, OutputType>::inWindow(_mem.front().first)) {
                            _mem.pop_front();
                        }
                        return res;
                    }
                    return false;
                }

                virtual bool needToChangeTarget(double crtTime) {
                    return !SpectrumBase<DataType, OutputType>::needInit() && !SpectrumBase<DataType, OutputType>::inWindow(crtTime) && !_targets.empty();
                }

                virtual double getSampling() {
                    return SpectrumBase<DataType, OutputType>::getInputParamSampling();
                }

                virtual void pushData(double time, DataType& elem) {
                    _mem.push_back(std::make_pair(time, elem));
                    _targets.push_back(time);
                }

                virtual void resetFunc() {
                    _mem.clear();
                    _targets.clear();
                }

                bool isUniform() {
                    if (_mem.empty())
                        return false;

                    auto it_1 = _mem.begin();
                    it_1++;
                    for (auto it = _mem.begin(); it != _mem.end(); it++) {
                        if (*it != _mem.back()) {
                            if (it_1->first - it->first != getSampling())
                                return false;
                            it_1++;
                        }
                    }
                    return true;
                }


                std::vector<OutputType> fft(int N, std::vector<DataType> &xn) {
                    /**
                     * 
                     * @param N number of points in the dft
                     * @param xn date vector 
                     */

                    int len = xn.size();
                    std::vector<OutputType> output;
                    output.resize(N);
                    output << NotANumber();

                    double Xr;
                    double Xi;
                    int counter;

                    int k, n = 0;
                    for (k = 0; k < N; k++) {
                        Xr = 0;
                        Xi = 0;
                        counter = 0;
                        for (n = 0; n < len; n++) {
                            if (!isNAN(xn[n])) {
                                Xr = Xr + (OutputType) xn[n] * cos(2 * 3.141592 * k * n / N);
                                Xi = Xi + (OutputType) xn[n] * sin(2 * 3.141592 * k * n / N);
                                counter += 1;
                            }
                        }
                        if (counter == 0)
                            break;
                        output[k] = std::sqrt(Xr * Xr + Xi * Xi);
                    }
                    return output;
                }

                DataType computeInterpolation(std::list<std::pair<double, DataType> > & input, double time) {
                    double min_t = time - AVERAGE_TIME / 2.;
                    double max_t = time + AVERAGE_TIME / 2.;
                    std::vector<std::pair<double, InputElemType> > values_for_mean;
                    DataType nanVal;
                     nanVal<< NotANumber();
                    std::pair<double, DataType> prev_value(NAN, nanVal);
                    std::pair<double, DataType> next_value(NAN, nanVal);
                    DataType value = nanVal;
                    for (auto it = input->begin(); it != input->end(); ++it) {
                        if (it->first == time) {
                            value = it->second;
                            return value;
                            break;
                        } else if (isNAN(it->second))
                            continue;
                        else if (it->first > max_t) {
                            next_value = *it;
                            break;
                        } else if (it->first < min_t) {
                            prev_value = *it;
                        } else {
                            values_for_mean.push_back(*it);
                        }
                    }
                    if (!values_for_mean.empty()) {
                        //Compute mean
                        DataType sum = 0;
                        for (auto it = values_for_mean.begin(); it != values_for_mean.end(); ++it) {
                            sum += it->second;
                        }
                        value = sum / (DataType) values_for_mean.size();
                    } else {
                        if (!isNAN(prev_value.first) && !isNAN(next_value.first) && (next_value.first - prev_value.first <= MAX_GAP_SIZE)) {
                            //Compute interpolated value
                            value = prev_value.second + (time - prev_value.first) / (next_value.first - prev_value.first) * (next_value.second - prev_value.second);
                        }
                    }

                    return value;

                }

                void standarize(std::list<std::pair<double, DataType> > & mem, int size, double target, double inputSampling) {
                    switch (switch (strToSamplingEnum[_sampling])) {
                                std::list<std::pair<double, DataType> > valuesToAdd;
                                int [ ] indexes_;
                            case samplingEnum::FORWARD:
                                break;

                            case samplingEnum::BACKWARD:
                                break;
                            default:
                                auto it = mem->begin();
                                for (int i = 0; i < size; i++) {
                                    double time_ = trget + (i - size / 2) * inputSampling;
                                    if(i < mem.size() ){
                                    if (it->first != time_) {
                                        std::pair<double, DataType> valueToAdd(time_, computeInterpolation(mem, time_));
                                        valuesToAdd.push_back(valueToAdd);
                                    }
                                    it++;
                                    }else{
                                        std::pair<double, DataType> valueToAdd(time_, computeInterpolation(mem, time_));
                                        valuesToAdd.push_back(valueToAdd);
                                    }
                                }
                                mem->merge(valuesToAdd);
                                break;


                        }
                }

                std::vector<OutputType> compute() {
                    std::vector<OutputType> res;
                    res.resize(_spectroSize);
                    res << NotANumber();
                    bool is_uniform = isUniform();
                    if (!is_uniform || _mem.empty() || _mem.size() < 2 * _spectroSize / 3)
                        return res;

                    if (_mem.size() < _spectroSize)
                        standarize(_mem, _spectroSize, _target, getInputParamSampling());

                    std::vector<DataType> inputData;
                    for (auto elt : _mem)
                        inputData.push_back(elt->seccond);


                }

            protected:
                std::list<double> _targets;

                std::list<std::pair<double, DataType> > _mem;

                int _spectroSize;
            };




        } // end Spectrum
    } // end Parameters
} // end AMDA


#endif /* SPECTRUM_HH */