DiscreteFourierTransform.cc
5.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include "DiscreteFourierTransform.hh"
#include <bits/stdc++.h>
template <class T, class E>
DiscreteFourierTransform<T, E>::DiscreteFourierTransform(vector<T> signal_, double sampleSpacing_)
{
signal = signal_;
sampleSpacing = sampleSpacing_;
}
template <class T, class E>
void DiscreteFourierTransform<T, E>::compute(bool computeFFT)
{
if (computeFFT)
{
const int N = signal.size();
const int powerOf2 = DiscreteFourierTransform<T, E>::highestPowerof2(N);
// Zero padding is a simple concept; it simply refers to adding zeros to end of a time-domain signal to increase its length to reach power of 2.
while (signal.size() < powerOf2)
signal.push_back((T)0);
phasors = DiscreteFourierTransform<T, E>::fft(signal);
}
else
phasors = DiscreteFourierTransform<T, E>::dft(signal);
}
template <class T, class E>
std::vector<E> DiscreteFourierTransform<T, E>::createTestPoints(int N, double sampleSpacing)
{
std::vector<E> out;
const E t = (E)sampleSpacing;
for (int i = 0; i < N; i++)
{
out.push_back((E)t * i);
}
return out;
}
template <class T, class E>
std::vector<E> DiscreteFourierTransform<T, E>::createTestFunction(std::vector<E> x)
{
const int N = x.size();
std::vector<E> out;
for (int i = 0; i < N; i++)
{
const E val = (E)sin(50.0 * 2.0 * M_PI * x[i]) + 0.5 * sin(80.0 * 2.0 * M_PI * x[i]);
out.push_back(val);
}
return out;
}
/**
* @brief We use Cooley-Tukey FFT Algorithm if the size of the signal is a power of 2 otherwise you should DFT brut. In The future we will use bluestein algorithm instead of DFT.
* Cooley-Tukey FFT Algorithms: http://people.scs.carleton.ca/~maheshwa/courses/5703COMP/16Fall/FFT_Report.pdf
*
* @tparam T template type of input data
* @tparam E template type of output data
* @param sig the signal as an input
* @return std::vector<std::complex<E>> the phasors (array of complex number)
*/
template <class T, class E>
std::vector<std::complex<E>> DiscreteFourierTransform<T, E>::fft(std::vector<T> sig)
{
const int N = sig.size();
if (N == 1)
{
std::vector<std::complex<E>> out;
const std::complex<E> temp((E)sig[0], (E)0);
out.push_back(temp);
return out;
}
const std::complex<E> WN = (complex<E>)std::polar(1.0, 2 * M_PI / N);
std::complex<E> W((E)1, (E)0);
// divide and conquer:
// Recurse: all even samples
std::vector<std::complex<E>>
x_evens = fft(getEven(sig));
// Recurse: all odd samples
std::vector<std::complex<E>> x_odds = fft(getOdd(sig));
// Now, combine and perform N/2 operations!
std::complex<E> zeroComplex((E)0, (E)0);
std::vector<std::complex<E>> x(N, zeroComplex);
for (int k = 0; k < N / 2; k++)
{
x[k] = x_evens[k] + W * x_odds[k];
x[k + (N / 2)] = x_evens[k] - W * x_odds[k];
W = W * WN;
}
return x;
}
template <class T, class E>
std::vector<std::complex<E>> DiscreteFourierTransform<T, E>::dft(std::vector<T> x)
{
const int N = x.size();
std::complex<E> zeroComplex((E)0, (E)0);
std::vector<std::complex<E>> out(N, zeroComplex);
for (int k = 0; k < N; k++)
{
for (int n = 0; n < N; n++)
{
const std::complex<E> expVal = (complex<E>)std::polar(1.0, -2 * k * n * M_PI / N);
out[k] += ((E)x[n]) * expVal;
}
}
return out;
}
template <class T, class E>
std::vector<E> DiscreteFourierTransform<T, E>::computeDSP(std::vector<std::complex<E>> x)
{
const int N = x.size();
std::vector<E> out;
for (int k = 0; k < N / 2; k++)
{
const E magnitude = (E)pow(abs(x[k]), 1);
const E dsp = (E)(2.0 / N) * magnitude;
out.push_back(dsp);
}
return out;
}
template <class T, class E>
std::vector<E> DiscreteFourierTransform<T, E>::getFreq(std::vector<std::complex<E>> x, double frequency_)
{
const int N = x.size();
std::vector<E> out;
for (int k = 0; k < N / 2; k++)
{
const E freq = (E)k * frequency_ / N;
out.push_back(freq);
}
return out;
}
template <class T, class E>
std::vector<E> DiscreteFourierTransform<T, E>::getPeriods(std::vector<std::complex<E>> x, double frequency_)
{
const int N = x.size();
const double stepPeriod = N / sampleSpacing_;
std::vector<E> out;
for (int k = 0; k < N / 2; k++)
{
const E period = (E)k * frequency_;
out.push_back(period);
}
return out;
}
template <class T, class E>
std::vector<T> DiscreteFourierTransform<T, E>::getOdd(std::vector<T> x)
{
std::vector<T> odd;
for (int i = 0; i < x.size(); i++)
{
if (i % 2 != 0)
odd.push_back(x[i]);
}
return odd;
}
template <class T, class E>
std::vector<T> DiscreteFourierTransform<T, E>::getEven(std::vector<T> x)
{
std::vector<T> even;
for (int i = 0; i < x.size(); i++)
{
if (i % 2 == 0)
even.push_back(x[i]);
}
return even;
}
template <class T, class E>
bool DiscreteFourierTransform<T, E>::isPowerOfTwo(int N)
{
return (N & (N - 1)) == 0;
}
template <class T, class E>
int DiscreteFourierTransform<T, E>::highestPowerof2(int n)
{
int p = n;
while (!DiscreteFourierTransform<T, E>::isPowerOfTwo(p))
{
p += 1;
}
return p;
}