Morschhauser.hh
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
* Morschhauser.hh
*
* Created on: May 30, 2016
* Author: AKKA IS
*/
#ifndef MORSCHHAUSER_HH_
#define MORSCHHAUSER_HH_
#include "morschhauser_constants.hh"
#include "Parameter.hh"
#include "ParamData.hh"
#include "DataTypeMath.hh"
#include "Operation.hh"
namespace AMDA {
namespace Parameters {
/**
* @class MorschhauserCommon
* @brief It is responsible to compute Morshhauser Mars Model Magnetic Field along an orbit. Abstract class
* @details This class implement the interface Operation. Input vector given in MSO coordinates system.
*/
template<typename DataType, class TOutputParamData>
class MorschhauserCommon : public Operation {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
MorschhauserCommon(Process& pProcess, ParamDataSpec<std::vector<DataType> >¶mInput): Operation(pProcess),
_paramInput(paramInput),
_paramOutput(new TOutputParamData())
{
_paramDataOutput=_paramOutput;
init_coef_V_int();
init_coef_V_ext_night();
init_coef_V_ext_day();
}
virtual ~MorschhauserCommon() {
}
/**
* @overload Operation::write(ParamDataIndexInfo &pParamDataIndexInfo)
*/
void write(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex ;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index)
{
std::vector<DataType> lVal = _paramInput.getDataList()[_index];
short sign = (lVal[0] > 0) ? 1 : 0;
//BRE - ToDo Corrdinates transformation before magnetic field calculation
std::vector<DataType> outputB;
outputB.resize(3);
DataType outputBm;
field_(lVal, sign, outputB, outputBm);
_paramOutput->pushTime(_paramInput.getTime(_index));
pushResult(outputB, outputBm);
}
}
protected:
virtual void pushResult(std::vector<DataType> field, DataType magnitude) = 0;
/**
* @brief Input paramter data.
*/
ParamDataSpec<std::vector<DataType> >& _paramInput;
/**
* @brief Output parameter data.
*/
TOutputParamData *_paramOutput;
private:
long double _coef_V_int[111][221], _coef_V_ext_day[6][11], _coef_V_ext_night[11][21];
int field_(std::vector<DataType> inputElt, short sign, std::vector<DataType>& outputB, DataType& outputBm) {
long double r,dtheta,dphi,x,y,z;
long double cos_theta, sin_theta, cos_phi, sin_phi;
long double P[111][111]={ {0.0L} , {0.0L} };
long double Br, Btheta, Bphi;
x = (long double)inputElt[0];
y = (long double)inputElt[1];
z = (long double)inputElt[2];
r = sqrtl( x * x + y * y + z * z );
dtheta = acosl( z / r );
dphi = atanl( y / x );
if ( x < 0.0 )
{
dphi += M_PIl;
}
if ( r < Rlim )
{
cos_theta = cosl( dtheta );
sin_theta = sinl( dtheta );
cos_phi = cosl( dphi );
sin_phi = sinl( dphi );
plgndr( cos_theta, P );
V_int( Rma * r , dtheta , dphi, sign, P, Br, Btheta, Bphi);
outputBm = (double)sqrtl( Br * Br + Btheta * Btheta + Bphi * Bphi );
outputB.push_back((double)(Br * cos_phi * sin_theta - Bphi * sin_phi + Btheta * cos_phi * cos_theta));
outputB.push_back( (double)(Br * sin_phi * sin_theta + Bphi * cos_phi));
outputB.push_back((double)(Br * cos_theta - Btheta * sin_theta));
}
else
{
Br = ( Btheta = ( Bphi = 0.0L / 0.0L ) );
outputBm << NotANumber();
outputB << NotANumber();
}
return 0;
}
void init_coef_V_int(void) {
for (int i = 0; i < V_INT_SIZE; ++i)
{
_coef_V_int[(int)V_INT[i][0]][(int)(V_INT[i][0]+V_INT[i][1])] = V_INT[i][2];
}
}
void init_coef_V_ext_night(void) {
for (int i = 0; i < V_EXT_NIGHT_SIZE; ++i)
{
_coef_V_ext_night[(int)V_EXT_NIGHT[i][0]][(int)(V_EXT_NIGHT[i][0]+V_EXT_NIGHT[i][1])] = V_EXT_NIGHT[i][2];
}
}
void init_coef_V_ext_day(void) {
for (int i = 0; i < V_EXT_DAY_SIZE; ++i)
{
_coef_V_ext_day[(int)V_EXT_DAY[i][0]][(int)(V_EXT_DAY[i][0]+V_EXT_DAY[i][1])] = V_EXT_DAY[i][2];
}
}
int V_int(long double r , long double theta , long double phi, short sign, long double P[111][111],
long double& Br, long double& Btheta, long double& Bphi) {
long double V1,V2,V3,V4,V5,V6,x,y,z,Ypm,Ymm, puis,Ypmav,Ymmav,puis2;
int l,m;
long double tan_theta, sin_theta, cos_theta;
tan_theta = tanl( theta );
sin_theta = sinl( theta );
cos_theta = cosl( theta );
Br = 0.0L;
Bphi = 0.0L;
Btheta = 0.0L;
x = ( y = ( z = 0.0L ) );
Ypm = ( Ypmav = 0.0L );
Ymm = ( Ymmav = 0.0L );
for (l = 1 ; l <= 110 ; l++ )
{
V1 = 0.0L;
V2 = 0.0L;
V3 = 0.0L;
V4 = 0.0L;
V5 = 0.0L;
V6 = 0.0L;
puis = 0.0L;
Ypmav = 0.0L;
Ymmav = 0.0L;
for ( m = l ; m > 0 ; m-- )
{
Ypm = Ylm( l , m , theta , phi, P );
Ymm = Ylm( l , -m , theta , phi, P );
V1 += _coef_V_int[l][l+m] * Ypm;
V1 += _coef_V_int[l][l-m] * Ymm;
V2 -= m * _coef_V_int[l][l+m] * Ymm;
V2 += m * _coef_V_int[l][l-m] * Ypm;
if( sign == 0 && l <= 10 ) // night side MSO
{
V4 += _coef_V_ext_night[l][l+m] * Ypm;
V4 += _coef_V_ext_night[l][l-m] * Ymm;
V5 -= m * _coef_V_ext_night[l][l+m] * Ymm;
V5 += m * _coef_V_ext_night[l][l-m] * Ypm;
V6 += _coef_V_ext_night[l][l+m] * ( m * Ypm / tan_theta - sqrtl( l - m + l * l - m * m ) * cosl( m * phi ) / cosl( ( m + 1.0l ) * phi ) * Ypmav );
V6 += _coef_V_ext_night[l][l-m] * ( m * Ymm / tan_theta - sqrtl( l - m + l * l - m * m ) * sinl( m * phi ) / sinl( ( m + 1.0l ) * phi ) * Ymmav );
}
if( sign > 0 && l <= 5 ) // day side MSO
{
V4 += _coef_V_ext_day[l][l+m] * Ypm;
V4 += _coef_V_ext_day[l][l-m] * Ymm;
V5 -= m * _coef_V_ext_day[l][l+m] * Ymm;
V5 += m * _coef_V_ext_day[l][l-m] * Ypm;
V6 += _coef_V_ext_day[l][l+m] * ( m * Ypm / tan_theta - sqrtl( l - m + l * l - m * m ) * cosl( m * phi ) / cosl( ( m + 1.0l ) * phi ) * Ypmav );
V6 += _coef_V_ext_day[l][l-m] * ( m * Ymm / tan_theta - sqrtl( l - m + l * l - m * m ) * sinl( m * phi ) / sinl( ( m + 1.0l ) * phi ) * Ymmav );
}
if ( phi != 0.0L )
{
V3 += _coef_V_int[l][l+m] * ( m * Ypm / tan_theta - sqrtl( l - m + l * l - m * m ) * cosl( m * phi ) / cosl( ( m + 1.0l ) * phi ) * Ypmav );
V3 += _coef_V_int[l][l-m] * ( m * Ymm / tan_theta - sqrtl( l - m + l * l - m * m ) * sinl( m * phi ) / sinl( ( m + 1.0l ) * phi ) * Ymmav );
}
else
{
V3 += _coef_V_int[l][l+m] * ( m * Ypm / tan_theta - sqrtl( l - m + l * l - m * m ) * Ypmav );
}
Ypmav = Ypm;
Ymmav = Ymm;
}
V1 += _coef_V_int[l][l] * Ylm( l , 0 , theta , phi, P );
if( sign == 0 && l <= 10 ) // night side MSO
{
V4 += _coef_V_ext_night[l][l] * Ylm( l , 0 , theta , phi, P );
}
if( sign > 0 && l <= 5 ) // day side MSO
{
V4 += _coef_V_ext_day[l][l] * Ylm( l , 0 , theta , phi, P );
}
V3 += _coef_V_int[l][l] * l / sin_theta * ( cos_theta * P[l][0]-P[l-1][0] );
if( sign == 0 && l <= 10 ) // night side MSO
{
V6 += _coef_V_ext_night[l][l] * l / sin_theta * ( cos_theta * P[l][0]-P[l-1][0] );
}
if( sign > 0 && l <= 5 ) // day side MSO
{
V6 += _coef_V_ext_day[l][l] * l / sin_theta * ( cos_theta * P[l][0]-P[l-1][0] );
}
puis = powl( Rma / r , l + 2.0L );
puis2= powl( r / Rma , l - 1.0L );
z -= - ( l + 1.0L ) * V1 * puis + l * V4 * puis2; //minus sign disappear because magnetic field is the ooposite of the gradient
x -= ( V2 * puis + V5 * puis2 ) / sin_theta;
y -= ( V3 * puis + V6 * puis2 );
}
Br = z;
Bphi = x;
Btheta= y;
return 0;
}
void plgndr(double x, long double P[111][111]) {
int m,l;
double fact,coef;
fact = 1.0;
coef = sqrt( 1.0 - x * x );
P[0][0] = 1.0;
for ( m = 1 ; m <= 110 ; m++ )
{
P[m][m] = - P[m-1][m-1] * fact * coef;
fact += 2.0;
}
for ( m = 0 ; m <= 109 ; m++ )
{
P[m+1][m] = x * ( 2.0 * m + 1.0 ) * P[m][m];
}
for ( m = 0 ; m <= 108 ; m++ )
{
for ( l = m + 2 ; l <= 110 ; l++ )
{
P[l][m] = ( x * ( 2.0 * l - 1.0 ) * P[l-1][m] - ( l + m - 1.0 ) * P[l-2][m] ) / ( l - m );
}
}
}
long double Ylm(int l , int m , long double /*theta*/ , long double phi, long double P[111][111]) {
long double Plm;
int k;
long double p, sqrt2 = sqrtl( 2.0L );
Plm = P[l][abs(m)];
p = 1;
if ( m != 0 )
{
for ( k = (l - abs(m) + 1 ) ; k <= ( l + abs(m) ) ; k++)
{
p *= sqrtl( (long double) k );
}
Plm /= p;
Plm *= sqrt2;
}
if ( m < 0 )
{
Plm *= sinl( fabsl( m ) * phi );
}
else if ( m > 0 )
{
Plm *= cosl( fabsl( m ) * phi );
}
Plm *= powl( - 1.0L , fabsl( m ) );
if ( abs(m) > l )
{
Plm = 0.0L;
}
return Plm;
}
};
/**
* @class MorschhauserBField
* @brief It is responsible to compute Morshhauser Mars Model Magnetic Field along an orbit.
* @details Input vector given in MSO coordinates system.
*/
template<typename DataType>
class MorschhauserBField : public MorschhauserCommon<DataType, ParamDataSpec<std::vector<DataType> >> {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
MorschhauserBField(Process& pProcess, ParamDataSpec<std::vector<DataType> >& paramInput) : MorschhauserCommon<DataType, ParamDataSpec<std::vector<DataType> >>(pProcess, paramInput) {
}
virtual ~MorschhauserBField() {
}
protected:
virtual void pushResult(std::vector<DataType> field, DataType /*magnitude*/) {
MorschhauserCommon<DataType, ParamDataSpec<std::vector<DataType> >>::_paramOutput->getDataList().push_back(field);
}
};
/**
* @class MorschhauserBMag
* @brief It is responsible to compute Morshhauser Mars Model Magnetic Field along an orbit.
* @details Input vector given in MSO coordinates system.
*/
template<typename DataType>
class MorschhauserBMag : public MorschhauserCommon<DataType, ParamDataSpec<DataType>> {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
MorschhauserBMag(Process& pProcess, ParamDataSpec<std::vector<DataType> >& paramInput) : MorschhauserCommon<DataType, ParamDataSpec<DataType>>(pProcess, paramInput) {
}
virtual ~MorschhauserBMag() {
}
protected:
virtual void pushResult(std::vector<DataType> /*field*/, DataType magnitude) {
MorschhauserCommon<DataType, ParamDataSpec<DataType>>::_paramOutput->getDataList().push_back(magnitude);
}
};
} /* namespace Parameters */
} /* namespace AMDA */
#endif /* MORSCHHAUSER_HH_ */