Jupiter_JRM09_CAN81.hh
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
/*
* File: getjupiterMag.hh
* Author: hacene
*
* Created on May 29, 2020, 2:50 PM
*/
#ifndef Jupiter_JRM09_CAN81_HH
#define Jupiter_JRM09_CAN81_HH
#include "Jupiter_JRM09_CAN81_tools.hh"
#include "Parameter.hh"
#include "ParamData.hh"
#include "DataTypeMath.hh"
#include "Operation.hh"
#include "SpiceKernelMgr.hh"
#include <vector>
using namespace std;
namespace AMDA {
namespace Parameters {
/**
* @class GetjupiterMagCommon
* @brief It is responsible to compute Jupiter Magnetic Field along an orbit. Abstract class
* @details This class implement the interface Operation. Input vector are [R, Z]
*/
template<typename DataType, class TOutputParamData>
class Jupiter_JRM09_CAN81 : public Operation {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
Jupiter_JRM09_CAN81(Process& pProcess, ParamDataSpec<vector<DataType> >¶mInput, bool can) : Operation(pProcess),
_paramInput(paramInput),
_paramOutput(new TOutputParamData()), _can(can) {
_paramDataOutput = _paramOutput;
}
virtual ~Jupiter_JRM09_CAN81() {
}
/**
* @overload Operation::write(ParamDataIndexInfo &pParamDataIndexInfo)
*/
void write(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index) {
vector<DataType> lVal= _paramInput.getDataList()[_index];
double crtTime = _paramInput.getTime(_index);
vector<DataType> input;
input.resize(3);
vector<DataType> outputBrtp;
outputBrtp.resize(3);
vector<DataType>outputBxyz;
outputBxyz.resize(3);
DataType outputBm;
// GetJupiterMag00(vector<DataType> inputSphCoord, bool CAN, vector<DataType>& outputBrtp, DataType& outputBm, vector<DataType>& outputBxyz)
GetJupiterMag00(lVal, _can, outputBrtp, outputBm, outputBxyz);
_paramOutput->pushTime(crtTime);
pushResult(outputBrtp, outputBm, outputBxyz);
}
}
protected:
virtual void pushResult(vector<DataType> fieldSph, DataType magnitude_, vector<DataType> fieldCoor) = 0;
/**
* @brief Input paramter data.
*/
ParamDataSpec<vector<DataType> >& _paramInput;
/**
* @brief Output parameter data.
*/
TOutputParamData *_paramOutput;
/**
* use can model or not
*/
bool _can;
private:
int can81(vector<DataType>& inputCoor, vector<DataType>& outpField) {
/**
* @brief Jupiter's external magnetic field model:
* @details ; The Connerney+1981_JGR model: Modeling the Jovian Current Sheet and Inner Magnetophere.
*The CAN model should be only used near the Jupiter (<~30 RJ).
*Input: rho and z in cylindrical coords, z is along the magnetic axis.
*Output: Brho and Bz (nT) also in cylindrical coords. Note that the model is axis-symmetric.
*/
// [constants]
double D = 2.5; // Rj
double a = 5.0; // Rj
double b = 50.0; // 70.0 ; Rj ; 50.0 in Connerney1981
double mu0_I0 = 450.0; //; 175.0*2 ; 225.0*2 in Connerney1981
double rho = inputCoor[0];
double z = inputCoor[1];
double F1, F2, F3, tmp, Bz, Brho, Brho2, Bz2;
// [Approximate formulas given in Connerney+1981_The magnetic field in Jupiter.]
// [Cylindrical coordinates: in nT]
if (rho < a) {
F1 = sqrt((z - D)*(z - D)* + a * a);
F2 = sqrt((z + D)*(z + D) + a * a);
F3 = sqrt(z * z + a * a);
Brho = 0.5 * rho * (1.0 / F1 - 1.0 / F2);
tmp = (z - D) / (F1 * F1 * F1) - (z + D) / (F2 * F2 * F2);
Bz = 2.0 * D / F3 - 0.25 * rho * rho*tmp;
} else {
F1 = sqrt((z - D)*(z - D)* + rho * rho);
F2 = sqrt((z + D)*(z + D) + rho * rho);
F3 = sqrt(z * z + rho * rho);
Brho = (F1 - F2 + 2 * D) / rho;
if (abs(z) > D && z < 0) Brho = (F1 - F2 - 2 * D) / rho;
if (abs(z) < D) Brho = (F1 - F2 + 2 * z) / rho;
Brho -= 0.25 * a * a * rho * (1.0 / (F1 * F1 * F1) - 1.0 / (F2 * F2 * F2));
tmp = (z - D) / (F1 * F1 * F1) - (z + D) / (F2 * F2 * F2);
Bz = 2.0 * D / F3 - 0.25 * a * a*tmp;
}
F1 = sqrt((z - D)*(z - D) + b * b);
F2 = sqrt((z + D)*(z + D) + b * b);
F3 = sqrt(z * z + b * b);
Brho2 = 0.5 * rho * (1 / F1 - 1 / F2);
Bz2 = 2 * D / F3 - 0.25 * rho * rho * ((z - D) / (F1 * F1 * F1) - (z + D) / (F2 * F2 * F2));
Brho -= Brho2;
Bz -= Bz2;
Brho *= 0.5 * mu0_I0;
Bz *= 0.5 * mu0_I0;
outpField[0] = Brho;
outpField[1] = Brho;
return 0;
};
/**
* GetJupiterMag00.pro
=================================================
Description:
This program is to calculate the Jovian magnetic field of JRM09 (Connerney et al., 2018) and
CAN (Connerney et al., 1981) model.
All of the relevant subroutines are included in this single file, including the Schmdt coefficients
needed in JRM09 model.
(1) Jupiter's Magnetic field Model: JRM09 (+CAN), CAN.
(2) Refer to: Connerney+2018_GRL JRM09 model
Connerney+1981 CAN model
(3) All the coordinates used here are Right-Hand-Side, because of SPICE convention.
(4) The positions can be in Arrays, i.e., multi-positions at one time, which can be more efficient.
Input:
r (Rj), theta (deg), phi (deg), spherical coordinates in System III RHS (i.e., IAU_Jupiter), better use double!
optional:
/CAN include the CAN model or not (true = yes)
Output:
Br (nT), Bt (nT), Bp (nT), Bmag (nT) in System III RHS.
Bxyz = Bxyz optional output Bxyz in System III RHS
Example:
GetJupiterMag00, [20.0d0,20.00000001d0], [90.0d0,90.000001d0], [120.0d0, 120.0d0], $
Br, Bt, Bp, Bmag1, Bxyz = Bxyz, /can
GetJupiterMag00, 20.0d0, 90.000001d0, 120.0d0, Br, Bt, Bp, Bmag2, Bxyz = Bxyz, /can
History:
(1) writen by Yuxian Wang 2020-01-16 02:26:49
ywang@irap.omp.eu + yxwang@spaceweather.ac.cn
=================================================
*/
int GetJupiterMag00(vector<DataType> inputSphCoord, bool CAN, vector<DataType>& outputBrtp, DataType& outputBm, vector<DataType>& outputBxyz) {
const AMDA::GETjupiterMAG_TOOLS::COEF _COEF;
AMDA::GETjupiterMAG_TOOLS::jupiter_JRM09_CAN81_tools tools;
// [position in: ['Rj, deg, deg'] to ['Rj, rad,rad']]
const long double PI = atan(1)*4.0;
DataType r, theta, phi, x, radialfactor;
r = inputSphCoord[0];
theta = inputSphCoord[1] * PI / 180;
phi = inputSphCoord[2] * PI / 180;
// [try to avoid invoke restore one more time.]
x = cos(theta);
int maxN = 10; // JRM09 degrees
vector<vector<DataType> > Plm(maxN, vector<DataType>(maxN, 0));
vector<vector < DataType>> dPlm(maxN, vector<DataType>(maxN, 0));
//int AllLegendre(T1 x, int lma, int mmax, vector<vector<T2>> Plm,
//vector<vector<T2>> dPlm, bool isSineTheta, int SineTheta, bool DoDerivative , int normalize = 1)
tools.AllLegendre(x, maxN, maxN, Plm, dPlm, true, 1, true);
// [Calculate Components of B]
for (int l = 1; l < maxN; l++) {
radialfactor = pow(r, (-l + 2.0));
for (int m = 0; m < l; m++) {
//-------------find radial b field component---------------
long double gsmdtlm = _COEF.GSMDT[l][m];
long double hsmdtlm = _COEF.HSMDT[l][m];
long double phifactor = gsmdtlm * cos(m * phi) + hsmdtlm * sin(m * phi);
long double Pnm = Plm[l][m];
outputBrtp[0] += (l + 1) * radialfactor * phifactor * Pnm;
//--------------find theta b field component---------------
long double dpnmdtheta = dPlm[l][m]; // dpdtheta(L, M, theta, /inrad)
outputBrtp[1] -= radialfactor * phifactor * dpnmdtheta;
//-------------------------------------------------------
outputBrtp[2] += m * radialfactor * (gsmdtlm * sin(m * phi) - hsmdtlm * cos(m * phi)) * Pnm;
}
}
// --------correct bphi and don't divide by 0!------------
long double sintheta = sin(outputBrtp[1]);
if (sintheta != 0) {
outputBrtp[2] /= sintheta;
} else {
outputBrtp[2] = 0.0;
}
// [Add CAN model]
if (CAN) {
// [IAU -> JSM xyz]
vector<DataType> IAUxyz;
IAUxyz.resize(3);
IAUxyz = tools.Sph2CarP(inputSphCoord);
vector<DataType>JSMxyz;
JSMxyz.resize(3);
JSMxyz = tools.Coord_SIII2JSM(IAUxyz);
// [JSM: xyz -> rho z]
DataType rho = sqrt(JSMxyz[0] * JSMxyz[0] + JSMxyz[1] * JSMxyz[1]);
DataType zzz = JSMxyz[2];
vector<DataType> coorIn{rho, zzz};
vector<DataType> Bcan; // [rho z, point]
Bcan.resize(3);
can81(coorIn, Bcan);
// [B_JSM: rho z -> xyz]
phi = atan(JSMxyz[1] / JSMxyz[0]);
if (JSMxyz[0] < 0)
phi += PI;
if (phi < 0)
phi += 2.0 * PI;
vector<DataType> BJSMxyz;
BJSMxyz.resize(3);
BJSMxyz[0] = Bcan[0] * cos(phi);
BJSMxyz[1] = Bcan[0] * sin(phi),
BJSMxyz[2] = Bcan[1];
// [JSM to System III]
vector<DataType> BIAUxyz;
BIAUxyz.resize(3);
BIAUxyz = tools.Coord_JSM2SIII(BJSMxyz);
vector<DataType> BIAUrtp;
BIAUrtp.resize(3);
BIAUrtp= tools.Car2SphV(IAUxyz, BIAUxyz);
outputBrtp[0] += BIAUrtp[0];
outputBrtp[1] += BIAUrtp[1];
outputBrtp[2] += BIAUrtp[2];
}
// [Bx, By, Bz: Bxyz in System III RHS]
outputBm = sqrt(outputBrtp[0] * outputBrtp[0] + outputBrtp[1] * outputBrtp[1] + outputBrtp[2] * outputBrtp[2]);
outputBxyz = tools.Sph2CarV(inputSphCoord, outputBrtp);
return 0;
};
};
template <typename DataType>
class Jupiter_JRM09_CAN81BMag : public Jupiter_JRM09_CAN81<DataType, ParamDataSpec<DataType> > {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
Jupiter_JRM09_CAN81BMag(Process& pProcess, ParamDataSpec<vector<DataType> >& paramInput, bool can) :
Jupiter_JRM09_CAN81<DataType, ParamDataSpec < DataType > > (pProcess, paramInput, can) {
}
virtual ~Jupiter_JRM09_CAN81BMag() {
}
protected:
virtual void pushResult(vector<DataType> /*fieldSph_*/, DataType magnitude_, vector<DataType> /*fieldCart_*/) {
Jupiter_JRM09_CAN81<DataType, ParamDataSpec<DataType> >::_paramOutput->getDataList().push_back(magnitude_);
}
};
template <typename DataType>
class Jupiter_JRM09_CAN81Cart : public Jupiter_JRM09_CAN81<DataType, ParamDataSpec<vector<DataType>> >
{
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
Jupiter_JRM09_CAN81Cart(Process& pProcess, ParamDataSpec<vector<DataType> >& paramInput, bool can) :
Jupiter_JRM09_CAN81<DataType, ParamDataSpec <vector< DataType> > > (pProcess, paramInput, can) {
}
virtual ~Jupiter_JRM09_CAN81Cart() {
}
protected:
virtual void pushResult(vector<DataType> /*fieldSph_*/, DataType /*magnitude_*/, vector<DataType> fieldCart_) {
Jupiter_JRM09_CAN81<DataType, ParamDataSpec<vector<DataType> > >::_paramOutput->getDataList().push_back(fieldCart_);
}
};
template <typename DataType>
class Jupiter_JRM09_CAN81Sphr : public Jupiter_JRM09_CAN81<DataType, ParamDataSpec<vector <DataType> > > {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
Jupiter_JRM09_CAN81Sphr(Process& pProcess, ParamDataSpec<vector<DataType> >& paramInput, bool can) :
Jupiter_JRM09_CAN81<DataType, ParamDataSpec <vector <DataType > > > (pProcess, paramInput, can) {
}
virtual ~Jupiter_JRM09_CAN81Sphr() {
}
protected:
virtual void pushResult(vector<DataType> fieldSph_, DataType /*magnitude_*/, vector<DataType> /*fieldCart_*/) {
Jupiter_JRM09_CAN81<DataType, ParamDataSpec<vector<DataType> > >::_paramOutput->getDataList().push_back(fieldSph_);
}
};
} /*en Parameters */
} // end AMDA
#endif /* Jupiter_JRM09_CAN81 */