Tsyganenko96.hh
7.36 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
* Tsyganenko96.hh
*
* Created on: Nov 06, 2017
* Author: benjamin
*/
#ifndef TSYGANENKO96_HH_
#define TSYGANENKO96_HH_
#include "Parameter.hh"
#include "ParamData.hh"
#include "DataTypeMath.hh"
#include "Operation.hh"
#include "GeopackWrapper.hh"
#include <iterator>
namespace AMDA {
namespace Parameters {
namespace Tsyganenko96 {
/**
* @class Tsyganenko96
* @brief
* @details This class implement the interface Operation.
*/
#define AVERAGE_TIME 1200 // (seconds)
#define MAX_GAP_SIZE 3600 // (seconds)
#define DEFAULT_IMF_X 0.
#define DEFAULT_IMF_Y 2.
#define DEFAULT_IMF_Z -3.
#define DEFAULT_DST -10.
#define DEFAULT_PSW 3.
class Tsyganenko96Base : public Operation {
public:
Tsyganenko96Base(Process& pProcess, ParamData& paramImfInput, ParamData& paramPswInput, ParamData& paramDstInput)
: Operation(pProcess),
_paramImfInput(dynamic_cast<ParamDataSpec<std::vector<float> >&>(paramImfInput)),
_paramPswInput(dynamic_cast<ParamDataSpec<float>&>(paramPswInput)),
_paramDstInput(dynamic_cast<ParamDataSpec<float>&>(paramDstInput)) {
}
virtual ~Tsyganenko96Base() {
}
void pushImfData(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex ;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index)
{
double time = _paramImfInput.getTime(_index);
std::vector<float> inputElt = _paramImfInput.get(_index);
_b_x_gse.push_back(std::pair<double,float>(time,inputElt[0]));
_b_y_gse.push_back(std::pair<double,float>(time,inputElt[1]));
_b_z_gse.push_back(std::pair<double,float>(time,inputElt[2]));
}
}
void pushPswData(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex ;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index)
{
double time = _paramPswInput.getTime(_index);
float inputElt = _paramPswInput.get(_index);
_psw.push_back(std::pair<double,float>(time,inputElt));
}
}
void pushDstData(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex ;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index)
{
double time = _paramDstInput.getTime(_index);
float inputElt = _paramDstInput.get(_index);
_dst.push_back(std::pair<double,float>(time,inputElt));
}
}
float getValue(std::vector<std::pair<double,float> >& input, double time, float default_value) {
double min_t = time - AVERAGE_TIME/2.;
double max_t = time + AVERAGE_TIME/2.;
std::vector<std::pair<double,float> > values_for_mean;
std::pair<double,float> prev_value(NAN,NAN);
std::pair<double,float> next_value(NAN,NAN);
for (std::vector<std::pair<double,float> >::iterator it = input.begin(); it != input.end(); ++it) {
if (isNAN(it->second))
continue;
else if (it->first > max_t) {
next_value = *it;
break;
}
else if (it->first < min_t) {
prev_value = *it;
}
else {
values_for_mean.push_back(*it);
}
}
float value = default_value;
if (!values_for_mean.empty()) {
//Compute mean
float sum = 0;
for (std::vector<std::pair<double,float> >::iterator it = values_for_mean.begin(); it != values_for_mean.end(); ++it) {
sum += it->second;
}
value = sum / (float)values_for_mean.size();
}
else {
if (!isNAN(prev_value.first) && !isNAN(next_value.first) && (next_value.first - prev_value.first <= MAX_GAP_SIZE)) {
//Compute interpolated value
value = prev_value.second + (time - prev_value.first) / (next_value.first - prev_value.first) * (next_value.second - prev_value.second);
}
}
return value;
}
void getImfData(double time, float& b_x, float& b_y, float& b_z) {
b_x = getValue(_b_x_gse,time,DEFAULT_IMF_X);
b_y = getValue(_b_y_gse,time,DEFAULT_IMF_Y);
b_z = getValue(_b_z_gse,time,DEFAULT_IMF_Z);
}
void getPswData(double time, float& p_sw) {
p_sw = getValue(_psw,time,DEFAULT_PSW);
}
void getDstData(double time, float& dst) {
dst = getValue(_dst,time,DEFAULT_DST);
}
private:
ParamDataSpec<std::vector<float> >& _paramImfInput;
ParamDataSpec<float>& _paramPswInput;
ParamDataSpec<float>& _paramDstInput;
std::vector<std::pair<double,float> > _b_x_gse;
std::vector<std::pair<double,float> > _b_y_gse;
std::vector<std::pair<double,float> > _b_z_gse;
std::vector<std::pair<double,float> > _psw;
std::vector<std::pair<double,float> > _dst;
};
template <typename ElemType>
class Tsyganenko96 : public Tsyganenko96Base {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
Tsyganenko96(Process& pProcess, ParamDataSpec<std::vector<ElemType> >& paramInput, ParamData& paramImfInput, ParamData& paramPswInput, ParamData& paramDstInput)
: Tsyganenko96Base(pProcess, paramImfInput, paramPswInput, paramDstInput),
_paramInput(paramInput),
_paramOutput(new ParamDataSpec<std::vector<ElemType> >) {
_paramDataOutput=_paramOutput;
}
virtual ~Tsyganenko96() {
}
/**
* @overload Operation::write(ParamDataIndexInfo &pParamDataIndexInfo)
*/
void write(ParamDataIndexInfo &pParamDataIndexInfo) {
for (unsigned int _index = pParamDataIndexInfo._startIndex ;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index)
{
double crtTime = _paramInput.getTime(_index);
float b_x_gse, b_y_gse, b_z_gse;
getImfData(crtTime, b_x_gse, b_y_gse, b_z_gse);
if (isNAN(b_x_gse) || isNAN(b_y_gse) || isNAN(b_z_gse))
continue;
float p_sw;
getPswData(crtTime, p_sw);
if (isNAN(p_sw))
continue;
float dst;
getDstData(crtTime, dst);
if (isNAN(dst))
continue;
std::vector<ElemType> inputElt = _paramInput.get(_index);
time_t timestamp = crtTime;
struct tm *tmp;
tmp = gmtime(×tamp);
std::vector<ElemType> ouputElt;
ouputElt.resize(3);
ouputElt << NotANumber();
//Init geopack with GSM frame
geopack::GeopackWrapper::initInGSM(1900 + tmp->tm_year, 1 + tmp->tm_yday, tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
//Compute position in GSM frame
int transform_flag = -1;
float sat_pos_X_GSE = inputElt[0];
float sat_pos_Y_GSE = inputElt[1];
float sat_pos_Z_GSE = inputElt[2];
float sat_pos_X_GSM = 0.;
float sat_pos_Y_GSM = 0.;
float sat_pos_Z_GSM = 0.;
geogsw_08_(&sat_pos_X_GSM, &sat_pos_Y_GSM, &sat_pos_Z_GSM,
&sat_pos_X_GSE, &sat_pos_Y_GSE, &sat_pos_Z_GSE, &transform_flag);
//Check if in magnetopause
if (geopack::GeopackWrapper::isInMagnetopause(p_sw, sat_pos_X_GSM, sat_pos_Y_GSM, sat_pos_Z_GSM)) {
//Compute Imf B field in GSM frame
float b_x_gsm, b_y_gsm, b_z_gsm;
geogsw_08_(&b_x_gsm, &b_y_gsm, &b_z_gsm,
&b_x_gse, &b_y_gse, &b_z_gse, &transform_flag);
//Compute magnetic field in GSM
float B_X_GSM_RES, B_Y_GSM_RES, B_Z_GSM_RES;
geopack::GeopackWrapper::computeGeomagneticFieldInGSM(inputElt[0], inputElt[1], inputElt[2], p_sw, dst, b_y_gsm, b_z_gsm,
B_X_GSM_RES, B_Y_GSM_RES, B_Z_GSM_RES);
ouputElt[0] = B_X_GSM_RES;
ouputElt[1] = B_Y_GSM_RES;
ouputElt[2] = B_Z_GSM_RES;
}
_paramOutput->pushTime(crtTime);
_paramOutput->getDataList().push_back(ouputElt);
}
}
private:
ParamDataSpec<std::vector<ElemType> >& _paramInput;
ParamDataSpec<std::vector<ElemType> >* _paramOutput;
};
} /* namespace Tsyganenko96 */
} /* namespace Parameters */
} /* namespace AMDA */
#endif /* TSYGANENKO96_HH_ */