Spectrum.hh
18.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
/*
* File: Spectrum.hh
* Author: hacene
*
* Created on December 31, 2020, 10:14 AM
*/
#ifndef SPECTRUM_HH
#define SPECTRUM_HH
#include "Parameter.hh"
#include "ParamData.hh"
#include "DataTypeMath.hh"
#include "Operation.hh"
#include "AMDA_exception.hh"
#include <iterator>
namespace AMDA {
namespace Parameters {
namespace Spectrum {
#define AVERAGE_TIME 1200 // (seconds)
#define MAX_GAP_SIZE 3600 // (seconds)
using namespace std;
typedef enum {
CENTER,
FORWARD,
BACKWARD,
} samplingEnum;
static std::map<std::string, samplingEnum> strToSamplingEnum{
{"center", samplingEnum::CENTER},
{"forward", samplingEnum::FORWARD},
{"backward", samplingEnum::BACKWARD},};
template<typename DataType, typename OutputType>
class SpectrumBase : public Operation {
public:
/**
* @brief Constructor.
* @details Create the ParamData type of the input ParamData.
*/
SpectrumBase(Process& pProcess, TimeIntervalListSPtr pTimeIntervalList, ParamDataSpec<DataType >¶mInput, double windowtime, std::string sampling = "center") :
Operation(pProcess),
_timeIntervalList(pTimeIntervalList),
_currentTimeInterval(pTimeIntervalList->begin()),
_paramInput(paramInput),
_paramOutput(new ParamDataSpec<std::vector<OutputType>>()),
_windowtime(windowtime),
_sampling(sampling),
_needInit(true) {
_paramDataOutput = _paramOutput;
};
virtual ~SpectrumBase() {
}
double getWindowTime() {
return _windowtime;
}
bool inWindow(double time) {
return (time >= _minWindow && time <= _maxWindow);
}
double getIntStartTime() {
return _currentTimeInterval->_startTime;
}
double getIntStopTime() {
return _currentTimeInterval->_stopTime;
}
bool inInt(double time) {
return (time >= _currentTimeInterval->_startTime && time <= _currentTimeInterval->_stopTime);
}
double getTarget() {
return _target;
}
bool needInit() {
return _needInit;
}
void setNeedInit(bool needInit) {
_needInit = needInit;
}
bool setTarget(double time) {
if (!inInt(time)) {
return false;
}
_target = time;
switch (strToSamplingEnum[_sampling]) {
case samplingEnum::FORWARD:
_minWindow = _target;
if (_minWindow < _currentTimeInterval->_startTime) {
_minWindow = _currentTimeInterval->_startTime;
}
_maxWindow = _target + _windowtime;
if (_maxWindow > _currentTimeInterval->_stopTime) {
_maxWindow = _currentTimeInterval->_stopTime;
}
case samplingEnum::BACKWARD:
_minWindow = _target - _windowtime;
if (_minWindow < _currentTimeInterval->_startTime) {
_minWindow = _currentTimeInterval->_startTime;
}
_maxWindow = _target;
if (_maxWindow > _currentTimeInterval->_stopTime) {
_maxWindow = _currentTimeInterval->_stopTime;
}
break;
default:
_minWindow = _target - _windowtime / 2.;
if (_minWindow < _currentTimeInterval->_startTime) {
_minWindow = _currentTimeInterval->_startTime;
}
_maxWindow = _target + _windowtime / 2.;
if (_maxWindow > _currentTimeInterval->_stopTime) {
_maxWindow = _currentTimeInterval->_stopTime;
}
break;
}
return true;
}
/**
* @overload Operation::reset(double pStartTime, double pTimeInt)
* @brief reset static data to process another TimeInterval
*/
virtual void reset() {
Operation::reset();
if (_currentTimeInterval == _timeIntervalList->end()) {
return;
}
++_currentTimeInterval;
_needInit = true;
resetFunc();
}
virtual void init() {
setTarget(getIntStartTime());
setNeedInit(false);
}
virtual bool nextTarget() {
double target = getTarget() + getWindowTime();
bool res = setTarget(target);
while (!_mem.empty() && !inWindow(_mem.front().first)) {
_mem.pop_front();
}
return res;
}
virtual bool needToChangeTarget(double crtTime) {
return !needInit() && !inWindow(crtTime);
}
virtual double getSampling() {
return getWindowTime();
}
virtual void pushData(double time, DataType& elem) {
_mem.push_back(std::make_pair(time, elem));
}
virtual void resetFunc() {
_mem.clear();
}
double getInputParamSampling() {
return _paramInput.getMinSampling();
}
virtual std::vector<OutputType> compute() = 0;
/**
* @overload Operation::write(ParamDataIndexInfo &pParamDataIndexInfo)
*/
void write(ParamDataIndexInfo &pParamDataIndexInfo) {
if ((pParamDataIndexInfo._nbDataToProcess > 0)) {
for (unsigned int _index = pParamDataIndexInfo._startIndex;
_index < pParamDataIndexInfo._startIndex + pParamDataIndexInfo._nbDataToProcess;
++_index) {
double crtTime = _paramInput.getTime(_index);
DataType crtVal = _paramInput.get(_index);
if (needToChangeTarget(crtTime)) {
_paramOutput->pushTime(getTarget());
_paramOutput->push(compute());
pushData(crtTime, crtVal);
nextTarget();
bool skip = false;
while (!skip && needToChangeTarget(crtTime)) {
_paramOutput->pushTime(getTarget());
_paramOutput->push(compute());
skip = nextTarget();
}
} else {
pushData(crtTime, crtVal);
if (needInit()) {
init();
}
}
}
}
if (pParamDataIndexInfo._timeIntToProcessChanged || pParamDataIndexInfo._noMoreTimeInt) {
if (!needInit()) {
do {
if (inInt(getTarget())) {
_paramOutput->pushTime(getTarget());
_paramOutput->push(compute());
}
} while (nextTarget());
}
}
}
protected:
TimeIntervalListSPtr _timeIntervalList;
TimeIntervalList::iterator _currentTimeInterval;
ParamDataSpec<DataType>& _paramInput;
ParamDataSpec<std::vector<OutputType>>*_paramOutput;
double _windowtime;
std::string _sampling;
double _minWindow;
double _maxWindow;
double _target;
bool _needInit;
std::list<std::pair<double, DataType> > _mem;
};
template<typename DataType, typename OutputType>
class SpectrumFourier : public SpectrumBase<DataType, OutputType> {
public:
SpectrumFourier(Process& pProcess, TimeIntervalListSPtr pTimeIntervalList, ParamDataSpec<DataType >¶mInput, double windowtime, std::string sampling = "center") :
SpectrumBase<DataType, OutputType>(pProcess, pTimeIntervalList, paramInput, windowtime, sampling = "center") {
_spectroSize = std::ceil(windowtime / paramInput.getMinSampling()) - 1;
}
virtual ~SpectrumFourier() {
}
virtual void init() {
if (!_targets.empty()) {
SpectrumBase<DataType, OutputType>::setTarget(_targets.front());
SpectrumBase<DataType, OutputType>::setNeedInit(false);
_targets.pop_front();
}
}
virtual bool nextTarget() {
if (!_targets.empty()) {
bool res = SpectrumBase<DataType, OutputType>::setTarget(_targets.front());
_targets.pop_front();
while (!_mem.empty() && !SpectrumBase<DataType, OutputType>::inWindow(_mem.front().first)) {
_mem.pop_front();
}
return res;
}
return false;
}
virtual bool needToChangeTarget(double crtTime) {
return !SpectrumBase<DataType, OutputType>::needInit() && !SpectrumBase<DataType, OutputType>::inWindow(crtTime) && !_targets.empty();
}
virtual double getSampling() {
return SpectrumBase<DataType, OutputType>::getInputParamSampling();
}
virtual void pushData(double time, DataType& elem) {
_mem.push_back(std::make_pair(time, elem));
_targets.push_back(time);
}
virtual void resetFunc() {
_mem.clear();
_targets.clear();
}
bool isUniform() {
if (_mem.empty())
return false;
auto it_1 = _mem.begin();
it_1++;
for (auto it = _mem.begin(); it != _mem.end(); it++) {
if (*it != _mem.back()) {
if (it_1->first - it->first != getSampling())
return false;
it_1++;
}
}
return true;
}
std::vector<OutputType> fft(std::vector<DataType> &xn, int N) {
/**
*
* @param N number of points in the dft
* @param xn date vector
*/
int len = xn.size();
std::vector<OutputType> output;
output.resize(N);
output << NotANumber();
double Xr;
double Xi;
int counter;
int k, n = 0;
for (k = 0; k < N; k++) {
Xr = 0;
Xi = 0;
counter = 0;
for (n = 0; n < len; n++) {
if (!isNAN(xn[n])) {
Xr = Xr + (OutputType) xn[n] * cos(2 * 3.141592 * k * n / N);
Xi = Xi + (OutputType) xn[n] * sin(2 * 3.141592 * k * n / N);
counter += 1;
}
}
if (counter == 0)
break;
output[k] = std::sqrt(Xr * Xr + Xi * Xi);
}
return output;
}
DataType computeInterpolation(std::list<std::pair<double, DataType> > & input, double time) {
double min_t = time - AVERAGE_TIME / 2.;
double max_t = time + AVERAGE_TIME / 2.;
std::vector<std::pair<double, DataType> > values_for_mean;
DataType nanVal;
nanVal << NotANumber();
std::pair<double, DataType> prev_value(NAN, nanVal);
std::pair<double, DataType> next_value(NAN, nanVal);
DataType value = nanVal;
for (auto it = input.begin(); it != input.end(); ++it) {
if (it->first == time) {
value = it->second;
return value;
break;
} else if (isNAN(it->second))
continue;
else if (it->first > max_t) {
next_value = *it;
break;
} else if (it->first < min_t) {
prev_value = *it;
} else {
values_for_mean.push_back(*it);
}
}
if (!values_for_mean.empty()) {
//Compute mean
DataType sum = 0;
for (auto it = values_for_mean.begin(); it != values_for_mean.end(); ++it) {
sum += it->second;
}
value = sum / (DataType) values_for_mean.size();
} else {
if (!isNAN(prev_value.first) && !isNAN(next_value.first) && (next_value.first - prev_value.first <= MAX_GAP_SIZE)) {
//Compute interpolated value
value = prev_value.second + (time - prev_value.first) / (next_value.first - prev_value.first) * (next_value.second - prev_value.second);
}
}
return value;
}
void standarize(std::list<std::pair<double, DataType> > & mem, int size, double target, double inputSampling, std::string sampling) {
auto it = mem.begin();
double time_;
std::list<std::pair<double, DataType>> valuesToAdd;
for (int i = 0; i < size; i++) {
switch (strToSamplingEnum[sampling]) {
case samplingEnum::FORWARD:
time_ = target + i*inputSampling;
break;
case samplingEnum::BACKWARD:
time_ = target + (i - size + 1) * inputSampling;
break;
default:
time_ = target + (i - size / 2 + 1) * inputSampling;
break;
}
if (i < mem.size()) {
if (it->first != time_ || isNAN(it->second)) {
std::pair<double, DataType> valueToAdd(time_, computeInterpolation(mem, time_));
valuesToAdd.push_back(valueToAdd);
}
} else {
std::pair<double, DataType> valueToAdd(time_, computeInterpolation(mem, time_));
valuesToAdd.push_back(valueToAdd);
}
it++;
}
if (valuesToAdd.empty() || valuesToAdd.size() < size - mem.size())
BOOST_THROW_EXCEPTION(AMDA::AMDA_exception() << AMDA::errno_code(AMDA_PROCESS_ERR) << AMDA::ex_msg(std::string("Spectrum:: ERROR at data interpolation")));
mem.merge(valuesToAdd);
return;
}
int numberOfNanValues(std::list<std::pair<double, DataType> > & mem){
int res = 0;
for (auto elt : mem){
if(isNAN(elt.second))
res ++;
}
return res;
}
std::vector<OutputType> compute() {
std::vector<OutputType> res;
res.resize(_spectroSize);
res << NotANumber();
bool is_uniform = isUniform();
int nans = numberOfNanValues(_mem);
if (!is_uniform || _mem.empty() || _mem.size() < 2*_spectroSize/3 || nans < 2*_spectroSize/3)
return res;
if (_mem.size() < _spectroSize)
standarize(_mem, _spectroSize, SpectrumBase<DataType, OutputType>::_target, SpectrumBase<DataType, OutputType>::getInputParamSampling(), SpectrumBase<DataType, OutputType>::_sampling);
std::vector<DataType> inputData;
for (auto elt : _mem)
inputData.push_back(elt.second);
res = fft(inputData, _spectroSize);
return res;
}
protected:
std::list<double> _targets;
std::list<std::pair<double, DataType> > _mem;
int _spectroSize;
};
} // end Spectrum
} // end Parameters
} // end AMDA
#endif /* SPECTRUM_HH */