T96.for 83.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
c
C----------------------------------------------------------------------
c
      SUBROUTINE T96_01 (IOPT,PARMOD,PS,X,Y,Z,BX,BY,BZ)
C
c     RELEASE DATE OF THIS VERSION:   JUNE 22, 1996.
C     LAST UPDATE: MAY 01, 2006:  IN THE S/R DIPOLE, SPS AND CPS WERE ADDED IN THE SAVE STATEMENT

C----------------------------------------------------------------------
C
C  WITH TWO CORRECTIONS, SUGGESTED BY T.SOTIRELIS' COMMENTS (APR.7, 1997)
C
C  (1) A "STRAY "  CLOSING PARENTHESIS WAS REMOVED IN THE S/R   R2_BIRK
C  (2) A 0/0 PROBLEM ON THE Z-AXIS WAS SIDESTEPPED (LINES 44-46 OF THE
c       DOUBLE PRECISION FUNCTION XKSI)
c--------------------------------------------------------------------
C DATA-BASED MODEL CALIBRATED BY (1) SOLAR WIND PRESSURE PDYN (NANOPASCALS),
C           (2) DST (NANOTESLA),  (3) BYIMF, AND (4) BZIMF (NANOTESLA).
c THESE INPUT PARAMETERS SHOULD BE PLACED IN THE FIRST 4 ELEMENTS
c OF THE ARRAY PARMOD(10).
C
C   THE REST OF THE INPUT VARIABLES ARE: THE GEODIPOLE TILT ANGLE PS (RADIANS),
C AND   X,Y,Z -  GSM POSITION (RE)
C
c   IOPT  IS JUST A DUMMY INPUT PARAMETER, NECESSARY TO MAKE THIS SUBROUTINE
C COMPATIBLE WITH THE NEW RELEASE (APRIL 1996) OF THE TRACING SOFTWARE
C PACKAGE (GEOPACK). IOPT VALUE DOES NOT AFFECT THE OUTPUT FIELD.
c
C
c OUTPUT:  GSM COMPONENTS OF THE EXTERNAL MAGNETIC FIELD (BX,BY,BZ, nanotesla)
C            COMPUTED AS A SUM OF CONTRIBUTIONS FROM PRINCIPAL FIELD SOURCES
C
c  (C) Copr. 1995, 1996, Nikolai A. Tsyganenko, Hughes STX, Code 695, NASA GSFC
c      Greenbelt, MD 20771, USA
c
C                            REFERENCES:
C
C               (1) N.A. TSYGANENKO AND D.P. STERN, A NEW-GENERATION GLOBAL
C           MAGNETOSPHERE FIELD MODEL  , BASED ON SPACECRAFT MAGNETOMETER DATA,
C           ISTP NEWSLETTER, V.6, NO.1, P.21, FEB.1996.
C
c              (2) N.A.TSYGANENKO,  MODELING THE EARTH'S MAGNETOSPHERIC
C           MAGNETIC FIELD CONFINED WITHIN A REALISTIC MAGNETOPAUSE,
C           J.GEOPHYS.RES., V.100, P. 5599, 1995.
C
C              (3) N.A. TSYGANENKO AND M.PEREDO, ANALYTICAL MODELS OF THE
C           MAGNETIC FIELD OF DISK-SHAPED CURRENT SHEETS, J.GEOPHYS.RES.,
C           V.99, P. 199, 1994.
C
c----------------------------------------------------------------------

      IMPLICIT REAL*8 (A-H,O-Z)
      REAL PDYN,DST,BYIMF,BZIMF,PS,X,Y,Z,BX,BY,BZ,QX,QY,QZ,PARMOD(10),
     *   A(9)
c
      DATA PDYN0,EPS10 /2.,3630.7/
C
      DATA A/1.162,22.344,18.50,2.602,6.903,5.287,0.5790,0.4462,0.7850/
C
      DATA  AM0,S0,X00,DSIG/70.,1.08,5.48,0.005/
      DATA  DELIMFX,DELIMFY /20.,10./
C
       PDYN=PARMOD(1)
       DST=PARMOD(2)
       BYIMF=PARMOD(3)
       BZIMF=PARMOD(4)
C
       SPS=SIN(PS)
       PPS=PS
C
       DEPR=0.8*DST-13.*SQRT(PDYN)  !  DEPR is an estimate of total near-Earth
c                                         depression, based on DST and Pdyn
c                                             (usually, DEPR < 0 )
C
C  CALCULATE THE IMF-RELATED QUANTITIES:
C
       Bt=SQRT(BYIMF**2+BZIMF**2)

       IF (BYIMF.EQ.0..AND.BZIMF.EQ.0.) THEN
          THETA=0.
          GOTO 1
       ENDIF
C
       THETA=ATAN2(BYIMF,BZIMF)
       IF (THETA.LE.0.D0) THETA=THETA+6.2831853
  1    CT=COS(THETA)
       ST=SIN(THETA)
       EPS=718.5*SQRT(Pdyn)*Bt*SIN(THETA/2.)
C
       FACTEPS=EPS/EPS10-1.
       FACTPD=SQRT(PDYN/PDYN0)-1.
C
       RCAMPL=-A(1)*DEPR     !   RCAMPL is the amplitude of the ring current
c                  (positive and equal to abs.value of RC depression at origin)
C
       TAMPL2=A(2)+A(3)*FACTPD+A(4)*FACTEPS
       TAMPL3=A(5)+A(6)*FACTPD
       B1AMPL=A(7)+A(8)*FACTEPS
       B2AMPL=20.*B1AMPL  ! IT IS EQUIVALENT TO ASSUMING THAT THE TOTAL CURRENT
C                           IN THE REGION 2 SYSTEM IS 40% OF THAT IN REGION 1
       RECONN=A(9)
C
       XAPPA=(PDYN/PDYN0)**0.14
       XAPPA3=XAPPA**3
       YS=Y*CT-Z*ST
       ZS=Z*CT+Y*ST
C
       FACTIMF=EXP(X/DELIMFX-(YS/DELIMFY)**2)
C
C  CALCULATE THE "IMF" COMPONENTS OUTSIDE THE LAYER  (HENCE BEGIN WITH "O")
C
       OIMFX=0.
       OIMFY=RECONN*BYIMF*FACTIMF
       OIMFZ=RECONN*BZIMF*FACTIMF
C
       RIMFAMPL=RECONN*Bt
C
       PPS=PS
       XX=X*XAPPA
       YY=Y*XAPPA
       ZZ=Z*XAPPA
C
C  SCALE AND CALCULATE THE MAGNETOPAUSE PARAMETERS FOR THE INTERPOLATION ACROSS
C   THE BOUNDARY LAYER (THE COORDINATES XX,YY,ZZ  ARE ALREADY SCALED)
C
       X0=X00/XAPPA
       AM=AM0/XAPPA
       RHO2=Y**2+Z**2
       ASQ=AM**2
       XMXM=AM+X-X0
       IF (XMXM.LT.0.) XMXM=0. ! THE BOUNDARY IS A CYLINDER TAILWARD OF X=X0-AM
       AXX0=XMXM**2
       ARO=ASQ+RHO2
       SIGMA=SQRT((ARO+AXX0+SQRT((ARO+AXX0)**2-4.*ASQ*AXX0))/(2.*ASQ))
C
C   NOW, THERE ARE THREE POSSIBLE CASES:
C    (1) INSIDE THE MAGNETOSPHERE
C    (2) IN THE BOUNDARY LAYER
C    (3) OUTSIDE THE MAGNETOSPHERE AND B.LAYER
C       FIRST OF ALL, CONSIDER THE CASES (1) AND (2):
C
      IF (SIGMA.LT.S0+DSIG) THEN  !  CALCULATE THE T95_06 FIELD (WITH THE
C                                POTENTIAL "PENETRATED" INTERCONNECTION FIELD):

       CALL DIPSHLD(PPS,XX,YY,ZZ,CFX,CFY,CFZ)
       CALL TAILRC96(SPS,XX,YY,ZZ,BXRC,BYRC,BZRC,BXT2,BYT2,BZT2,
     *   BXT3,BYT3,BZT3)
       CALL BIRK1TOT_02(PPS,XX,YY,ZZ,R1X,R1Y,R1Z)
       CALL BIRK2TOT_02(PPS,XX,YY,ZZ,R2X,R2Y,R2Z)
       CALL INTERCON(XX,YS*XAPPA,ZS*XAPPA,RIMFX,RIMFYS,RIMFZS)
       RIMFY=RIMFYS*CT+RIMFZS*ST
       RIMFZ=RIMFZS*CT-RIMFYS*ST
C
      FX=CFX*XAPPA3+RCAMPL*BXRC +TAMPL2*BXT2+TAMPL3*BXT3
     *  +B1AMPL*R1X +B2AMPL*R2X +RIMFAMPL*RIMFX
      FY=CFY*XAPPA3+RCAMPL*BYRC +TAMPL2*BYT2+TAMPL3*BYT3
     *  +B1AMPL*R1Y +B2AMPL*R2Y +RIMFAMPL*RIMFY
      FZ=CFZ*XAPPA3+RCAMPL*BZRC +TAMPL2*BZT2+TAMPL3*BZT3
     *  +B1AMPL*R1Z +B2AMPL*R2Z +RIMFAMPL*RIMFZ
C
C  NOW, LET US CHECK WHETHER WE HAVE THE CASE (1). IF YES - WE ARE DONE:
C
       IF (SIGMA.LT.S0-DSIG) THEN
         BX=FX
         BY=FY
         BZ=FZ
                        ELSE  !  THIS IS THE MOST COMPLEX CASE: WE ARE INSIDE
C                                         THE INTERPOLATION REGION
       FINT=0.5*(1.-(SIGMA-S0)/DSIG)
       FEXT=0.5*(1.+(SIGMA-S0)/DSIG)
C
       CALL DIPOLE(PS,X,Y,Z,QX,QY,QZ)
       BX=(FX+QX)*FINT+OIMFX*FEXT -QX
       BY=(FY+QY)*FINT+OIMFY*FEXT -QY
       BZ=(FZ+QZ)*FINT+OIMFZ*FEXT -QZ
c
        ENDIF  !   THE CASES (1) AND (2) ARE EXHAUSTED; THE ONLY REMAINING
C                      POSSIBILITY IS NOW THE CASE (3):
         ELSE
                CALL DIPOLE(PS,X,Y,Z,QX,QY,QZ)
                BX=OIMFX-QX
                BY=OIMFY-QY
                BZ=OIMFZ-QZ
         ENDIF
C
       RETURN
       END
C=====================================================================

      SUBROUTINE DIPSHLD(PS,X,Y,Z,BX,BY,BZ)
C
C   CALCULATES GSM COMPONENTS OF THE EXTERNAL MAGNETIC FIELD DUE TO
C    SHIELDING OF THE EARTH'S DIPOLE ONLY
C
       IMPLICIT REAL*8 (A-H,O-Z)
       DIMENSION A1(12),A2(12)
      DATA A1 /.24777,-27.003,-.46815,7.0637,-1.5918,-.90317E-01,57.522,
     * 13.757,2.0100,10.458,4.5798,2.1695/
      DATA A2/-.65385,-18.061,-.40457,-5.0995,1.2846,.78231E-01,39.592,
     * 13.291,1.9970,10.062,4.5140,2.1558/
C
          CPS=DCOS(PS)
          SPS=DSIN(PS)
          CALL CYLHARM(A1,X,Y,Z,HX,HY,HZ)
          CALL CYLHAR1(A2,X,Y,Z,FX,FY,FZ)
C
          BX=HX*CPS+FX*SPS
          BY=HY*CPS+FY*SPS
          BZ=HZ*CPS+FZ*SPS
        RETURN
       END
C
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
C  THIS CODE YIELDS THE SHIELDING FIELD FOR THE PERPENDICULAR DIPOLE
C
         SUBROUTINE  CYLHARM( A, X,Y,Z, BX,BY,BZ)
C
C
C   ***  N.A. Tsyganenko ***  Sept. 14-18, 1993; revised March 16, 1994 ***
C
C   An approximation for the Chapman-Ferraro field by a sum of 6 cylin-
c   drical harmonics (see pp. 97-113 in the brown GSFC notebook #1)
c
C      Description of parameters:
C
C  A   - input vector containing model parameters;
C  X,Y,Z   -  input GSM coordinates
C  BX,BY,BZ - output GSM components of the shielding field
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C  The 6 linear parameters A(1)-A(6) are amplitudes of the cylindrical harmonic
c       terms.
c  The 6 nonlinear parameters A(7)-A(12) are the corresponding scale lengths
C       for each term (see GSFC brown notebook).
c
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
	 IMPLICIT  REAL * 8  (A - H, O - Z)
C
	 DIMENSION  A(12)
C
           RHO=DSQRT(Y**2+Z**2)
            IF (RHO.LT.1.D-8) THEN
               SINFI=1.D0
               COSFI=0.D0
               RHO=1.D-8
               GOTO 1
            ENDIF
C
           SINFI=Z/RHO
           COSFI=Y/RHO
  1        SINFI2=SINFI**2
           SI2CO2=SINFI2-COSFI**2
C
             BX=0.D0
             BY=0.D0
             BZ=0.D0
C
	   DO 11 I=1,3
             DZETA=RHO/A(I+6)
             XJ0=BES(DZETA,0)
             XJ1=BES(DZETA,1)
             XEXP=DEXP(X/A(I+6))
             BX=BX-A(I)*XJ1*XEXP*SINFI
             BY=BY+A(I)*(2.D0*XJ1/DZETA-XJ0)*XEXP*SINFI*COSFI
             BZ=BZ+A(I)*(XJ1/DZETA*SI2CO2-XJ0*SINFI2)*XEXP
   11        CONTINUE
c
	   DO 12 I=4,6
             DZETA=RHO/A(I+6)
             XKSI=X/A(I+6)
             XJ0=BES(DZETA,0)
             XJ1=BES(DZETA,1)
             XEXP=DEXP(XKSI)
             BRHO=(XKSI*XJ0-(DZETA**2+XKSI-1.D0)*XJ1/DZETA)*XEXP*SINFI
             BPHI=(XJ0+XJ1/DZETA*(XKSI-1.D0))*XEXP*COSFI
             BX=BX+A(I)*(DZETA*XJ0+XKSI*XJ1)*XEXP*SINFI
             BY=BY+A(I)*(BRHO*COSFI-BPHI*SINFI)
             BZ=BZ+A(I)*(BRHO*SINFI+BPHI*COSFI)
   12        CONTINUE
C
c
         RETURN
	 END
C
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C
C  THIS CODE YIELDS THE SHIELDING FIELD FOR THE PARALLEL DIPOLE
C
         SUBROUTINE  CYLHAR1(A, X,Y,Z, BX,BY,BZ)
C
C
C   ***  N.A. Tsyganenko ***  Sept. 14-18, 1993; revised March 16, 1994 ***
C
C   An approximation of the Chapman-Ferraro field by a sum of 6 cylin-
c   drical harmonics (see pages 97-113 in the brown GSFC notebook #1)
c
C      Description of parameters:
C
C  A   - input vector containing model parameters;
C  X,Y,Z - input GSM coordinates,
C  BX,BY,BZ - output GSM components of the shielding field
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C      The 6 linear parameters A(1)-A(6) are amplitudes of the cylindrical
c  harmonic terms.
c      The 6 nonlinear parameters A(7)-A(12) are the corresponding scale
c  lengths for each term (see GSFC brown notebook).
c
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
	 IMPLICIT  REAL * 8  (A - H, O - Z)
C
	 DIMENSION  A(12)
C
           RHO=DSQRT(Y**2+Z**2)
            IF (RHO.LT.1.D-10) THEN
               SINFI=1.D0
               COSFI=0.D0
               GOTO 1
            ENDIF
C
           SINFI=Z/RHO
           COSFI=Y/RHO
C
   1      BX=0.D0
          BY=0.D0
          BZ=0.D0
C
             DO 11 I=1,3
             DZETA=RHO/A(I+6)
             XKSI=X/A(I+6)
             XJ0=BES(DZETA,0)
             XJ1=BES(DZETA,1)
             XEXP=DEXP(XKSI)
             BRHO=XJ1*XEXP
             BX=BX-A(I)*XJ0*XEXP
             BY=BY+A(I)*BRHO*COSFI
             BZ=BZ+A(I)*BRHO*SINFI
   11        CONTINUE
c
	   DO 12 I=4,6
             DZETA=RHO/A(I+6)
             XKSI=X/A(I+6)
             XJ0=BES(DZETA,0)
             XJ1=BES(DZETA,1)
             XEXP=DEXP(XKSI)
             BRHO=(DZETA*XJ0+XKSI*XJ1)*XEXP
             BX=BX+A(I)*(DZETA*XJ1-XJ0*(XKSI+1.D0))*XEXP
             BY=BY+A(I)*BRHO*COSFI
             BZ=BZ+A(I)*BRHO*SINFI
   12        CONTINUE
C
         RETURN
	 END

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C
      DOUBLE PRECISION FUNCTION BES(X,K)
      IMPLICIT REAL*8 (A-H,O-Z)
C
      IF (K.EQ.0) THEN
        BES=BES0(X)
        RETURN
      ENDIF
C
      IF (K.EQ.1) THEN
        BES=BES1(X)
        RETURN
      ENDIF
C
      IF (X.EQ.0.D0) THEN
        BES=0.D0
        RETURN
      ENDIF
C
      G=2.D0/X
      IF (X.LE.DFLOAT(K)) GOTO 10
C
      N=1
      XJN=BES1(X)
      XJNM1=BES0(X)
C
  1   XJNP1=G*N*XJN-XJNM1
      N=N+1
      IF (N.LT.K) GOTO 2
      BES=XJNP1
      RETURN
C
 2    XJNM1=XJN
      XJN=XJNP1
      GOTO 1
C
 10   N=24
      XJN=1.D0
      XJNP1=0.D0
      SUM=0.D0
C
  3   IF (MOD(N,2).EQ.0) SUM=SUM+XJN
      XJNM1=G*N*XJN-XJNP1
      N=N-1
C
      XJNP1=XJN
      XJN=XJNM1
      IF (N.EQ.K) BES=XJN
C
      IF (DABS(XJN).GT.1.D5) THEN
        XJNP1=XJNP1*1.D-5
        XJN=XJN*1.D-5
        SUM=SUM*1.D-5
        IF (N.LE.K) BES=BES*1.D-5
      ENDIF
C
      IF (N.EQ.0) GOTO 4
      GOTO 3
C
  4   SUM=XJN+2.D0*SUM
      BES=BES/SUM
      RETURN
      END
c-------------------------------------------------------------------
c
       DOUBLE PRECISION FUNCTION BES0(X)
C
        IMPLICIT REAL*8 (A-H,O-Z)
C
        IF (DABS(X).LT.3.D0) THEN
          X32=(X/3.D0)**2
          BES0=1.D0-X32*(2.2499997D0-X32*(1.2656208D0-X32*
     *    (0.3163866D0-X32*(0.0444479D0-X32*(0.0039444D0
     *     -X32*0.00021D0)))))
        ELSE
        XD3=3.D0/X
        F0=0.79788456D0-XD3*(0.00000077D0+XD3*(0.00552740D0+XD3*
     *   (0.00009512D0-XD3*(0.00137237D0-XD3*(0.00072805D0
     *   -XD3*0.00014476D0)))))
        T0=X-0.78539816D0-XD3*(0.04166397D0+XD3*(0.00003954D0-XD3*
     *   (0.00262573D0-XD3*(0.00054125D0+XD3*(0.00029333D0
     *   -XD3*0.00013558D0)))))
        BES0=F0/DSQRT(X)*DCOS(T0)
       ENDIF
       RETURN
       END
c
c--------------------------------------------------------------------------
c
       DOUBLE PRECISION FUNCTION BES1(X)
C
        IMPLICIT REAL*8 (A-H,O-Z)
C
       IF (DABS(X).LT.3.D0) THEN
        X32=(X/3.D0)**2
        BES1XM1=0.5D0-X32*(0.56249985D0-X32*(0.21093573D0-X32*
     *  (0.03954289D0-X32*(0.00443319D0-X32*(0.00031761D0
     *  -X32*0.00001109D0)))))
         BES1=BES1XM1*X
       ELSE
        XD3=3.D0/X
        F1=0.79788456D0+XD3*(0.00000156D0+XD3*(0.01659667D0+XD3*
     *   (0.00017105D0-XD3*(0.00249511D0-XD3*(0.00113653D0
     *   -XD3*0.00020033D0)))))
        T1=X-2.35619449D0+XD3*(0.12499612D0+XD3*(0.0000565D0-XD3*
     *   (0.00637879D0-XD3*(0.00074348D0+XD3*(0.00079824D0
     *   -XD3*0.00029166D0)))))
        BES1=F1/DSQRT(X)*DCOS(T1)
       ENDIF
       RETURN
       END
C------------------------------------------------------------
C
         SUBROUTINE INTERCON(X,Y,Z,BX,BY,BZ)
C
C      Calculates the potential interconnection field inside the magnetosphere,
c  corresponding to  DELTA_X = 20Re and DELTA_Y = 10Re (NB#3, p.90, 6/6/1996).
C  The position (X,Y,Z) and field components BX,BY,BZ are given in the rotated
c   coordinate system, in which the Z-axis is always directed along the BzIMF
c   (i.e. rotated by the IMF clock angle Theta)
C   It is also assumed that the IMF Bt=1, so that the components should be
c     (i) multiplied by the actual Bt, and
c     (ii) transformed to standard GSM coords by rotating back around X axis
c              by the angle -Theta.
c
C      Description of parameters:
C
C     X,Y,Z -   GSM POSITION
C      BX,BY,BZ - INTERCONNECTION FIELD COMPONENTS INSIDE THE MAGNETOSPHERE
C        OF A STANDARD SIZE (TO TAKE INTO ACCOUNT EFFECTS OF PRESSURE CHANGES,
C         APPLY THE SCALING TRANSFORMATION)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C     The 9 linear parameters are amplitudes of the "cartesian" harmonics
c     The 6 nonlinear parameters are the scales Pi and Ri entering
c    the arguments of exponents, sines, and cosines in the 9 "Cartesian"
c       harmonics (3+3)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
        IMPLICIT  REAL * 8  (A - H, O - Z)
C
        DIMENSION A(15),RP(3),RR(3),P(3),R(3)
        SAVE
C
      DATA A/-8.411078731,5932254.951,-9073284.93,-11.68794634,
     * 6027598.824,-9218378.368,-6.508798398,-11824.42793,18015.66212,
     * 7.99754043,13.9669886,90.24475036,16.75728834,1015.645781,
     * 1553.493216/
C
        DATA M/0/
C
        IF (M.NE.0) GOTO 111
        M=1
C
         P(1)=A(10)
         P(2)=A(11)
         P(3)=A(12)
         R(1)=A(13)
         R(2)=A(14)
         R(3)=A(15)
C
C
           DO 11 I=1,3
            RP(I)=1.D0/P(I)
  11        RR(I)=1.D0/R(I)
C
  111   CONTINUE
C
            L=0
C
               BX=0.
               BY=0.
               BZ=0.
C
c        "PERPENDICULAR" KIND OF SYMMETRY ONLY
C
               DO 2 I=1,3
                  CYPI=DCOS(Y*RP(I))
                  SYPI=DSIN(Y*RP(I))
C
                DO 2 K=1,3
                   SZRK=DSIN(Z*RR(K))
                   CZRK=DCOS(Z*RR(K))
                     SQPR=DSQRT(RP(I)**2+RR(K)**2)
                      EPR=DEXP(X*SQPR)
C
                     HX=-SQPR*EPR*CYPI*SZRK
                     HY=RP(I)*EPR*SYPI*SZRK
                     HZ=-RR(K)*EPR*CYPI*CZRK
             L=L+1
c
          BX=BX+A(L)*HX
          BY=BY+A(L)*HY
          BZ=BZ+A(L)*HZ
  2   CONTINUE
C
      RETURN
      END

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      SUBROUTINE TAILRC96(SPS,X,Y,Z,BXRC,BYRC,BZRC,BXT2,BYT2,BZT2,
     *   BXT3,BYT3,BZT3)
c
c  COMPUTES THE COMPONENTS OF THE FIELD OF THE MODEL RING CURRENT AND THREE
c                   TAIL MODES WITH UNIT AMPLITUDES
C      (FOR THE RING CURRENT, IT MEANS THE DISTURBANCE OF Bz=-1nT AT ORIGIN,
C   AND FOR THE TAIL MODES IT MEANS MAXIMAL BX JUST ABOVE THE SHEET EQUAL 1 nT.
C
         IMPLICIT REAL*8 (A-H,O-Z)
         DIMENSION ARC(48),ATAIL2(48),ATAIL3(48)
         COMMON /WARP/ CPSS,SPSS,DPSRR,RPS,WARP,D,XS,ZS,DXSX,DXSY,DXSZ,
     *   DZSX,DZSY,DZSZ,DZETAS,DDZETADX,DDZETADY,DDZETADZ,ZSWW
C
         DATA ARC/-3.087699646,3.516259114,18.81380577,-13.95772338,
     *  -5.497076303,0.1712890838,2.392629189,-2.728020808,-14.79349936,
     *  11.08738083,4.388174084,0.2492163197E-01,0.7030375685,
     *-.7966023165,-3.835041334,2.642228681,-0.2405352424,-0.7297705678,
     * -0.3680255045,0.1333685557,2.795140897,-1.078379954,0.8014028630,
     * 0.1245825565,0.6149982835,-0.2207267314,-4.424578723,1.730471572,
     * -1.716313926,-0.2306302941,-0.2450342688,0.8617173961E-01,
     *  1.54697858,-0.6569391113,-0.6537525353,0.2079417515,12.75434981,
     *  11.37659788,636.4346279,1.752483754,3.604231143,12.83078674,
     * 7.412066636,9.434625736,676.7557193,1.701162737,3.580307144,
     *  14.64298662/
C
        DATA ATAIL2/.8747515218,-.9116821411,2.209365387,-2.159059518,
     * -7.059828867,5.924671028,-1.916935691,1.996707344,-3.877101873,
     * 3.947666061,11.38715899,-8.343210833,1.194109867,-1.244316975,
     * 3.73895491,-4.406522465,-20.66884863,3.020952989,.2189908481,
     * -.09942543549,-.927225562,.1555224669,.6994137909,-.08111721003,
     * -.7565493881,.4686588792,4.266058082,-.3717470262,-3.920787807,
     * .02298569870,.7039506341,-.5498352719,-6.675140817,.8279283559,
     * -2.234773608,-1.622656137,5.187666221,6.802472048,39.13543412,
     *  2.784722096,6.979576616,25.71716760,4.495005873,8.068408272,
     * 93.47887103,4.158030104,9.313492566,57.18240483/
C
        DATA ATAIL3/-19091.95061,-3011.613928,20582.16203,4242.918430,
     * -2377.091102,-1504.820043,19884.04650,2725.150544,-21389.04845,
     * -3990.475093,2401.610097,1548.171792,-946.5493963,490.1528941,
     * 986.9156625,-489.3265930,-67.99278499,8.711175710,-45.15734260,
     * -10.76106500,210.7927312,11.41764141,-178.0262808,.7558830028,
     *  339.3806753,9.904695974,69.50583193,-118.0271581,22.85935896,
     * 45.91014857,-425.6607164,15.47250738,118.2988915,65.58594397,
     * -201.4478068,-14.57062940,19.69877970,20.30095680,86.45407420,
     * 22.50403727,23.41617329,48.48140573,24.61031329,123.5395974,
     * 223.5367692,39.50824342,65.83385762,266.2948657/
C
       DATA RH,DR,G,D0,DELTADY/9.,4.,10.,2.,10./
C
C   TO ECONOMIZE THE CODE, WE FIRST CALCULATE COMMON VARIABLES, WHICH ARE
C      THE SAME FOR ALL MODES, AND PUT THEM IN THE COMMON-BLOCK /WARP/
C
       DR2=DR*DR
       C11=DSQRT((1.D0+RH)**2+DR2)
       C12=DSQRT((1.D0-RH)**2+DR2)
       C1=C11-C12
       SPSC1=SPS/C1
       RPS=0.5*(C11+C12)*SPS  !  THIS IS THE SHIFT OF OF THE SHEET WITH RESPECT
C                            TO GSM EQ.PLANE FOR THE 3RD (ASYMPTOTIC) TAIL MODE
C
        R=DSQRT(X*X+Y*Y+Z*Z)
        SQ1=DSQRT((R+RH)**2+DR2)
        SQ2=DSQRT((R-RH)**2+DR2)
        C=SQ1-SQ2
        CS=(R+RH)/SQ1-(R-RH)/SQ2
        SPSS=SPSC1/R*C
        CPSS=DSQRT(1.D0-SPSS**2)
        DPSRR=SPS/(R*R)*(CS*R-C)/DSQRT((R*C1)**2-(C*SPS)**2)
C
        WFAC=Y/(Y**4+1.D4)   !   WARPING
        W=WFAC*Y**3
        WS=4.D4*Y*WFAC**2
        WARP=G*SPS*W
        XS=X*CPSS-Z*SPSS
        ZSWW=Z*CPSS+X*SPSS  ! "WW" MEANS "WITHOUT Y-Z WARPING" (IN X-Z ONLY)
        ZS=ZSWW +WARP

        DXSX=CPSS-X*ZSWW*DPSRR
        DXSY=-Y*ZSWW*DPSRR
        DXSZ=-SPSS-Z*ZSWW*DPSRR
        DZSX=SPSS+X*XS*DPSRR
        DZSY=XS*Y*DPSRR  +G*SPS*WS  !  THE LAST TERM IS FOR THE Y-Z WARP
        DZSZ=CPSS+XS*Z*DPSRR        !      (TAIL MODES ONLY)

        D=D0+DELTADY*(Y/20.D0)**2   !  SHEET HALF-THICKNESS FOR THE TAIL MODES
        DDDY=DELTADY*Y*0.005D0      !  (THICKENS TO FLANKS, BUT NO VARIATION
C                                         ALONG X, IN CONTRAST TO RING CURRENT)
C
        DZETAS=DSQRT(ZS**2+D**2)  !  THIS IS THE SAME SIMPLE WAY TO SPREAD
C                                        OUT THE SHEET, AS THAT USED IN T89
        DDZETADX=ZS*DZSX/DZETAS
        DDZETADY=(ZS*DZSY+D*DDDY)/DZETAS
        DDZETADZ=ZS*DZSZ/DZETAS
C
        CALL SHLCAR3X3(ARC,X,Y,Z,SPS,WX,WY,WZ)
        CALL RINGCURR96(X,Y,Z,HX,HY,HZ)
        BXRC=WX+HX
        BYRC=WY+HY
        BZRC=WZ+HZ
C
        CALL SHLCAR3X3(ATAIL2,X,Y,Z,SPS,WX,WY,WZ)
        CALL TAILDISK(X,Y,Z,HX,HY,HZ)
        BXT2=WX+HX
        BYT2=WY+HY
        BZT2=WZ+HZ
C
        CALL SHLCAR3X3(ATAIL3,X,Y,Z,SPS,WX,WY,WZ)
        CALL TAIL87(X,Z,HX,HZ)
        BXT3=WX+HX
        BYT3=WY
        BZT3=WZ+HZ
C
        RETURN
        END
C
c********************************************************************
C
        SUBROUTINE RINGCURR96(X,Y,Z,BX,BY,BZ)
c
c       THIS SUBROUTINE COMPUTES THE COMPONENTS OF THE RING CURRENT FIELD,
C        SIMILAR TO THAT DESCRIBED BY TSYGANENKO AND PEREDO (1994).  THE
C          DIFFERENCE IS THAT NOW WE USE SPACEWARPING, AS DESCRIBED IN THE
C           PAPER ON MODELING BIRKELAND CURRENTS (TSYGANENKO AND STERN, 1996),
C            INSTEAD OF SHEARING IT IN THE SPIRIT OF THE T89 TAIL MODEL.
C
C          IN  ADDITION, INSTEAD OF 7 TERMS FOR THE RING CURRENT MODEL, WE USE
C             NOW ONLY 2 TERMS;  THIS SIMPLIFICATION ALSO GIVES RISE TO AN
C                EASTWARD RING CURRENT LOCATED EARTHWARD FROM THE MAIN ONE,
C                  IN LINE WITH WHAT IS ACTUALLY OBSERVED
C
C             FOR DETAILS, SEE NB #3, PAGES 70-73
C
        IMPLICIT REAL*8 (A-H,O-Z)
        DIMENSION F(2),BETA(2)
        COMMON /WARP/ CPSS,SPSS,DPSRR, XNEXT(3),XS,ZSWARPED,DXSX,DXSY,
     *   DXSZ,DZSX,DZSYWARPED,DZSZ,OTHER(4),ZS  !  ZS HERE IS WITHOUT Y-Z WARP
C

      DATA D0,DELTADX,XD,XLDX /2.,0.,0.,4./  !  ACHTUNG !!  THE RC IS NOW
C                                            COMPLETELY SYMMETRIC (DELTADX=0)

C
        DATA F,BETA /569.895366D0,-1603.386993D0,2.722188D0,3.766875D0/
C
C  THE ORIGINAL VALUES OF F(I) WERE MULTIPLIED BY BETA(I) (TO REDUCE THE
C     NUMBER OF MULTIPLICATIONS BELOW)  AND BY THE FACTOR -0.43, NORMALIZING
C      THE DISTURBANCE AT ORIGIN  TO  B=-1nT
C
           DZSY=XS*Y*DPSRR  ! NO WARPING IN THE Y-Z PLANE (ALONG X ONLY), AND
C                         THIS IS WHY WE DO NOT USE  DZSY FROM THE COMMON-BLOCK
           XXD=X-XD
           FDX=0.5D0*(1.D0+XXD/DSQRT(XXD**2+XLDX**2))
           DDDX=DELTADX*0.5D0*XLDX**2/DSQRT(XXD**2+XLDX**2)**3
           D=D0+DELTADX*FDX

           DZETAS=DSQRT(ZS**2+D**2)  !  THIS IS THE SAME SIMPLE WAY TO SPREAD
C                                        OUT THE SHEET, AS THAT USED IN T89
           RHOS=DSQRT(XS**2+Y**2)
           DDZETADX=(ZS*DZSX+D*DDDX)/DZETAS
           DDZETADY=ZS*DZSY/DZETAS
           DDZETADZ=ZS*DZSZ/DZETAS
         IF (RHOS.LT.1.D-5) THEN
            DRHOSDX=0.D0
            DRHOSDY=DSIGN(1.D0,Y)
            DRHOSDZ=0.D0
          ELSE
           DRHOSDX=XS*DXSX/RHOS
           DRHOSDY=(XS*DXSY+Y)/RHOS
           DRHOSDZ=XS*DXSZ/RHOS
         ENDIF
C
           BX=0.D0
           BY=0.D0
           BZ=0.D0
C
           DO 1 I=1,2
C
           BI=BETA(I)
C
           S1=DSQRT((DZETAS+BI)**2+(RHOS+BI)**2)
           S2=DSQRT((DZETAS+BI)**2+(RHOS-BI)**2)
           DS1DDZ=(DZETAS+BI)/S1
           DS2DDZ=(DZETAS+BI)/S2
           DS1DRHOS=(RHOS+BI)/S1
           DS2DRHOS=(RHOS-BI)/S2
C
           DS1DX=DS1DDZ*DDZETADX+DS1DRHOS*DRHOSDX
           DS1DY=DS1DDZ*DDZETADY+DS1DRHOS*DRHOSDY
           DS1DZ=DS1DDZ*DDZETADZ+DS1DRHOS*DRHOSDZ
C
           DS2DX=DS2DDZ*DDZETADX+DS2DRHOS*DRHOSDX
           DS2DY=DS2DDZ*DDZETADY+DS2DRHOS*DRHOSDY
           DS2DZ=DS2DDZ*DDZETADZ+DS2DRHOS*DRHOSDZ
C
           S1TS2=S1*S2
           S1PS2=S1+S2
           S1PS2SQ=S1PS2**2
           FAC1=DSQRT(S1PS2SQ-(2.D0*BI)**2)
           AS=FAC1/(S1TS2*S1PS2SQ)
           TERM1=1.D0/(S1TS2*S1PS2*FAC1)
           FAC2=AS/S1PS2SQ
           DASDS1=TERM1-FAC2/S1*(S2*S2+S1*(3.D0*S1+4.D0*S2))
           DASDS2=TERM1-FAC2/S2*(S1*S1+S2*(3.D0*S2+4.D0*S1))
C
           DASDX=DASDS1*DS1DX+DASDS2*DS2DX
           DASDY=DASDS1*DS1DY+DASDS2*DS2DY
           DASDZ=DASDS1*DS1DZ+DASDS2*DS2DZ
C
      BX=BX+F(I)*((2.D0*AS+Y*DASDY)*SPSS-XS*DASDZ
     *   +AS*DPSRR*(Y**2*CPSS+Z*ZS))
      BY=BY-F(I)*Y*(AS*DPSRR*XS+DASDZ*CPSS+DASDX*SPSS)
  1   BZ=BZ+F(I)*((2.D0*AS+Y*DASDY)*CPSS+XS*DASDX
     *   -AS*DPSRR*(X*ZS+Y**2*SPSS))
C
       RETURN
       END
C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C
         SUBROUTINE TAILDISK(X,Y,Z,BX,BY,BZ)
C
c
c       THIS SUBROUTINE COMPUTES THE COMPONENTS OF THE TAIL CURRENT FIELD,
C        SIMILAR TO THAT DESCRIBED BY TSYGANENKO AND PEREDO (1994).  THE
C          DIFFERENCE IS THAT NOW WE USE SPACEWARPING, AS DESCRIBED IN OUR
C           PAPER ON MODELING BIRKELAND CURRENTS (TSYGANENKO AND STERN, 1996)
C            INSTEAD OF SHEARING IT IN THE SPIRIT OF T89 TAIL MODEL.
C
C          IN  ADDITION, INSTEAD OF 8 TERMS FOR THE TAIL CURRENT MODEL, WE USE
C           NOW ONLY 4 TERMS
C
C             FOR DETAILS, SEE NB #3, PAGES 74-
C
         IMPLICIT REAL*8 (A-H,O-Z)
         DIMENSION F(4),BETA(4)
         COMMON /WARP/ CPSS,SPSS,DPSRR,XNEXT(3),XS,ZS,DXSX,DXSY,DXSZ,
     *    OTHER(3),DZETAS,DDZETADX,DDZETADY,DDZETADZ,ZSWW
C
         DATA XSHIFT /4.5/
C
         DATA F,BETA
     * / -745796.7338D0,1176470.141D0,-444610.529D0,-57508.01028D0,
     *   7.9250000D0,8.0850000D0,8.4712500D0,27.89500D0/
c
c  here original F(I) are multiplied by BETA(I), to economize
c    calculations
C
           RHOS=DSQRT((XS-XSHIFT)**2+Y**2)
         IF (RHOS.LT.1.D-5) THEN
            DRHOSDX=0.D0
            DRHOSDY=DSIGN(1.D0,Y)
            DRHOSDZ=0.D0
         ELSE
           DRHOSDX=(XS-XSHIFT)*DXSX/RHOS
           DRHOSDY=((XS-XSHIFT)*DXSY+Y)/RHOS
           DRHOSDZ=(XS-XSHIFT)*DXSZ/RHOS
         ENDIF
C
           BX=0.D0
           BY=0.D0
           BZ=0.D0
C
           DO 1 I=1,4
C
           BI=BETA(I)
C
           S1=DSQRT((DZETAS+BI)**2+(RHOS+BI)**2)
           S2=DSQRT((DZETAS+BI)**2+(RHOS-BI)**2)
           DS1DDZ=(DZETAS+BI)/S1
           DS2DDZ=(DZETAS+BI)/S2
           DS1DRHOS=(RHOS+BI)/S1
           DS2DRHOS=(RHOS-BI)/S2
C
           DS1DX=DS1DDZ*DDZETADX+DS1DRHOS*DRHOSDX
           DS1DY=DS1DDZ*DDZETADY+DS1DRHOS*DRHOSDY
           DS1DZ=DS1DDZ*DDZETADZ+DS1DRHOS*DRHOSDZ
C
           DS2DX=DS2DDZ*DDZETADX+DS2DRHOS*DRHOSDX
           DS2DY=DS2DDZ*DDZETADY+DS2DRHOS*DRHOSDY
           DS2DZ=DS2DDZ*DDZETADZ+DS2DRHOS*DRHOSDZ
C
           S1TS2=S1*S2
           S1PS2=S1+S2
           S1PS2SQ=S1PS2**2
           FAC1=DSQRT(S1PS2SQ-(2.D0*BI)**2)
           AS=FAC1/(S1TS2*S1PS2SQ)
           TERM1=1.D0/(S1TS2*S1PS2*FAC1)
           FAC2=AS/S1PS2SQ
           DASDS1=TERM1-FAC2/S1*(S2*S2+S1*(3.D0*S1+4.D0*S2))
           DASDS2=TERM1-FAC2/S2*(S1*S1+S2*(3.D0*S2+4.D0*S1))
C
           DASDX=DASDS1*DS1DX+DASDS2*DS2DX
           DASDY=DASDS1*DS1DY+DASDS2*DS2DY
           DASDZ=DASDS1*DS1DZ+DASDS2*DS2DZ
C
      BX=BX+F(I)*((2.D0*AS+Y*DASDY)*SPSS-(XS-XSHIFT)*DASDZ
     *   +AS*DPSRR*(Y**2*CPSS+Z*ZSWW))
C
      BY=BY-F(I)*Y*(AS*DPSRR*XS+DASDZ*CPSS+DASDX*SPSS)
  1   BZ=BZ+F(I)*((2.D0*AS+Y*DASDY)*CPSS+(XS-XSHIFT)*DASDX
     *   -AS*DPSRR*(X*ZSWW+Y**2*SPSS))

       RETURN
       END

C-------------------------------------------------------------------------
C
      SUBROUTINE TAIL87(X,Z,BX,BZ)

      IMPLICIT REAL*8 (A-H,O-Z)

      COMMON /WARP/ FIRST(3), RPS,WARP,D, OTHER(13)
C
C      'LONG' VERSION OF THE 1987 TAIL MAGNETIC FIELD MODEL
C              (N.A.TSYGANENKO, PLANET. SPACE SCI., V.35, P.1347, 1987)
C
C      D   IS THE Y-DEPENDENT SHEET HALF-THICKNESS (INCREASING TOWARDS FLANKS)
C      RPS  IS THE TILT-DEPENDENT SHIFT OF THE SHEET IN THE Z-DIRECTION,
C           CORRESPONDING TO THE ASYMPTOTIC HINGING DISTANCE, DEFINED IN THE
C           MAIN SUBROUTINE (TAILRC96) FROM THE PARAMETERS RH AND DR OF THE
C           T96-TYPE MODULE, AND
C      WARP  IS THE BENDING OF THE SHEET FLANKS IN THE Z-DIRECTION, DIRECTED
C           OPPOSITE TO RPS, AND INCREASING WITH DIPOLE TILT AND |Y|
C

        DATA DD/3./
C
      DATA HPI,RT,XN,X1,X2,B0,B1,B2,XN21,XNR,ADLN
     * /1.5707963,40.,-10.,
     * -1.261,-0.663,0.391734,5.89715,24.6833,76.37,-0.1071,0.13238005/
C                !!!   THESE ARE NEW VALUES OF  X1, X2, B0, B1, B2,
C                       CORRESPONDING TO TSCALE=1, INSTEAD OF TSCALE=0.6
C
C  THE ABOVE QUANTITIES WERE DEFINED AS FOLLOWS:------------------------
C       HPI=PI/2
C       RT=40.      !  Z-POSITION OF UPPER AND LOWER ADDITIONAL SHEETS
C       XN=-10.     !  INNER EDGE POSITION
C
C       TSCALE=1  !  SCALING FACTOR, DEFINING THE RATE OF INCREASE OF THE
C                       CURRENT DENSITY TAILWARDS
C
c  ATTENTION !  NOW I HAVE CHANGED TSCALE TO:  TSCALE=1.0, INSTEAD OF 0.6
c                  OF THE PREVIOUS VERSION
c
C       B0=0.391734
C       B1=5.89715 *TSCALE
C       B2=24.6833 *TSCALE**2
C
C    HERE ORIGINAL VALUES OF THE MODE AMPLITUDES (P.77, NB#3) WERE NORMALIZED
C      SO THAT ASYMPTOTIC  BX=1  AT X=-200RE
C
C      X1=(4.589  -5.85) *TSCALE -(TSCALE-1.)*XN ! NONLINEAR PARAMETERS OF THE
C                                                         CURRENT FUNCTION
C      X2=(5.187  -5.85) *TSCALE -(TSCALE-1.)*XN
c
c
C      XN21=(XN-X1)**2
C      XNR=1./(XN-X2)
C      ADLN=-DLOG(XNR**2*XN21)
C
C---------------------------------------------------------------
C
      ZS=Z -RPS +WARP
      ZP=Z-RT
      ZM=Z+RT
C
      XNX=XN-X
      XNX2=XNX**2
      XC1=X-X1
      XC2=X-X2
      XC22=XC2**2
      XR2=XC2*XNR
      XC12=XC1**2
      D2=DD**2    !  SQUARE OF THE TOTAL HALFTHICKNESS (DD=3Re for this mode)
      B20=ZS**2+D2
      B2P=ZP**2+D2
      B2M=ZM**2+D2
      B=DSQRT(B20)
      BP=DSQRT(B2P)
      BM=DSQRT(B2M)
      XA1=XC12+B20
      XAP1=XC12+B2P
      XAM1=XC12+B2M
      XA2=1./(XC22+B20)
      XAP2=1./(XC22+B2P)
      XAM2=1./(XC22+B2M)
      XNA=XNX2+B20
      XNAP=XNX2+B2P
      XNAM=XNX2+B2M
      F=B20-XC22
      FP=B2P-XC22
      FM=B2M-XC22
      XLN1=DLOG(XN21/XNA)
      XLNP1=DLOG(XN21/XNAP)
      XLNM1=DLOG(XN21/XNAM)
      XLN2=XLN1+ADLN
      XLNP2=XLNP1+ADLN
      XLNM2=XLNM1+ADLN
      ALN=0.25*(XLNP1+XLNM1-2.*XLN1)
      S0=(DATAN(XNX/B)+HPI)/B
      S0P=(DATAN(XNX/BP)+HPI)/BP
      S0M=(DATAN(XNX/BM)+HPI)/BM
      S1=(XLN1*.5+XC1*S0)/XA1
      S1P=(XLNP1*.5+XC1*S0P)/XAP1
      S1M=(XLNM1*.5+XC1*S0M)/XAM1
      S2=(XC2*XA2*XLN2-XNR-F*XA2*S0)*XA2
      S2P=(XC2*XAP2*XLNP2-XNR-FP*XAP2*S0P)*XAP2
      S2M=(XC2*XAM2*XLNM2-XNR-FM*XAM2*S0M)*XAM2
      G1=(B20*S0-0.5*XC1*XLN1)/XA1
      G1P=(B2P*S0P-0.5*XC1*XLNP1)/XAP1
      G1M=(B2M*S0M-0.5*XC1*XLNM1)/XAM1
      G2=((0.5*F*XLN2+2.*S0*B20*XC2)*XA2+XR2)*XA2
      G2P=((0.5*FP*XLNP2+2.*S0P*B2P*XC2)*XAP2+XR2)*XAP2
      G2M=((0.5*FM*XLNM2+2.*S0M*B2M*XC2)*XAM2+XR2)*XAM2
      BX=B0*(ZS*S0-0.5*(ZP*S0P+ZM*S0M))
     * +B1*(ZS*S1-0.5*(ZP*S1P+ZM*S1M))+B2*(ZS*S2-0.5*(ZP*S2P+ZM*S2M))
      BZ=B0*ALN+B1*(G1-0.5*(G1P+G1M))+B2*(G2-0.5*(G2P+G2M))
C
C    CALCULATION OF THE MAGNETOTAIL CURRENT CONTRIBUTION IS FINISHED
C
      RETURN
      END

C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C
C THIS CODE RETURNS THE SHIELDING FIELD REPRESENTED BY  2x3x3=18 "CARTESIAN"
C    HARMONICS
C
         SUBROUTINE  SHLCAR3X3(A,X,Y,Z,SPS,HX,HY,HZ)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C  The 36 coefficients enter in pairs in the amplitudes of the "cartesian"
c    harmonics (A(1)-A(36).
c  The 12 nonlinear parameters (A(37)-A(48) are the scales Pi,Ri,Qi,and Si
C   entering the arguments of exponents, sines, and cosines in each of the
C   18 "Cartesian" harmonics
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
	 IMPLICIT  REAL * 8  (A - H, O - Z)
C
         DIMENSION A(48)
C
          CPS=DSQRT(1.D0-SPS**2)
          S3PS=4.D0*CPS**2-1.D0   !  THIS IS SIN(3*PS)/SIN(PS)
C
           HX=0.D0
           HY=0.D0
           HZ=0.D0
           L=0
C
           DO 1 M=1,2     !    M=1 IS FOR THE 1ST SUM ("PERP." SYMMETRY)
C                           AND M=2 IS FOR THE SECOND SUM ("PARALL." SYMMETRY)
             DO 2 I=1,3
                  P=A(36+I)
                  Q=A(42+I)
                  CYPI=DCOS(Y/P)
                  CYQI=DCOS(Y/Q)
                  SYPI=DSIN(Y/P)
                  SYQI=DSIN(Y/Q)
C
              DO 3 K=1,3
                   R=A(39+K)
                   S=A(45+K)
                   SZRK=DSIN(Z/R)
                   CZSK=DCOS(Z/S)
                   CZRK=DCOS(Z/R)
                   SZSK=DSIN(Z/S)
                     SQPR=DSQRT(1.D0/P**2+1.D0/R**2)
                     SQQS=DSQRT(1.D0/Q**2+1.D0/S**2)
                        EPR=DEXP(X*SQPR)
                        EQS=DEXP(X*SQQS)
C
                   DO 4 N=1,2  ! N=1 IS FOR THE FIRST PART OF EACH COEFFICIENT
C                                  AND N=2 IS FOR THE SECOND ONE
C
                    L=L+1
                     IF (M.EQ.1) THEN
                       IF (N.EQ.1) THEN
                         DX=-SQPR*EPR*CYPI*SZRK
                         DY=EPR/P*SYPI*SZRK
                         DZ=-EPR/R*CYPI*CZRK
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ELSE
                         DX=DX*CPS
                         DY=DY*CPS
                         DZ=DZ*CPS
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ENDIF
                     ELSE
                       IF (N.EQ.1) THEN
                         DX=-SPS*SQQS*EQS*CYQI*CZSK
                         DY=SPS*EQS/Q*SYQI*CZSK
                         DZ=SPS*EQS/S*CYQI*SZSK
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ELSE
                         DX=DX*S3PS
                         DY=DY*S3PS
                         DZ=DZ*S3PS
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                       ENDIF
                 ENDIF
c
  4   CONTINUE
  3   CONTINUE
  2   CONTINUE
  1   CONTINUE
C
         RETURN
	 END

C
C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
       SUBROUTINE BIRK1TOT_02(PS,X,Y,Z,BX,BY,BZ)
C
C  THIS IS THE SECOND VERSION OF THE ANALYTICAL MODEL OF THE REGION 1 FIELD
C   BASED ON A SEPARATE REPRESENTATION OF THE POTENTIAL FIELD IN THE INNER AND
C   OUTER SPACE, MAPPED BY MEANS OF A SPHERO-DIPOLAR COORDINATE SYSTEM (NB #3,
C   P.91).   THE DIFFERENCE FROM THE FIRST ONE IS THAT INSTEAD OF OCTAGONAL
C   CURRENT LOOPS, CIRCULAR ONES ARE USED IN THIS VERSION FOR APPROXIMATING THE
C   FIELD IN THE OUTER REGION, WHICH IS FASTER.
C
      IMPLICIT REAL*8 (A-H,O-Z)
C
      DIMENSION D1(3,26),D2(3,79),XI(4),C1(26),C2(79)

         COMMON /COORD11/ XX1(12),YY1(12)
         COMMON /RHDR/ RH,DR
         COMMON /LOOPDIP1/ TILT,XCENTRE(2),RADIUS(2), DIPX,DIPY
C
         COMMON /COORD21/ XX2(14),YY2(14),ZZ2(14)
         COMMON /DX1/ DX,SCALEIN,SCALEOUT
C
      DATA C1/-0.911582E-03,-0.376654E-02,-0.727423E-02,-0.270084E-02,
     * -0.123899E-02,-0.154387E-02,-0.340040E-02,-0.191858E-01,
     * -0.518979E-01,0.635061E-01,0.440680,-0.396570,0.561238E-02,
     *  0.160938E-02,-0.451229E-02,-0.251810E-02,-0.151599E-02,
     * -0.133665E-02,-0.962089E-03,-0.272085E-01,-0.524319E-01,
     *  0.717024E-01,0.523439,-0.405015,-89.5587,23.2806/

C
      DATA C2/6.04133,.305415,.606066E-02,.128379E-03,-.179406E-04,
     * 1.41714,-27.2586,-4.28833,-1.30675,35.5607,8.95792,.961617E-03,
     * -.801477E-03,-.782795E-03,-1.65242,-16.5242,-5.33798,.424878E-03,
     * .331787E-03,-.704305E-03,.844342E-03,.953682E-04,.886271E-03,
     * 25.1120,20.9299,5.14569,-44.1670,-51.0672,-1.87725,20.2998,
     * 48.7505,-2.97415,3.35184,-54.2921,-.838712,-10.5123,70.7594,
     * -4.94104,.106166E-03,.465791E-03,-.193719E-03,10.8439,-29.7968,
     *  8.08068,.463507E-03,-.224475E-04,.177035E-03,-.317581E-03,
     * -.264487E-03,.102075E-03,7.71390,10.1915,-4.99797,-23.1114,
     *-29.2043,12.2928,10.9542,33.6671,-9.3851,.174615E-03,-.789777E-06,
     * .686047E-03,.460104E-04,-.345216E-02,.221871E-02,.110078E-01,
     * -.661373E-02,.249201E-02,.343978E-01,-.193145E-05,.493963E-05,
     * -.535748E-04,.191833E-04,-.100496E-03,-.210103E-03,-.232195E-02,
     * .315335E-02,-.134320E-01,-.263222E-01/
c
      DATA TILT,XCENTRE,RADIUS,DIPX,DIPY /1.00891,2.28397,-5.60831,
     * 1.86106,7.83281,1.12541,0.945719/

      DATA DX,SCALEIN,SCALEOUT /-0.16D0,0.08D0,0.4D0/
      DATA XX1/-11.D0,2*-7.D0,2*-3.D0,3*1.D0,2*5.D0,2*9.D0/
      DATA YY1/2.D0,0.D0,4.D0,2.D0,6.D0,0.D0,4.D0,8.D0,2.D0,6.D0,0.D0,
     *  4.D0/
      DATA XX2/-10.D0,-7.D0,2*-4.D0,0.D0,2*4.D0,7.D0,10.D0,5*0.D0/
      DATA YY2/3.D0,6.D0,3.D0,9.D0,6.D0,3.D0,9.D0,6.D0,3.D0,5*0.D0/
      DATA ZZ2/2*20.D0,4.D0,20.D0,2*4.D0,3*20.D0,2.D0,3.D0,4.5D0,
     *  7.D0,10.D0/
C
      DATA RH,DR /9.D0,4.D0/   !  RH IS THE "HINGING DISTANCE" AND DR IS THE
C                                TRANSITION SCALE LENGTH, DEFINING THE
C                                CURVATURE  OF THE WARPING (SEE P.89, NB #2)
C
      DATA XLTDAY,XLTNGHT /78.D0,70.D0/  !  THESE ARE LATITUDES OF THE R-1 OVAL
C                                             AT NOON AND AT MIDNIGHT
      DATA DTET0 /0.034906/   !   THIS IS THE LATITUDINAL HALF-THICKNESS OF THE
C                                  R-1 OVAL (THE INTERPOLATION REGION BETWEEN
C                                    THE HIGH-LAT. AND THE PLASMA SHEET)
C
        TNOONN=(90.D0-XLTDAY)*0.01745329D0
        TNOONS=3.141592654D0-TNOONN     ! HERE WE ASSUME THAT THE POSITIONS OF
C                                          THE NORTHERN AND SOUTHERN R-1 OVALS
C                                          ARE SYMMETRIC IN THE SM-COORDINATES
        DTETDN=(XLTDAY-XLTNGHT)*0.01745329D0
        DR2=DR**2
C
      SPS=DSIN(PS)
      R2=X**2+Y**2+Z**2
      R=DSQRT(R2)
      R3=R*R2
C
      RMRH=R-RH
      RPRH=R+RH
      SQM=DSQRT(RMRH**2+DR2)
      SQP=DSQRT(RPRH**2+DR2)
      C=SQP-SQM
      Q=DSQRT((RH+1.D0)**2+DR2)-DSQRT((RH-1.D0)**2+DR2)
      SPSAS=SPS/R*C/Q
      CPSAS=DSQRT(1.D0-SPSAS**2)
       XAS = X*CPSAS-Z*SPSAS
       ZAS = X*SPSAS+Z*CPSAS
        IF (XAS.NE.0.D0.OR.Y.NE.0.D0) THEN
          PAS = DATAN2(Y,XAS)
                                      ELSE
          PAS=0.D0
        ENDIF
C
      TAS=DATAN2(DSQRT(XAS**2+Y**2),ZAS)
      STAS=DSIN(TAS)
      F=STAS/(STAS**6*(1.D0-R3)+R3)**0.1666666667D0
C
      TET0=DASIN(F)
      IF (TAS.GT.1.5707963D0) TET0=3.141592654D0-TET0
      DTET=DTETDN*DSIN(PAS*0.5D0)**2
      TETR1N=TNOONN+DTET
      TETR1S=TNOONS-DTET
C
C NOW LET'S DEFINE WHICH OF THE FOUR REGIONS (HIGH-LAT., NORTHERN PSBL,
C   PLASMA SHEET, SOUTHERN PSBL) DOES THE POINT (X,Y,Z) BELONG TO:
C
       IF (TET0.LT.TETR1N-DTET0.OR.TET0.GT.TETR1S+DTET0)  LOC=1 ! HIGH-LAT.
       IF (TET0.GT.TETR1N+DTET0.AND.TET0.LT.TETR1S-DTET0) LOC=2 ! PL.SHEET
       IF (TET0.GE.TETR1N-DTET0.AND.TET0.LE.TETR1N+DTET0) LOC=3 ! NORTH PSBL
       IF (TET0.GE.TETR1S-DTET0.AND.TET0.LE.TETR1S+DTET0) LOC=4 ! SOUTH PSBL
C
       IF (LOC.EQ.1) THEN   ! IN THE HIGH-LAT. REGION USE THE SUBROUTINE DIPOCT
C
C      print *, '  LOC=1 (HIGH-LAT)'    !  (test printout; disabled now)
         XI(1)=X
         XI(2)=Y
         XI(3)=Z
         XI(4)=PS
         CALL  DIPLOOP1(XI,D1)
          BX=0.D0
          BY=0.D0
          BZ=0.D0
            DO 1 I=1,26
              BX=BX+C1(I)*D1(1,I)
              BY=BY+C1(I)*D1(2,I)
  1           BZ=BZ+C1(I)*D1(3,I)
       ENDIF                                           !  END OF THE CASE 1
C
       IF (LOC.EQ.2) THEN
C           print *, '  LOC=2 (PLASMA SHEET)'  !  (test printout; disabled now)
C
         XI(1)=X
         XI(2)=Y
         XI(3)=Z
         XI(4)=PS
         CALL  CONDIP1(XI,D2)
          BX=0.D0
          BY=0.D0
          BZ=0.D0
            DO 2 I=1,79
              BX=BX+C2(I)*D2(1,I)
              BY=BY+C2(I)*D2(2,I)
  2           BZ=BZ+C2(I)*D2(3,I)
       ENDIF                                           !   END OF THE CASE 2
C
       IF (LOC.EQ.3) THEN
C       print *, '  LOC=3 (north PSBL)'  !  (test printout; disabled now)
C
         T01=TETR1N-DTET0
         T02=TETR1N+DTET0
          SQR=DSQRT(R)
          ST01AS=SQR/(R3+1.D0/DSIN(T01)**6-1.D0)**0.1666666667
          ST02AS=SQR/(R3+1.D0/DSIN(T02)**6-1.D0)**0.1666666667
          CT01AS=DSQRT(1.D0-ST01AS**2)
          CT02AS=DSQRT(1.D0-ST02AS**2)
         XAS1=R*ST01AS*DCOS(PAS)
         Y1=  R*ST01AS*DSIN(PAS)
         ZAS1=R*CT01AS
         X1=XAS1*CPSAS+ZAS1*SPSAS
         Z1=-XAS1*SPSAS+ZAS1*CPSAS ! X1,Y1,Z1 ARE COORDS OF THE NORTHERN
c                                                      BOUNDARY POINT
         XI(1)=X1
         XI(2)=Y1
         XI(3)=Z1
         XI(4)=PS
         CALL  DIPLOOP1(XI,D1)
          BX1=0.D0
          BY1=0.D0
          BZ1=0.D0
            DO 11 I=1,26
              BX1=BX1+C1(I)*D1(1,I) !   BX1,BY1,BZ1  ARE FIELD COMPONENTS
              BY1=BY1+C1(I)*D1(2,I)  !  IN THE NORTHERN BOUNDARY POINT
 11           BZ1=BZ1+C1(I)*D1(3,I)  !
C
         XAS2=R*ST02AS*DCOS(PAS)
         Y2=  R*ST02AS*DSIN(PAS)
         ZAS2=R*CT02AS
         X2=XAS2*CPSAS+ZAS2*SPSAS
         Z2=-XAS2*SPSAS+ZAS2*CPSAS ! X2,Y2,Z2 ARE COORDS OF THE SOUTHERN
C                                        BOUNDARY POINT
         XI(1)=X2
         XI(2)=Y2
         XI(3)=Z2
         XI(4)=PS
         CALL  CONDIP1(XI,D2)
          BX2=0.D0
          BY2=0.D0
          BZ2=0.D0
            DO 12 I=1,79
              BX2=BX2+C2(I)*D2(1,I)!  BX2,BY2,BZ2  ARE FIELD COMPONENTS
              BY2=BY2+C2(I)*D2(2,I) !  IN THE SOUTHERN BOUNDARY POINT
  12          BZ2=BZ2+C2(I)*D2(3,I)
C
C  NOW INTERPOLATE:
C
         SS=DSQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)
         DS=DSQRT((X-X1)**2+(Y-Y1)**2+(Z-Z1)**2)
         FRAC=DS/SS
         BX=BX1*(1.D0-FRAC)+BX2*FRAC
         BY=BY1*(1.D0-FRAC)+BY2*FRAC
         BZ=BZ1*(1.D0-FRAC)+BZ2*FRAC
C
        ENDIF                                              ! END OF THE CASE 3
C
        IF (LOC.EQ.4) THEN
C       print *, '  LOC=4 (south PSBL)'  !  (test printout; disabled now)
C
         T01=TETR1S-DTET0
         T02=TETR1S+DTET0
          SQR=DSQRT(R)
          ST01AS=SQR/(R3+1.D0/DSIN(T01)**6-1.D0)**0.1666666667
          ST02AS=SQR/(R3+1.D0/DSIN(T02)**6-1.D0)**0.1666666667
          CT01AS=-DSQRT(1.D0-ST01AS**2)
          CT02AS=-DSQRT(1.D0-ST02AS**2)
         XAS1=R*ST01AS*DCOS(PAS)
         Y1=  R*ST01AS*DSIN(PAS)
         ZAS1=R*CT01AS
         X1=XAS1*CPSAS+ZAS1*SPSAS
         Z1=-XAS1*SPSAS+ZAS1*CPSAS ! X1,Y1,Z1 ARE COORDS OF THE NORTHERN
C                                               BOUNDARY POINT
         XI(1)=X1
         XI(2)=Y1
         XI(3)=Z1
         XI(4)=PS
         CALL  CONDIP1(XI,D2)
          BX1=0.D0
          BY1=0.D0
          BZ1=0.D0
            DO 21 I=1,79
              BX1=BX1+C2(I)*D2(1,I) !  BX1,BY1,BZ1  ARE FIELD COMPONENTS
              BY1=BY1+C2(I)*D2(2,I)  !  IN THE NORTHERN BOUNDARY POINT
 21           BZ1=BZ1+C2(I)*D2(3,I)  !
C
         XAS2=R*ST02AS*DCOS(PAS)
         Y2=  R*ST02AS*DSIN(PAS)
         ZAS2=R*CT02AS
         X2=XAS2*CPSAS+ZAS2*SPSAS
         Z2=-XAS2*SPSAS+ZAS2*CPSAS ! X2,Y2,Z2 ARE COORDS OF THE SOUTHERN
C                                          BOUNDARY POINT
         XI(1)=X2
         XI(2)=Y2
         XI(3)=Z2
         XI(4)=PS
         CALL  DIPLOOP1(XI,D1)
          BX2=0.D0
          BY2=0.D0
          BZ2=0.D0
            DO 22 I=1,26
              BX2=BX2+C1(I)*D1(1,I) !  BX2,BY2,BZ2  ARE FIELD COMPONENTS
              BY2=BY2+C1(I)*D1(2,I) !     IN THE SOUTHERN BOUNDARY POINT
  22          BZ2=BZ2+C1(I)*D1(3,I)
C
C  NOW INTERPOLATE:
C
         SS=DSQRT((X2-X1)**2+(Y2-Y1)**2+(Z2-Z1)**2)
         DS=DSQRT((X-X1)**2+(Y-Y1)**2+(Z-Z1)**2)
         FRAC=DS/SS
         BX=BX1*(1.D0-FRAC)+BX2*FRAC
         BY=BY1*(1.D0-FRAC)+BY2*FRAC
         BZ=BZ1*(1.D0-FRAC)+BZ2*FRAC
C
        ENDIF                                        ! END OF THE CASE 4
C
C   NOW, LET US ADD THE SHIELDING FIELD
C
        CALL  BIRK1SHLD(PS,X,Y,Z,BSX,BSY,BSZ)
        BX=BX+BSX
        BY=BY+BSY
        BZ=BZ+BSZ
         RETURN
         END
C
C------------------------------------------------------------------------------
C
C
         SUBROUTINE  DIPLOOP1(XI,D)
C
C
C      Calculates dependent model variables and their deriva-
C  tives for given independent variables and model parame-
C  ters.  Specifies model functions with free parameters which
C  must be determined by means of least squares fits (RMS
C  minimization procedure).
C
C      Description of parameters:
C
C  XI  - input vector containing independent variables;
C  D   - output double precision vector containing
C        calculated values for derivatives of dependent
C        variables with respect to LINEAR model parameters;
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
c  The  26 coefficients are moments (Z- and X-components) of 12 dipoles placed
C    inside the  R1-shell,  PLUS amplitudes of two octagonal double loops.
C     The dipoles with nonzero  Yi appear in pairs with equal moments.
c                  (see the notebook #2, pp.102-103, for details)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
         IMPLICIT  REAL * 8  (A - H, O - Z)
C
         COMMON /COORD11/ XX(12),YY(12)
         COMMON /LOOPDIP1/ TILT,XCENTRE(2),RADIUS(2),  DIPX,DIPY
         COMMON /RHDR/RH,DR
         DIMENSION XI(4),D(3,26)
C
           X = XI(1)
           Y = XI(2)
           Z = XI(3)
           PS= XI(4)
           SPS=DSIN(PS)
C
         DO 1 I=1,12
           R2=(XX(I)*DIPX)**2+(YY(I)*DIPY)**2
           R=DSQRT(R2)
             RMRH=R-RH
             RPRH=R+RH
             DR2=DR**2
             SQM=DSQRT(RMRH**2+DR2)
             SQP=DSQRT(RPRH**2+DR2)
             C=SQP-SQM
             Q=DSQRT((RH+1.D0)**2+DR2)-DSQRT((RH-1.D0)**2+DR2)
             SPSAS=SPS/R*C/Q
             CPSAS=DSQRT(1.D0-SPSAS**2)
         XD= (XX(I)*DIPX)*CPSAS
         YD= (YY(I)*DIPY)
         ZD=-(XX(I)*DIPX)*SPSAS
      CALL DIPXYZ(X-XD,Y-YD,Z-ZD,BX1X,BY1X,BZ1X,BX1Y,BY1Y,BZ1Y,
     *  BX1Z,BY1Z,BZ1Z)
        IF (DABS(YD).GT.1.D-10) THEN
      CALL DIPXYZ(X-XD,Y+YD,Z-ZD,BX2X,BY2X,BZ2X,BX2Y,BY2Y,BZ2Y,
     *  BX2Z,BY2Z,BZ2Z)
                                   ELSE
        BX2X=0.D0
        BY2X=0.D0
        BZ2X=0.D0
C
        BX2Z=0.D0
        BY2Z=0.D0
        BZ2Z=0.D0
                                   ENDIF
C
            D(1,I)=BX1Z+BX2Z
            D(2,I)=BY1Z+BY2Z
            D(3,I)=BZ1Z+BZ2Z
            D(1,I+12)=(BX1X+BX2X)*SPS
            D(2,I+12)=(BY1X+BY2X)*SPS
            D(3,I+12)=(BZ1X+BZ2X)*SPS
  1   CONTINUE
c
           R2=(XCENTRE(1)+RADIUS(1))**2
           R=DSQRT(R2)
             RMRH=R-RH
             RPRH=R+RH
             DR2=DR**2
             SQM=DSQRT(RMRH**2+DR2)
             SQP=DSQRT(RPRH**2+DR2)
             C=SQP-SQM
             Q=DSQRT((RH+1.D0)**2+DR2)-DSQRT((RH-1.D0)**2+DR2)
             SPSAS=SPS/R*C/Q
             CPSAS=DSQRT(1.D0-SPSAS**2)
         XOCT1= X*CPSAS-Z*SPSAS
         YOCT1= Y
         ZOCT1= X*SPSAS+Z*CPSAS
C
      CALL CROSSLP(XOCT1,YOCT1,ZOCT1,BXOCT1,BYOCT1,BZOCT1,XCENTRE(1),
     *        RADIUS(1),TILT)
            D(1,25)=BXOCT1*CPSAS+BZOCT1*SPSAS
            D(2,25)=BYOCT1
            D(3,25)=-BXOCT1*SPSAS+BZOCT1*CPSAS
C
           R2=(RADIUS(2)-XCENTRE(2))**2
           R=DSQRT(R2)
             RMRH=R-RH
             RPRH=R+RH
             DR2=DR**2
             SQM=DSQRT(RMRH**2+DR2)
             SQP=DSQRT(RPRH**2+DR2)
             C=SQP-SQM
             Q=DSQRT((RH+1.D0)**2+DR2)-DSQRT((RH-1.D0)**2+DR2)
             SPSAS=SPS/R*C/Q
             CPSAS=DSQRT(1.D0-SPSAS**2)
         XOCT2= X*CPSAS-Z*SPSAS -XCENTRE(2)
         YOCT2= Y
         ZOCT2= X*SPSAS+Z*CPSAS
            CALL CIRCLE(XOCT2,YOCT2,ZOCT2,RADIUS(2),BX,BY,BZ)
            D(1,26) =  BX*CPSAS+BZ*SPSAS
            D(2,26) =  BY
            D(3,26) = -BX*SPSAS+BZ*CPSAS
C
            RETURN
            END
c-------------------------------------------------------------------------
C
        SUBROUTINE CIRCLE(X,Y,Z,RL,BX,BY,BZ)
C
C  RETURNS COMPONENTS OF THE FIELD FROM A CIRCULAR CURRENT LOOP OF RADIUS RL
C  USES THE SECOND (MORE ACCURATE) APPROXIMATION GIVEN IN ABRAMOWITZ AND STEGUN

        IMPLICIT REAL*8 (A-H,O-Z)
        REAL*8 K
        DATA PI/3.141592654D0/
C
        RHO2=X*X+Y*Y
        RHO=DSQRT(RHO2)
        R22=Z*Z+(RHO+RL)**2
        R2=DSQRT(R22)
        R12=R22-4.D0*RHO*RL
        R32=0.5D0*(R12+R22)
        XK2=1.D0-R12/R22
        XK2S=1.D0-XK2
        DL=DLOG(1.D0/XK2S)
        K=1.38629436112d0+XK2S*(0.09666344259D0+XK2S*(0.03590092383+
     *     XK2S*(0.03742563713+XK2S*0.01451196212))) +DL*
     *     (0.5D0+XK2S*(0.12498593597D0+XK2S*(0.06880248576D0+
     *     XK2S*(0.03328355346D0+XK2S*0.00441787012D0))))
        E=1.D0+XK2S*(0.44325141463D0+XK2S*(0.0626060122D0+XK2S*
     *      (0.04757383546D0+XK2S*0.01736506451D0))) +DL*
     *     XK2S*(0.2499836831D0+XK2S*(0.09200180037D0+XK2S*
     *       (0.04069697526D0+XK2S*0.00526449639D0)))

        IF (RHO.GT.1.D-6) THEN
           BRHO=Z/(RHO2*R2)*(R32/R12*E-K) !  THIS IS NOT EXACTLY THE B-RHO COM-
                           ELSE           !   PONENT - NOTE THE ADDITIONAL
           BRHO=PI*RL/R2*(RL-RHO)/R12*Z/(R32-RHO2)  !      DIVISION BY RHO
        ENDIF

        BX=BRHO*X
        BY=BRHO*Y
        BZ=(K-E*(R32-2.D0*RL*RL)/R12)/R2
        RETURN
        END
C-------------------------------------------------------------
C
        SUBROUTINE CROSSLP(X,Y,Z,BX,BY,BZ,XC,RL,AL)
C
c   RETURNS FIELD COMPONENTS OF A PAIR OF LOOPS WITH A COMMON CENTER AND
C    DIAMETER,  COINCIDING WITH THE X AXIS. THE LOOPS ARE INCLINED TO THE
C    EQUATORIAL PLANE BY THE ANGLE AL (RADIANS) AND SHIFTED IN THE POSITIVE
C     X-DIRECTION BY THE DISTANCE  XC.
c
        IMPLICIT REAL*8 (A-H,O-Z)
C
            CAL=DCOS(AL)
            SAL=DSIN(AL)
C
        Y1=Y*CAL-Z*SAL
        Z1=Y*SAL+Z*CAL
        Y2=Y*CAL+Z*SAL
        Z2=-Y*SAL+Z*CAL
        CALL CIRCLE(X-XC,Y1,Z1,RL,BX1,BY1,BZ1)
        CALL CIRCLE(X-XC,Y2,Z2,RL,BX2,BY2,BZ2)
        BX=BX1+BX2
        BY= (BY1+BY2)*CAL+(BZ1-BZ2)*SAL
        BZ=-(BY1-BY2)*SAL+(BZ1+BZ2)*CAL
C
        RETURN
        END

C*******************************************************************

       SUBROUTINE DIPXYZ(X,Y,Z,BXX,BYX,BZX,BXY,BYY,BZY,BXZ,BYZ,BZZ)
C
C       RETURNS THE FIELD COMPONENTS PRODUCED BY THREE DIPOLES, EACH
C        HAVING M=Me AND ORIENTED PARALLEL TO X,Y, and Z AXIS, RESP.
C
      IMPLICIT REAL*8 (A-H,O-Z)
C
      X2=X**2
      Y2=Y**2
      Z2=Z**2
      R2=X2+Y2+Z2

      XMR5=30574.D0/(R2*R2*DSQRT(R2))
      XMR53=3.D0*XMR5
      BXX=XMR5*(3.D0*X2-R2)
      BYX=XMR53*X*Y
      BZX=XMR53*X*Z
C
      BXY=BYX
      BYY=XMR5*(3.D0*Y2-R2)
      BZY=XMR53*Y*Z
C
      BXZ=BZX
      BYZ=BZY
      BZZ=XMR5*(3.D0*Z2-R2)
C
      RETURN
      END
C
C------------------------------------------------------------------------------
         SUBROUTINE  CONDIP1(XI,D)
C
C      Calculates dependent model variables and their derivatives for given
C  independent variables and model parameters.  Specifies model functions with
C  free parameters which must be determined by means of least squares fits
C  (RMS minimization procedure).
C
C      Description of parameters:
C
C  XI  - input vector containing independent variables;
C  D   - output double precision vector containing
C        calculated values for derivatives of dependent
C        variables with respect to LINEAR model parameters;
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
c  The  79 coefficients are (1) 5 amplitudes of the conical harmonics, plus
c                           (2) (9x3+5x2)x2=74 components of the dipole moments
c              (see the notebook #2, pp.113-..., for details)
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
         IMPLICIT  REAL * 8  (A - H, O - Z)
C
      COMMON /DX1/ DX,SCALEIN,SCALEOUT
      COMMON /COORD21/ XX(14),YY(14),ZZ(14)
c
         DIMENSION XI(4),D(3,79),CF(5),SF(5)
C
           X = XI(1)
           Y = XI(2)
           Z = XI(3)
           PS= XI(4)
           SPS=DSIN(PS)
           CPS=DCOS(PS)
C
      XSM=X*CPS-Z*SPS  - DX
      ZSM=Z*CPS+X*SPS
      RO2=XSM**2+Y**2
      RO=SQRT(RO2)
C
      CF(1)=XSM/RO
      SF(1)=Y/RO
C
      CF(2)=CF(1)**2-SF(1)**2
      SF(2)=2.*SF(1)*CF(1)
      CF(3)=CF(2)*CF(1)-SF(2)*SF(1)
      SF(3)=SF(2)*CF(1)+CF(2)*SF(1)
      CF(4)=CF(3)*CF(1)-SF(3)*SF(1)
      SF(4)=SF(3)*CF(1)+CF(3)*SF(1)
      CF(5)=CF(4)*CF(1)-SF(4)*SF(1)
      SF(5)=SF(4)*CF(1)+CF(4)*SF(1)
C
      R2=RO2+ZSM**2
      R=DSQRT(R2)
      C=ZSM/R
      S=RO/R
      CH=DSQRT(0.5D0*(1.D0+C))
      SH=DSQRT(0.5D0*(1.D0-C))
      TNH=SH/CH
      CNH=1.D0/TNH
C
      DO 1 M=1,5
       BT=M*CF(M)/(R*S)*(TNH**M+CNH**M)
       BF=-0.5D0*M*SF(M)/R*(TNH**(M-1)/CH**2-CNH**(M-1)/SH**2)
       BXSM=BT*C*CF(1)-BF*SF(1)
       BY=BT*C*SF(1)+BF*CF(1)
       BZSM=-BT*S
C
       D(1,M)=BXSM*CPS+BZSM*SPS
       D(2,M)=BY
  1    D(3,M)=-BXSM*SPS+BZSM*CPS
C
      XSM = X*CPS-Z*SPS
      ZSM = Z*CPS+X*SPS
C
        DO 2 I=1,9
C
        IF (I.EQ.3.OR.I.EQ.5.OR.I.EQ.6) THEN
                XD =  XX(I)*SCALEIN
                YD =  YY(I)*SCALEIN
                                         ELSE
                XD =  XX(I)*SCALEOUT
                YD =  YY(I)*SCALEOUT
        ENDIF
C
         ZD =  ZZ(I)
C
      CALL DIPXYZ(XSM-XD,Y-YD,ZSM-ZD,BX1X,BY1X,BZ1X,BX1Y,BY1Y,BZ1Y,
     *  BX1Z,BY1Z,BZ1Z)
      CALL DIPXYZ(XSM-XD,Y+YD,ZSM-ZD,BX2X,BY2X,BZ2X,BX2Y,BY2Y,BZ2Y,
     *  BX2Z,BY2Z,BZ2Z)
      CALL DIPXYZ(XSM-XD,Y-YD,ZSM+ZD,BX3X,BY3X,BZ3X,BX3Y,BY3Y,BZ3Y,
     *  BX3Z,BY3Z,BZ3Z)
      CALL DIPXYZ(XSM-XD,Y+YD,ZSM+ZD,BX4X,BY4X,BZ4X,BX4Y,BY4Y,BZ4Y,
     *  BX4Z,BY4Z,BZ4Z)
C
      IX=I*3+3
      IY=IX+1
      IZ=IY+1
C
      D(1,IX)=(BX1X+BX2X-BX3X-BX4X)*CPS+(BZ1X+BZ2X-BZ3X-BZ4X)*SPS
      D(2,IX)= BY1X+BY2X-BY3X-BY4X
      D(3,IX)=(BZ1X+BZ2X-BZ3X-BZ4X)*CPS-(BX1X+BX2X-BX3X-BX4X)*SPS
C
      D(1,IY)=(BX1Y-BX2Y-BX3Y+BX4Y)*CPS+(BZ1Y-BZ2Y-BZ3Y+BZ4Y)*SPS
      D(2,IY)= BY1Y-BY2Y-BY3Y+BY4Y
      D(3,IY)=(BZ1Y-BZ2Y-BZ3Y+BZ4Y)*CPS-(BX1Y-BX2Y-BX3Y+BX4Y)*SPS
C
      D(1,IZ)=(BX1Z+BX2Z+BX3Z+BX4Z)*CPS+(BZ1Z+BZ2Z+BZ3Z+BZ4Z)*SPS
      D(2,IZ)= BY1Z+BY2Z+BY3Z+BY4Z
      D(3,IZ)=(BZ1Z+BZ2Z+BZ3Z+BZ4Z)*CPS-(BX1Z+BX2Z+BX3Z+BX4Z)*SPS
C
      IX=IX+27
      IY=IY+27
      IZ=IZ+27
C
      D(1,IX)=SPS*((BX1X+BX2X+BX3X+BX4X)*CPS+(BZ1X+BZ2X+BZ3X+BZ4X)*SPS)
      D(2,IX)=SPS*(BY1X+BY2X+BY3X+BY4X)
      D(3,IX)=SPS*((BZ1X+BZ2X+BZ3X+BZ4X)*CPS-(BX1X+BX2X+BX3X+BX4X)*SPS)
C
      D(1,IY)=SPS*((BX1Y-BX2Y+BX3Y-BX4Y)*CPS+(BZ1Y-BZ2Y+BZ3Y-BZ4Y)*SPS)
      D(2,IY)=SPS*(BY1Y-BY2Y+BY3Y-BY4Y)
      D(3,IY)=SPS*((BZ1Y-BZ2Y+BZ3Y-BZ4Y)*CPS-(BX1Y-BX2Y+BX3Y-BX4Y)*SPS)
C
      D(1,IZ)=SPS*((BX1Z+BX2Z-BX3Z-BX4Z)*CPS+(BZ1Z+BZ2Z-BZ3Z-BZ4Z)*SPS)
      D(2,IZ)=SPS*(BY1Z+BY2Z-BY3Z-BY4Z)
      D(3,IZ)=SPS*((BZ1Z+BZ2Z-BZ3Z-BZ4Z)*CPS-(BX1Z+BX2Z-BX3Z-BX4Z)*SPS)
  2   CONTINUE
C
      DO 3 I=1,5
      ZD=ZZ(I+9)
      CALL DIPXYZ(XSM,Y,ZSM-ZD,BX1X,BY1X,BZ1X,BX1Y,BY1Y,BZ1Y,BX1Z,BY1Z,
     *  BZ1Z)
      CALL DIPXYZ(XSM,Y,ZSM+ZD,BX2X,BY2X,BZ2X,BX2Y,BY2Y,BZ2Y,BX2Z,BY2Z,
     *  BZ2Z)
       IX=58+I*2
       IZ=IX+1
      D(1,IX)=(BX1X-BX2X)*CPS+(BZ1X-BZ2X)*SPS
      D(2,IX)=BY1X-BY2X
      D(3,IX)=(BZ1X-BZ2X)*CPS-(BX1X-BX2X)*SPS
C
      D(1,IZ)=(BX1Z+BX2Z)*CPS+(BZ1Z+BZ2Z)*SPS
      D(2,IZ)=BY1Z+BY2Z
      D(3,IZ)=(BZ1Z+BZ2Z)*CPS-(BX1Z+BX2Z)*SPS
C
      IX=IX+10
      IZ=IZ+10
      D(1,IX)=SPS*((BX1X+BX2X)*CPS+(BZ1X+BZ2X)*SPS)
      D(2,IX)=SPS*(BY1X+BY2X)
      D(3,IX)=SPS*((BZ1X+BZ2X)*CPS-(BX1X+BX2X)*SPS)
C
      D(1,IZ)=SPS*((BX1Z-BX2Z)*CPS+(BZ1Z-BZ2Z)*SPS)
      D(2,IZ)=SPS*(BY1Z-BY2Z)
  3   D(3,IZ)=SPS*((BZ1Z-BZ2Z)*CPS-(BX1Z-BX2Z)*SPS)
C
            RETURN
            END
C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C
         SUBROUTINE  BIRK1SHLD(PS,X,Y,Z,BX,BY,BZ)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C  The 64 linear parameters are amplitudes of the "box" harmonics.
c The 16 nonlinear parameters are the scales Pi, and Qk entering the arguments
C  of sines/cosines and exponents in each of  32 cartesian harmonics
c  N.A. Tsyganenko, Spring 1994, adjusted for the Birkeland field Aug.22, 1995
c    Revised  June 12, 1996.
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
      IMPLICIT  REAL * 8  (A - H, O - Z)
C
      DIMENSION A(80)
      DIMENSION P1(4),R1(4),Q1(4),S1(4),RP(4),RR(4),RQ(4),RS(4)
C
      EQUIVALENCE (P1(1),A(65)),(R1(1),A(69)),(Q1(1),A(73)),
     * (S1(1),A(77))
C
      DATA A/1.174198045,-1.463820502,4.840161537,-3.674506864,
     * 82.18368896,-94.94071588,-4122.331796,4670.278676,-21.54975037,
     * 26.72661293,-72.81365728,44.09887902,40.08073706,-51.23563510,
     * 1955.348537,-1940.971550,794.0496433,-982.2441344,1889.837171,
     * -558.9779727,-1260.543238,1260.063802,-293.5942373,344.7250789,
     * -773.7002492,957.0094135,-1824.143669,520.7994379,1192.484774,
     * -1192.184565,89.15537624,-98.52042999,-0.8168777675E-01,
     * 0.4255969908E-01,0.3155237661,-0.3841755213,2.494553332,
     * -0.6571440817E-01,-2.765661310,0.4331001908,0.1099181537,
     * -0.6154126980E-01,-0.3258649260,0.6698439193,-5.542735524,
     * 0.1604203535,5.854456934,-0.8323632049,3.732608869,-3.130002153,
     * 107.0972607,-32.28483411,-115.2389298,54.45064360,-0.5826853320,
     * -3.582482231,-4.046544561,3.311978102,-104.0839563,30.26401293,
     * 97.29109008,-50.62370872,-296.3734955,127.7872523,5.303648988,
     * 10.40368955,69.65230348,466.5099509,1.645049286,3.825838190,
     * 11.66675599,558.9781177,1.826531343,2.066018073,25.40971369,
     * 990.2795225,2.319489258,4.555148484,9.691185703,591.8280358/
C
         BX=0.D0
         BY=0.D0
         BZ=0.D0
         CPS=DCOS(PS)
         SPS=DSIN(PS)
         S3PS=4.D0*CPS**2-1.D0
C
         DO 11 I=1,4
          RP(I)=1.D0/P1(I)
          RR(I)=1.D0/R1(I)
          RQ(I)=1.D0/Q1(I)
 11       RS(I)=1.D0/S1(I)
C
          L=0
C
           DO 1 M=1,2     !    M=1 IS FOR THE 1ST SUM ("PERP." SYMMETRY)
C                           AND M=2 IS FOR THE SECOND SUM ("PARALL." SYMMETRY)
             DO 2 I=1,4
                  CYPI=DCOS(Y*RP(I))
                  CYQI=DCOS(Y*RQ(I))
                  SYPI=DSIN(Y*RP(I))
                  SYQI=DSIN(Y*RQ(I))
C
                DO 3 K=1,4
                   SZRK=DSIN(Z*RR(K))
                   CZSK=DCOS(Z*RS(K))
                   CZRK=DCOS(Z*RR(K))
                   SZSK=DSIN(Z*RS(K))
                     SQPR=DSQRT(RP(I)**2+RR(K)**2)
                     SQQS=DSQRT(RQ(I)**2+RS(K)**2)
                        EPR=DEXP(X*SQPR)
                        EQS=DEXP(X*SQQS)
C
                    DO 4 N=1,2  ! N=1 IS FOR THE FIRST PART OF EACH COEFFICIENT
C                                  AND N=2 IS FOR THE SECOND ONE
                     IF (M.EQ.1) THEN
                       IF (N.EQ.1) THEN
                         HX=-SQPR*EPR*CYPI*SZRK
                         HY=RP(I)*EPR*SYPI*SZRK
                         HZ=-RR(K)*EPR*CYPI*CZRK
                                   ELSE
                         HX=HX*CPS
                         HY=HY*CPS
                         HZ=HZ*CPS
                                   ENDIF
                     ELSE
                       IF (N.EQ.1) THEN
                         HX=-SPS*SQQS*EQS*CYQI*CZSK
                         HY=SPS*RQ(I)*EQS*SYQI*CZSK
                         HZ=SPS*RS(K)*EQS*CYQI*SZSK
                                   ELSE
                         HX=HX*S3PS
                         HY=HY*S3PS
                         HZ=HZ*S3PS
                       ENDIF
                 ENDIF
       L=L+1
c
       BX=BX+A(L)*HX
       BY=BY+A(L)*HY
  4    BZ=BZ+A(L)*HZ
  3   CONTINUE
  2   CONTINUE
  1   CONTINUE
C
         RETURN
	 END
C
C##########################################################################
C
         SUBROUTINE BIRK2TOT_02(PS,X,Y,Z,BX,BY,BZ)
C
          IMPLICIT REAL*8 (A-H,O-Z)
C
          CALL BIRK2SHL(X,Y,Z,PS,WX,WY,WZ)
          CALL R2_BIRK(X,Y,Z,PS,HX,HY,HZ)
         BX=WX+HX
         BY=WY+HY
         BZ=WZ+HZ
         RETURN
         END
C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C
C THIS CODE IS FOR THE FIELD FROM  2x2x2=8 "CARTESIAN" HARMONICS
C
         SUBROUTINE  BIRK2SHL(X,Y,Z,PS,HX,HY,HZ)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C    The model parameters are provided to this module via common-block /A/.
C  The 16 linear parameters enter in pairs in the amplitudes of the
c       "cartesian" harmonics.
c    The 8 nonlinear parameters are the scales Pi,Ri,Qi,and Si entering the
c  arguments of exponents, sines, and cosines in each of the 8 "Cartesian"
c   harmonics
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
	 IMPLICIT  REAL * 8  (A - H, O - Z)
C
         DIMENSION P(2),R(2),Q(2),S(2)
         DIMENSION A(24)
C
         EQUIVALENCE(P(1),A(17)),(R(1),A(19)),(Q(1),A(21)),(S(1),A(23))
         DATA A/-111.6371348,124.5402702,110.3735178,-122.0095905,
     * 111.9448247,-129.1957743,-110.7586562,126.5649012,-0.7865034384,
     * -0.2483462721,0.8026023894,0.2531397188,10.72890902,0.8483902118,
     * -10.96884315,-0.8583297219,13.85650567,14.90554500,10.21914434,
     * 10.09021632,6.340382460,14.40432686,12.71023437,12.83966657/
C
            CPS=DCOS(PS)
            SPS=DSIN(PS)
            S3PS=4.D0*CPS**2-1.D0   !  THIS IS SIN(3*PS)/SIN(PS)
C
           HX=0.D0
           HY=0.D0
           HZ=0.D0
           L=0
C
           DO 1 M=1,2     !    M=1 IS FOR THE 1ST SUM ("PERP." SYMMETRY)
C                           AND M=2 IS FOR THE SECOND SUM ("PARALL." SYMMETRY)
             DO 2 I=1,2
                  CYPI=DCOS(Y/P(I))
                  CYQI=DCOS(Y/Q(I))
                  SYPI=DSIN(Y/P(I))
                  SYQI=DSIN(Y/Q(I))
C
               DO 3 K=1,2
                   SZRK=DSIN(Z/R(K))
                   CZSK=DCOS(Z/S(K))
                   CZRK=DCOS(Z/R(K))
                   SZSK=DSIN(Z/S(K))
                     SQPR=DSQRT(1.D0/P(I)**2+1.D0/R(K)**2)
                     SQQS=DSQRT(1.D0/Q(I)**2+1.D0/S(K)**2)
                        EPR=DEXP(X*SQPR)
                        EQS=DEXP(X*SQQS)
C
                   DO 4 N=1,2  ! N=1 IS FOR THE FIRST PART OF EACH COEFFICIENT
C                                  AND N=2 IS FOR THE SECOND ONE
C
                    L=L+1
                     IF (M.EQ.1) THEN
                       IF (N.EQ.1) THEN
                         DX=-SQPR*EPR*CYPI*SZRK
                         DY=EPR/P(I)*SYPI*SZRK
                         DZ=-EPR/R(K)*CYPI*CZRK
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ELSE
                         DX=DX*CPS
                         DY=DY*CPS
                         DZ=DZ*CPS
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ENDIF
                     ELSE
                       IF (N.EQ.1) THEN
                         DX=-SPS*SQQS*EQS*CYQI*CZSK
                         DY=SPS*EQS/Q(I)*SYQI*CZSK
                         DZ=SPS*EQS/S(K)*CYQI*SZSK
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                                   ELSE
                         DX=DX*S3PS
                         DY=DY*S3PS
                         DZ=DZ*S3PS
                         HX=HX+A(L)*DX
                         HY=HY+A(L)*DY
                         HZ=HZ+A(L)*DZ
                       ENDIF
                 ENDIF
c
  4   CONTINUE
  3   CONTINUE
  2   CONTINUE
  1   CONTINUE
C
         RETURN
	 END

c********************************************************************
C
       SUBROUTINE R2_BIRK(X,Y,Z,PS,BX,BY,BZ)
C
C  RETURNS THE MODEL FIELD FOR THE REGION 2 BIRKELAND CURRENT/PARTIAL RC
C    (WITHOUT SHIELDING FIELD)
C
       IMPLICIT REAL*8 (A-H,O-Z)
       SAVE PSI,CPS,SPS
       DATA DELARG/0.030D0/,DELARG1/0.015D0/,PSI/10.D0/
C
       IF (DABS(PSI-PS).GT.1.D-10) THEN
         PSI=PS
         CPS=DCOS(PS)
         SPS=DSIN(PS)
       ENDIF
C
       XSM=X*CPS-Z*SPS
       ZSM=Z*CPS+X*SPS
C
       XKS=XKSI(XSM,Y,ZSM)
      IF (XKS.LT.-(DELARG+DELARG1)) THEN
        CALL R2OUTER(XSM,Y,ZSM,BXSM,BY,BZSM)
         BXSM=-BXSM*0.02      !  ALL COMPONENTS ARE MULTIPLIED BY THE
	 BY=-BY*0.02          !  FACTOR -0.02, IN ORDER TO NORMALIZE THE
         BZSM=-BZSM*0.02      !  FIELD (SO THAT Bz=-1 nT at X=-5.3 RE, Y=Z=0)
      ENDIF
      IF (XKS.GE.-(DELARG+DELARG1).AND.XKS.LT.-DELARG+DELARG1) THEN
        CALL R2OUTER(XSM,Y,ZSM,BXSM1,BY1,BZSM1)
        CALL R2SHEET(XSM,Y,ZSM,BXSM2,BY2,BZSM2)
        F2=-0.02*TKSI(XKS,-DELARG,DELARG1)
        F1=-0.02-F2
        BXSM=BXSM1*F1+BXSM2*F2
        BY=BY1*F1+BY2*F2
        BZSM=BZSM1*F1+BZSM2*F2
      ENDIF

      IF (XKS.GE.-DELARG+DELARG1.AND.XKS.LT.DELARG-DELARG1) THEN
       CALL R2SHEET(XSM,Y,ZSM,BXSM,BY,BZSM)
         BXSM=-BXSM*0.02
         BY=-BY*0.02
         BZSM=-BZSM*0.02
      ENDIF
      IF (XKS.GE.DELARG-DELARG1.AND.XKS.LT.DELARG+DELARG1) THEN
        CALL R2INNER(XSM,Y,ZSM,BXSM1,BY1,BZSM1)
        CALL R2SHEET(XSM,Y,ZSM,BXSM2,BY2,BZSM2)
        F1=-0.02*TKSI(XKS,DELARG,DELARG1)
        F2=-0.02-F1
        BXSM=BXSM1*F1+BXSM2*F2
        BY=BY1*F1+BY2*F2
        BZSM=BZSM1*F1+BZSM2*F2
      ENDIF
      IF (XKS.GE.DELARG+DELARG1) THEN
         CALL R2INNER(XSM,Y,ZSM,BXSM,BY,BZSM)
         BXSM=-BXSM*0.02
         BY=-BY*0.02
         BZSM=-BZSM*0.02
      ENDIF
C
        BX=BXSM*CPS+BZSM*SPS
        BZ=BZSM*CPS-BXSM*SPS
C
        RETURN
        END
C
C****************************************************************

c
      SUBROUTINE R2INNER (X,Y,Z,BX,BY,BZ)
C
C
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION CBX(5),CBY(5),CBZ(5)
C
      DATA PL1,PL2,PL3,PL4,PL5,PL6,PL7,PL8/154.185,-2.12446,.601735E-01,
     * -.153954E-02,.355077E-04,29.9996,262.886,99.9132/
      DATA PN1,PN2,PN3,PN4,PN5,PN6,PN7,PN8/-8.1902,6.5239,5.504,7.7815,
     * .8573,3.0986,.0774,-.038/
C
      CALL BCONIC(X,Y,Z,CBX,CBY,CBZ,5)
C
C   NOW INTRODUCE  ONE  4-LOOP SYSTEM:
C
       CALL LOOPS4(X,Y,Z,DBX8,DBY8,DBZ8,PN1,PN2,PN3,PN4,PN5,PN6)
C
       CALL DIPDISTR(X-PN7,Y,Z,DBX6,DBY6,DBZ6,0)
       CALL DIPDISTR(X-PN8,Y,Z,DBX7,DBY7,DBZ7,1)

C                           NOW COMPUTE THE FIELD COMPONENTS:

      BX=PL1*CBX(1)+PL2*CBX(2)+PL3*CBX(3)+PL4*CBX(4)+PL5*CBX(5)
     * +PL6*DBX6+PL7*DBX7+PL8*DBX8
      BY=PL1*CBY(1)+PL2*CBY(2)+PL3*CBY(3)+PL4*CBY(4)+PL5*CBY(5)
     * +PL6*DBY6+PL7*DBY7+PL8*DBY8
      BZ=PL1*CBZ(1)+PL2*CBZ(2)+PL3*CBZ(3)+PL4*CBZ(4)+PL5*CBZ(5)
     * +PL6*DBZ6+PL7*DBZ7+PL8*DBZ8
C
      RETURN
      END
C-----------------------------------------------------------------------

      SUBROUTINE BCONIC(X,Y,Z,CBX,CBY,CBZ,NMAX)
C
c   "CONICAL" HARMONICS
c
       IMPLICIT REAL*8 (A-H,O-Z)
C
       DIMENSION CBX(NMAX),CBY(NMAX),CBZ(NMAX)

       RO2=X**2+Y**2
       RO=SQRT(RO2)
C
       CF=X/RO
       SF=Y/RO
       CFM1=1.D0
       SFM1=0.D0
C
      R2=RO2+Z**2
      R=DSQRT(R2)
      C=Z/R
      S=RO/R
      CH=DSQRT(0.5D0*(1.D0+C))
      SH=DSQRT(0.5D0*(1.D0-C))
      TNHM1=1.D0
      CNHM1=1.D0
      TNH=SH/CH
      CNH=1.D0/TNH
C
      DO 1 M=1,NMAX
        CFM=CFM1*CF-SFM1*SF
        SFM=CFM1*SF+SFM1*CF
        CFM1=CFM
        SFM1=SFM
        TNHM=TNHM1*TNH
        CNHM=CNHM1*CNH
       BT=M*CFM/(R*S)*(TNHM+CNHM)
       BF=-0.5D0*M*SFM/R*(TNHM1/CH**2-CNHM1/SH**2)
         TNHM1=TNHM
         CNHM1=CNHM
       CBX(M)=BT*C*CF-BF*SF
       CBY(M)=BT*C*SF+BF*CF
  1    CBZ(M)=-BT*S
C
       RETURN
       END

C-------------------------------------------------------------------
C
       SUBROUTINE DIPDISTR(X,Y,Z,BX,BY,BZ,MODE)
C
C   RETURNS FIELD COMPONENTS FROM A LINEAR DISTRIBUTION OF DIPOLAR SOURCES
C     ON THE Z-AXIS.  THE PARAMETER MODE DEFINES HOW THE DIPOLE STRENGTH
C     VARIES ALONG THE Z-AXIS:  MODE=0 IS FOR A STEP-FUNCTION (Mx=const > 0
c         FOR Z > 0, AND Mx=-const < 0 FOR Z < 0)
C      WHILE MODE=1 IS FOR A LINEAR VARIATION OF THE DIPOLE MOMENT DENSITY
C       SEE NB#3, PAGE 53 FOR DETAILS.
C
C
C INPUT: X,Y,Z OF A POINT OF SPACE, AND MODE
C
        IMPLICIT REAL*8 (A-H,O-Z)
        X2=X*X
        RHO2=X2+Y*Y
        R2=RHO2+Z*Z
        R3=R2*DSQRT(R2)

        IF (MODE.EQ.0) THEN
         BX=Z/RHO2**2*(R2*(Y*Y-X2)-RHO2*X2)/R3
         BY=-X*Y*Z/RHO2**2*(2.D0*R2+RHO2)/R3
         BZ=X/R3
        ELSE
         BX=Z/RHO2**2*(Y*Y-X2)
         BY=-2.D0*X*Y*Z/RHO2**2
         BZ=X/RHO2
        ENDIF
         RETURN
         END

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
      SUBROUTINE R2OUTER (X,Y,Z,BX,BY,BZ)
C
      IMPLICIT REAL*8 (A-H,O-Z)
C
      DATA PL1,PL2,PL3,PL4,PL5/-34.105,-2.00019,628.639,73.4847,12.5162/
      DATA PN1,PN2,PN3,PN4,PN5,PN6,PN7,PN8,PN9,PN10,PN11,PN12,PN13,PN14,
     *  PN15,PN16,PN17 /.55,.694,.0031,1.55,2.8,.1375,-.7,.2,.9625,
     * -2.994,2.925,-1.775,4.3,-.275,2.7,.4312,1.55/
c
C    THREE PAIRS OF CROSSED LOOPS:
C
      CALL CROSSLP(X,Y,Z,DBX1,DBY1,DBZ1,PN1,PN2,PN3)
      CALL CROSSLP(X,Y,Z,DBX2,DBY2,DBZ2,PN4,PN5,PN6)
      CALL CROSSLP(X,Y,Z,DBX3,DBY3,DBZ3,PN7,PN8,PN9)
C
C    NOW AN EQUATORIAL LOOP ON THE NIGHTSIDE
C
      CALL CIRCLE(X-PN10,Y,Z,PN11,DBX4,DBY4,DBZ4)
c
c   NOW A 4-LOOP SYSTEM ON THE NIGHTSIDE
c

      CALL LOOPS4(X,Y,Z,DBX5,DBY5,DBZ5,PN12,PN13,PN14,PN15,PN16,PN17)

C---------------------------------------------------------------------

C                           NOW COMPUTE THE FIELD COMPONENTS:

      BX=PL1*DBX1+PL2*DBX2+PL3*DBX3+PL4*DBX4+PL5*DBX5
      BY=PL1*DBY1+PL2*DBY2+PL3*DBY3+PL4*DBY4+PL5*DBY5
      BZ=PL1*DBZ1+PL2*DBZ2+PL3*DBZ3+PL4*DBZ4+PL5*DBZ5

       RETURN
       END
C
C--------------------------------------------------------------------
C
       SUBROUTINE LOOPS4(X,Y,Z,BX,BY,BZ,XC,YC,ZC,R,THETA,PHI)
C
C   RETURNS FIELD COMPONENTS FROM A SYSTEM OF 4 CURRENT LOOPS, POSITIONED
C     SYMMETRICALLY WITH RESPECT TO NOON-MIDNIGHT MERIDIAN AND EQUATORIAL
C      PLANES.
C  INPUT: X,Y,Z OF A POINT OF SPACE
C        XC,YC,ZC (YC > 0 AND ZC > 0) - POSITION OF THE CENTER OF THE
C                                         1ST-QUADRANT LOOP
C        R - LOOP RADIUS (THE SAME FOR ALL FOUR)
C        THETA, PHI  -  SPECIFY THE ORIENTATION OF THE NORMAL OF THE 1ST LOOP
c      -----------------------------------------------------------

        IMPLICIT REAL*8 (A-H,O-Z)
C
          CT=DCOS(THETA)
          ST=DSIN(THETA)
          CP=DCOS(PHI)
          SP=DSIN(PHI)
C------------------------------------1ST QUADRANT:
        XS=(X-XC)*CP+(Y-YC)*SP
        YSS=(Y-YC)*CP-(X-XC)*SP
        ZS=Z-ZC
        XSS=XS*CT-ZS*ST
        ZSS=ZS*CT+XS*ST

        CALL CIRCLE(XSS,YSS,ZSS,R,BXSS,BYS,BZSS)
          BXS=BXSS*CT+BZSS*ST
          BZ1=BZSS*CT-BXSS*ST
          BX1=BXS*CP-BYS*SP
          BY1=BXS*SP+BYS*CP
C-------------------------------------2nd QUADRANT:
        XS=(X-XC)*CP-(Y+YC)*SP
        YSS=(Y+YC)*CP+(X-XC)*SP
        ZS=Z-ZC
        XSS=XS*CT-ZS*ST
        ZSS=ZS*CT+XS*ST

        CALL CIRCLE(XSS,YSS,ZSS,R,BXSS,BYS,BZSS)
          BXS=BXSS*CT+BZSS*ST
          BZ2=BZSS*CT-BXSS*ST
          BX2=BXS*CP+BYS*SP
          BY2=-BXS*SP+BYS*CP
C-------------------------------------3RD QUADRANT:
        XS=-(X-XC)*CP+(Y+YC)*SP
        YSS=-(Y+YC)*CP-(X-XC)*SP
        ZS=Z+ZC
        XSS=XS*CT-ZS*ST
        ZSS=ZS*CT+XS*ST

        CALL CIRCLE(XSS,YSS,ZSS,R,BXSS,BYS,BZSS)
          BXS=BXSS*CT+BZSS*ST
          BZ3=BZSS*CT-BXSS*ST
          BX3=-BXS*CP-BYS*SP
          BY3=BXS*SP-BYS*CP
C-------------------------------------4TH QUADRANT:
        XS=-(X-XC)*CP-(Y-YC)*SP
        YSS=-(Y-YC)*CP+(X-XC)*SP
        ZS=Z+ZC
        XSS=XS*CT-ZS*ST
        ZSS=ZS*CT+XS*ST

        CALL CIRCLE(XSS,YSS,ZSS,R,BXSS,BYS,BZSS)
          BXS=BXSS*CT+BZSS*ST
          BZ4=BZSS*CT-BXSS*ST
          BX4=-BXS*CP+BYS*SP
          BY4=-BXS*SP-BYS*CP

        BX=BX1+BX2+BX3+BX4
        BY=BY1+BY2+BY3+BY4
        BZ=BZ1+BZ2+BZ3+BZ4

         RETURN
         END
C
C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C
      SUBROUTINE R2SHEET(X,Y,Z,BX,BY,BZ)
C
      IMPLICIT REAL*8 (A-H,O-Z)
C
      DATA PNONX1,PNONX2,PNONX3,PNONX4,PNONX5,PNONX6,PNONX7,PNONX8,
     *     PNONY1,PNONY2,PNONY3,PNONY4,PNONY5,PNONY6,PNONY7,PNONY8,
     *     PNONZ1,PNONZ2,PNONZ3,PNONZ4,PNONZ5,PNONZ6,PNONZ7,PNONZ8
     */-19.0969D0,-9.28828D0,-0.129687D0,5.58594D0,22.5055D0,
     *  0.483750D-01,0.396953D-01,0.579023D-01,-13.6750D0,-6.70625D0,
     *  2.31875D0,11.4062D0,20.4562D0,0.478750D-01,0.363750D-01,
     * 0.567500D-01,-16.7125D0,-16.4625D0,-0.1625D0,5.1D0,23.7125D0,
     * 0.355625D-01,0.318750D-01,0.538750D-01/
C
C
      DATA A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17,
     *  A18,A19,A20,A21,A22,A23,A24,A25,A26,A27,A28,A29,A30,A31,A32,A33,
     *  A34,A35,A36,A37,A38,A39,A40,A41,A42,A43,A44,A45,A46,A47,A48,A49,
     *  A50,A51,A52,A53,A54,A55,A56,A57,A58,A59,A60,A61,A62,A63,A64,A65,
     *  A66,A67,A68,A69,A70,A71,A72,A73,A74,A75,A76,A77,A78,A79,A80
     * /8.07190D0,-7.39582D0,-7.62341D0,0.684671D0,-13.5672D0,11.6681D0,
     * 13.1154,-0.890217D0,7.78726D0,-5.38346D0,-8.08738D0,0.609385D0,
     * -2.70410D0, 3.53741D0,3.15549D0,-1.11069D0,-8.47555D0,0.278122D0,
     *  2.73514D0,4.55625D0,13.1134D0,1.15848D0,-3.52648D0,-8.24698D0,
     * -6.85710D0,-2.81369D0, 2.03795D0, 4.64383D0,2.49309D0,-1.22041D0,
     * -1.67432D0,-0.422526D0,-5.39796D0,7.10326D0,5.53730D0,-13.1918D0,
     *  4.67853D0,-7.60329D0,-2.53066D0, 7.76338D0, 5.60165D0,5.34816D0,
     * -4.56441D0,7.05976D0,-2.62723D0,-0.529078D0,1.42019D0,-2.93919D0,
     *  55.6338D0,-1.55181D0,39.8311D0,-80.6561D0,-46.9655D0,32.8925D0,
     * -6.32296D0,19.7841D0,124.731D0,10.4347D0,-30.7581D0,102.680D0,
     * -47.4037D0,-3.31278D0,9.37141D0,-50.0268D0,-533.319D0,110.426D0,
     *  1000.20D0,-1051.40D0, 1619.48D0,589.855D0,-1462.73D0,1087.10D0,
     *  -1994.73D0,-1654.12D0,1263.33D0,-260.210D0,1424.84D0,1255.71D0,
     *  -956.733D0, 219.946D0/
C
C
      DATA B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,
     *  B18,B19,B20,B21,B22,B23,B24,B25,B26,B27,B28,B29,B30,B31,B32,B33,
     *  B34,B35,B36,B37,B38,B39,B40,B41,B42,B43,B44,B45,B46,B47,B48,B49,
     *  B50,B51,B52,B53,B54,B55,B56,B57,B58,B59,B60,B61,B62,B63,B64,B65,
     *  B66,B67,B68,B69,B70,B71,B72,B73,B74,B75,B76,B77,B78,B79,B80
     */-9.08427D0,10.6777D0,10.3288D0,-0.969987D0,6.45257D0,-8.42508D0,
     * -7.97464D0,1.41996D0,-1.92490D0,3.93575D0,2.83283D0,-1.48621D0,
     *0.244033D0,-0.757941D0,-0.386557D0,0.344566D0,9.56674D0,-2.5365D0,
     * -3.32916D0,-5.86712D0,-6.19625D0,1.83879D0,2.52772D0,4.34417D0,
     * 1.87268D0,-2.13213D0,-1.69134D0,-.176379D0,-.261359D0,.566419D0,
     * 0.3138D0,-0.134699D0,-3.83086D0,-8.4154D0,4.77005D0,-9.31479D0,
     * 37.5715D0,19.3992D0,-17.9582D0,36.4604D0,-14.9993D0,-3.1442D0,
     * 6.17409D0,-15.5519D0,2.28621D0,-0.891549D-2,-.462912D0,2.47314D0,
     * 41.7555D0,208.614D0,-45.7861D0,-77.8687D0,239.357D0,-67.9226D0,
     * 66.8743D0,238.534D0,-112.136D0,16.2069D0,-40.4706D0,-134.328D0,
     * 21.56D0,-0.201725D0,2.21D0,32.5855D0,-108.217D0,-1005.98D0,
     * 585.753D0,323.668D0,-817.056D0,235.750D0,-560.965D0,-576.892D0,
     * 684.193D0,85.0275D0,168.394D0,477.776D0,-289.253D0,-123.216D0,
     * 75.6501D0,-178.605D0/
C
      DATA C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,
     *  C18,C19,C20,C21,C22,C23,C24,C25,C26,C27,C28,C29,C30,C31,C32,C33,
     *  C34,C35,C36,C37,C38,C39,C40,C41,C42,C43,C44,C45,C46,C47,C48,C49,
     *  C50,C51,C52,C53,C54,C55,C56,C57,C58,C59,C60,C61,C62,C63,C64,C65,
     *  C66,C67,C68,C69,C70,C71,C72,C73,C74,C75,C76,C77,C78,C79,C80
     * / 1167.61D0,-917.782D0,-1253.2D0,-274.128D0,-1538.75D0,1257.62D0,
     * 1745.07D0,113.479D0,393.326D0,-426.858D0,-641.1D0,190.833D0,
     * -29.9435D0,-1.04881D0,117.125D0,-25.7663D0,-1168.16D0,910.247D0,
     * 1239.31D0,289.515D0,1540.56D0,-1248.29D0,-1727.61D0,-131.785D0,
     * -394.577D0,426.163D0,637.422D0,-187.965D0,30.0348D0,0.221898D0,
     * -116.68D0,26.0291D0,12.6804D0,4.84091D0,1.18166D0,-2.75946D0,
     * -17.9822D0,-6.80357D0,-1.47134D0,3.02266D0,4.79648D0,0.665255D0,
     * -0.256229D0,-0.857282D-1,-0.588997D0,0.634812D-1,0.164303D0,
     * -0.15285D0,22.2524D0,-22.4376D0,-3.85595D0,6.07625D0,-105.959D0,
     * -41.6698D0,0.378615D0,1.55958D0,44.3981D0,18.8521D0,3.19466D0,
     *  5.89142D0,-8.63227D0,-2.36418D0,-1.027D0,-2.31515D0,1035.38D0,
     *  2040.66D0,-131.881D0,-744.533D0,-3274.93D0,-4845.61D0,482.438D0,
     * 1567.43D0,1354.02D0,2040.47D0,-151.653D0,-845.012D0,-111.723D0,
     * -265.343D0,-26.1171D0,216.632D0/
C
c------------------------------------------------------------------
C
       XKS=XKSI(X,Y,Z)    !  variation across the current sheet
       T1X=XKS/DSQRT(XKS**2+PNONX6**2)
       T2X=PNONX7**3/DSQRT(XKS**2+PNONX7**2)**3
       T3X=XKS/DSQRT(XKS**2+PNONX8**2)**5 *3.493856D0*PNONX8**4
C
       T1Y=XKS/DSQRT(XKS**2+PNONY6**2)
       T2Y=PNONY7**3/DSQRT(XKS**2+PNONY7**2)**3
       T3Y=XKS/DSQRT(XKS**2+PNONY8**2)**5 *3.493856D0*PNONY8**4
C
       T1Z=XKS/DSQRT(XKS**2+PNONZ6**2)
       T2Z=PNONZ7**3/DSQRT(XKS**2+PNONZ7**2)**3
       T3Z=XKS/DSQRT(XKS**2+PNONZ8**2)**5 *3.493856D0*PNONZ8**4
C
      RHO2=X*X+Y*Y
      R=DSQRT(RHO2+Z*Z)
      RHO=DSQRT(RHO2)
C
      C1P=X/RHO
      S1P=Y/RHO
      S2P=2.D0*S1P*C1P
      C2P=C1P*C1P-S1P*S1P
      S3P=S2P*C1P+C2P*S1P
      C3P=C2P*C1P-S2P*S1P
      S4P=S3P*C1P+C3P*S1P
      CT=Z/R
      ST=RHO/R
C
      S1=FEXP(CT,PNONX1)
      S2=FEXP(CT,PNONX2)
      S3=FEXP(CT,PNONX3)
      S4=FEXP(CT,PNONX4)
      S5=FEXP(CT,PNONX5)
C
C                   NOW COMPUTE THE GSM FIELD COMPONENTS:
C
C
      BX=S1*((A1+A2*T1X+A3*T2X+A4*T3X)
     *        +C1P*(A5+A6*T1X+A7*T2X+A8*T3X)
     *        +C2P*(A9+A10*T1X+A11*T2X+A12*T3X)
     *        +C3P*(A13+A14*T1X+A15*T2X+A16*T3X))
     *    +S2*((A17+A18*T1X+A19*T2X+A20*T3X)
     *        +C1P*(A21+A22*T1X+A23*T2X+A24*T3X)
     *        +C2P*(A25+A26*T1X+A27*T2X+A28*T3X)
     *        +C3P*(A29+A30*T1X+A31*T2X+A32*T3X))
     *    +S3*((A33+A34*T1X+A35*T2X+A36*T3X)
     *        +C1P*(A37+A38*T1X+A39*T2X+A40*T3X)
     *        +C2P*(A41+A42*T1X+A43*T2X+A44*T3X)
     *        +C3P*(A45+A46*T1X+A47*T2X+A48*T3X))
     *    +S4*((A49+A50*T1X+A51*T2X+A52*T3X)
     *        +C1P*(A53+A54*T1X+A55*T2X+A56*T3X)
     *        +C2P*(A57+A58*T1X+A59*T2X+A60*T3X)
     *        +C3P*(A61+A62*T1X+A63*T2X+A64*T3X))
     *    +S5*((A65+A66*T1X+A67*T2X+A68*T3X)
     *        +C1P*(A69+A70*T1X+A71*T2X+A72*T3X)
     *        +C2P*(A73+A74*T1X+A75*T2X+A76*T3X)
     *        +C3P*(A77+A78*T1X+A79*T2X+A80*T3X))
C
C
      S1=FEXP(CT,PNONY1)
      S2=FEXP(CT,PNONY2)
      S3=FEXP(CT,PNONY3)
      S4=FEXP(CT,PNONY4)
      S5=FEXP(CT,PNONY5)
C
      BY=S1*(S1P*(B1+B2*T1Y+B3*T2Y+B4*T3Y)
     *      +S2P*(B5+B6*T1Y+B7*T2Y+B8*T3Y)
     *      +S3P*(B9+B10*T1Y+B11*T2Y+B12*T3Y)
     *      +S4P*(B13+B14*T1Y+B15*T2Y+B16*T3Y))
     *  +S2*(S1P*(B17+B18*T1Y+B19*T2Y+B20*T3Y)
     *      +S2P*(B21+B22*T1Y+B23*T2Y+B24*T3Y)
     *      +S3P*(B25+B26*T1Y+B27*T2Y+B28*T3Y)
     *      +S4P*(B29+B30*T1Y+B31*T2Y+B32*T3Y))
     *  +S3*(S1P*(B33+B34*T1Y+B35*T2Y+B36*T3Y)
     *      +S2P*(B37+B38*T1Y+B39*T2Y+B40*T3Y)
     *      +S3P*(B41+B42*T1Y+B43*T2Y+B44*T3Y)
     *      +S4P*(B45+B46*T1Y+B47*T2Y+B48*T3Y))
     *  +S4*(S1P*(B49+B50*T1Y+B51*T2Y+B52*T3Y)
     *      +S2P*(B53+B54*T1Y+B55*T2Y+B56*T3Y)
     *      +S3P*(B57+B58*T1Y+B59*T2Y+B60*T3Y)
     *      +S4P*(B61+B62*T1Y+B63*T2Y+B64*T3Y))
     *  +S5*(S1P*(B65+B66*T1Y+B67*T2Y+B68*T3Y)
     *      +S2P*(B69+B70*T1Y+B71*T2Y+B72*T3Y)
     *      +S3P*(B73+B74*T1Y+B75*T2Y+B76*T3Y)
     *      +S4P*(B77+B78*T1Y+B79*T2Y+B80*T3Y))
C
      S1=FEXP1(CT,PNONZ1)
      S2=FEXP1(CT,PNONZ2)
      S3=FEXP1(CT,PNONZ3)
      S4=FEXP1(CT,PNONZ4)
      S5=FEXP1(CT,PNONZ5)
C
      BZ=S1*((C1+C2*T1Z+C3*T2Z+C4*T3Z)
     *      +C1P*(C5+C6*T1Z+C7*T2Z+C8*T3Z)
     *      +C2P*(C9+C10*T1Z+C11*T2Z+C12*T3Z)
     *      +C3P*(C13+C14*T1Z+C15*T2Z+C16*T3Z))
     *   +S2*((C17+C18*T1Z+C19*T2Z+C20*T3Z)
     *      +C1P*(C21+C22*T1Z+C23*T2Z+C24*T3Z)
     *      +C2P*(C25+C26*T1Z+C27*T2Z+C28*T3Z)
     *      +C3P*(C29+C30*T1Z+C31*T2Z+C32*T3Z))
     *   +S3*((C33+C34*T1Z+C35*T2Z+C36*T3Z)
     *      +C1P*(C37+C38*T1Z+C39*T2Z+C40*T3Z)
     *      +C2P*(C41+C42*T1Z+C43*T2Z+C44*T3Z)
     *      +C3P*(C45+C46*T1Z+C47*T2Z+C48*T3Z))
     *   +S4*((C49+C50*T1Z+C51*T2Z+C52*T3Z)
     *      +C1P*(C53+C54*T1Z+C55*T2Z+C56*T3Z)
     *      +C2P*(C57+C58*T1Z+C59*T2Z+C60*T3Z)
     *      +C3P*(C61+C62*T1Z+C63*T2Z+C64*T3Z))
     *   +S5*((C65+C66*T1Z+C67*T2Z+C68*T3Z)
     *      +C1P*(C69+C70*T1Z+C71*T2Z+C72*T3Z)
     *      +C2P*(C73+C74*T1Z+C75*T2Z+C76*T3Z)
     *      +C3P*(C77+C78*T1Z+C79*T2Z+C80*T3Z))
C
       RETURN
       END
C
C^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

      DOUBLE PRECISION FUNCTION XKSI(X,Y,Z)
C
      IMPLICIT REAL*8 (A-H,O-Z)
C
C   A11 - C72, R0, and DR below  ARE STRETCH PARAMETERS (P.26-27, NB# 3),
C
      DATA A11A12,A21A22,A41A42,A51A52,A61A62,B11B12,B21B22,C61C62,
     *  C71C72,R0,DR /0.305662,-0.383593,0.2677733,-0.097656,-0.636034,
     *  -0.359862,0.424706,-0.126366,0.292578,1.21563,7.50937/

      DATA TNOON,DTETA/0.3665191,0.09599309/ ! Correspond to noon and midnight
C                                         latitudes 69 and 63.5 degs, resp.
       DR2=DR*DR
C
       X2=X*X
       Y2=Y*Y
       Z2=Z*Z
       XY=X*Y
       XYZ=XY*Z
       R2=X2+Y2+Z2
       R=DSQRT(R2)
       R3=R2*R
       R4=R2*R2
       XR=X/R
       YR=Y/R
       ZR=Z/R
C
       IF (R.LT.R0) THEN
         PR=0.D0
       ELSE
         PR=DSQRT((R-R0)**2+DR2)-DR
       ENDIF
C
      F=X+PR*(A11A12+A21A22*XR+A41A42*XR*XR+A51A52*YR*YR+
     *        A61A62*ZR*ZR)
      G=Y+PR*(B11B12*YR+B21B22*XR*YR)
      H=Z+PR*(C61C62*ZR+C71C72*XR*ZR)
      G2=G*G
C
      FGH=F**2+G2+H**2
      FGH32=DSQRT(FGH)**3
      FCHSG2=F**2+G2

      IF (FCHSG2.LT.1.D-5) THEN
         XKSI=-1.D0               !  THIS IS JUST FOR ELIMINATING PROBLEMS
         RETURN                    !  ON THE Z-AXIS
      ENDIF

      SQFCHSG2=DSQRT(FCHSG2)
      ALPHA=FCHSG2/FGH32
      THETA=TNOON+0.5D0*DTETA*(1.D0-F/SQFCHSG2)
      PHI=DSIN(THETA)**2
C
      XKSI=ALPHA-PHI
C
      RETURN
      END
C
C--------------------------------------------------------------------
C
        FUNCTION FEXP(S,A)
         IMPLICIT REAL*8 (A-H,O-Z)
          DATA E/2.718281828459D0/
          IF (A.LT.0.D0) FEXP=DSQRT(-2.D0*A*E)*S*DEXP(A*S*S)
          IF (A.GE.0.D0) FEXP=S*DEXP(A*(S*S-1.D0))
         RETURN
         END
C
C-----------------------------------------------------------------------
        FUNCTION FEXP1(S,A)
         IMPLICIT REAL*8 (A-H,O-Z)
         IF (A.LE.0.D0) FEXP1=DEXP(A*S*S)
         IF (A.GT.0.D0) FEXP1=DEXP(A*(S*S-1.D0))
         RETURN
         END
C
C************************************************************************
C
         DOUBLE PRECISION FUNCTION TKSI(XKSI,XKS0,DXKSI)
         IMPLICIT REAL*8 (A-H,O-Z)
         SAVE M,TDZ3
         DATA M/0/
C
         IF (M.EQ.0) THEN
         TDZ3=2.*DXKSI**3
         M=1
         ENDIF
C
         IF (XKSI-XKS0.LT.-DXKSI) TKSII=0.
         IF (XKSI-XKS0.GE.DXKSI)  TKSII=1.
C
         IF (XKSI.GE.XKS0-DXKSI.AND.XKSI.LT.XKS0) THEN
           BR3=(XKSI-XKS0+DXKSI)**3
           TKSII=1.5*BR3/(TDZ3+BR3)
         ENDIF
C
         IF (XKSI.GE.XKS0.AND.XKSI.LT.XKS0+DXKSI) THEN
           BR3=(XKSI-XKS0-DXKSI)**3
           TKSII=1.+1.5*BR3/(TDZ3-BR3)
         ENDIF
           TKSI=TKSII
         END
C
C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
c
       SUBROUTINE DIPOLE(PS,X,Y,Z,BX,BY,BZ)
C
C  CALCULATES GSM COMPONENTS OF GEODIPOLE FIELD WITH THE DIPOLE MOMENT
C  CORRESPONDING TO THE EPOCH OF 1980.
C------------INPUT PARAMETERS:
C   PS - GEODIPOLE TILT ANGLE IN RADIANS, X,Y,Z - GSM COORDINATES IN RE
C------------OUTPUT PARAMETERS:
C   BX,BY,BZ - FIELD COMPONENTS IN GSM SYSTEM, IN NANOTESLA.
C
C
C     WRITEN BY: N. A. TSYGANENKO

      DATA M,PSI/0,5./
      SAVE M,PSI,SPS,CPS
      IF(M.EQ.1.AND.ABS(PS-PSI).LT.1.E-5) GOTO 1
      SPS=SIN(PS)
      CPS=COS(PS)
      PSI=PS
      M=1
  1   P=X**2
      U=Z**2
      V=3.*Z*X
      T=Y**2
      Q=30574./SQRT(P+T+U)**5
      BX=Q*((T+U-2.*P)*SPS-V*CPS)
      BY=-3.*Y*Q*(X*SPS+Z*CPS)
      BZ=Q*((P+T-2.*U)*CPS-V*SPS)
      RETURN
      END