Geopack-2008.for
81.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
c@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
c<pre>
c
c ##########################################################################
c # #
c # GEOPACK-2008 #
c # (MAIN SET OF FORTRAN CODES) #
c # (IGRF coefficients updated 01/01/2020) #
c ##########################################################################
C
c
c This collection of subroutines is a result of several upgrades of the original package
c written by N. A. Tsyganenko in 1978-1979.
c
c PREFATORY NOTE TO THE VERSION OF FEBRUARY 8, 2008:
c
c To avoid inappropriate use of obsolete subroutines from earlier versions, a suffix 08 was
c added to the name of each subroutine in this release.
c
c A possibility has been added in this version to calculate vector components in the
c "Geocentric Solar Wind" (GSW) coordinate system, which, to our knowledge, was first
c introduced by Hones et al., Planet. Space Sci., v.34, p.889, 1986 (aka GSWM, see Appendix,
c Tsyganenko et al., JGRA, v.103(A4), p.6827, 1998). The GSW system is analogous to the
c standard GSM, except that its X-axis is antiparallel to the currently observed solar wind
c flow vector, rather than aligned with the Earth-Sun line. The orientation of axes in the
c GSW system can be uniquely defined by specifying three components (VGSEX,VGSEY,VGSEZ) of
c the solar wind velocity, and in the case of a strictly radial anti-sunward flow (VGSEY=
c VGSEZ=0) the GSW system becomes identical to the standard GSM, which fact was used here
c to minimize the number of subroutines in the package. To that end, instead of the special
c case of the GSM coordinates, this version uses a more general GSW system, and three more
c input parameters are added in the subroutine RECALC_08, the observed values (VGSEX,VGSEY,
c VGSEZ) of the solar wind velocity. Invoking RECALC_08 with VGSEY=VGSEZ=0 restores the
c standard (sunward) orientation of the X axis, which allows one to easily convert vectors
c between GSW and GSM, as well as to/from other standard and commonly used systems. For more
c details, see the documentation file GEOPACK-2008.DOC.
c
c Another modification allows users to have more control over the procedure of field line
c mapping using the subroutine TRACE_08. To that end, three new input parameters were added
c in that subroutine, allowing one to set (i) an upper limit, DSMAX, on the automatically
c adjusted step size, (ii) a permissible step error, ERR, and (iii) maximal length, LMAX,
c of arrays where field line point coordinates are stored. Minor changes were also made in
c the tracing subroutine, to make it more compact and easier for understanding, and to
c prevent the algorithm from making uncontrollable large number of multiple loops in some
c cases with plasmoid-like field structures.
c
C One more subroutine, named GEODGEO_08, was added to the package, allowing one to convert
c geodetic coordinates of a point in space (altitude above the Earth's WGS84 ellipsoid and
c geodetic latitude) to geocentric radial distance and colatitude, and vice versa.
c
C For a complete list of modifications made earlier in previous versions, see the
c documentation file GEOPACK-2008.DOC.
c
c----------------------------------------------------------------------------------
c
SUBROUTINE IGRF_GSW_08 (XGSW,YGSW,ZGSW,HXGSW,HYGSW,HZGSW)
c
C CALCULATES COMPONENTS OF THE MAIN (INTERNAL) GEOMAGNETIC FIELD IN THE GEOCENTRIC SOLAR-WIND
C (GSW) COORDINATE SYSTEM, USING IAGA INTERNATIONAL GEOMAGNETIC REFERENCE MODEL COEFFICIENTS
C (e.g., https://www.ngdc.noaa.gov/IAGA/vmod/coeffs/igrf13coeffs.txt, revised 01 January, 2020)
c
C THE GSW SYSTEM IS ESSENTIALLY SIMILAR TO THE STANDARD GSM (THE TWO SYSTEMS BECOME IDENTICAL
C TO EACH OTHER IN THE CASE OF STRICTLY ANTI-SUNWARD SOLAR WIND FLOW). FOR A DETAILED
C DEFINITION, SEE INTRODUCTORY COMMENTS FOR THE SUBROUTINE GSWGSE_08 .
C
C BEFORE THE FIRST CALL OF THIS SUBROUTINE, OR, IF THE DATE/TIME (IYEAR,IDAY,IHOUR,MIN,ISEC),
C OR THE SOLAR WIND VELOCITY COMPONENTS (VGSEX,VGSEY,VGSEZ) HAVE CHANGED, THE MODEL COEFFICIENTS
c AND GEO-GSW ROTATION MATRIX ELEMENTS SHOULD BE UPDATED BY CALLING THE SUBROUTINE RECALC_08.
C
C-----INPUT PARAMETERS:
C
C XGSW,YGSW,ZGSW - CARTESIAN GEOCENTRIC SOLAR-WIND COORDINATES (IN UNITS RE=6371.2 KM)
C
C-----OUTPUT PARAMETERS:
C
C HXGSW,HYGSW,HZGSW - CARTESIAN GEOCENTRIC SOLAR-WIND COMPONENTS OF THE MAIN GEOMAGNETIC
C FIELD IN NANOTESLA
C
C LAST MODIFICATION: FEB 07, 2008.
C THIS VERSION OF THE CODE ACCEPTS DATES FROM 1965 THROUGH 2025.
c
C AUTHOR: N. A. TSYGANENKO
C
C
COMMON /GEOPACK2/ G(105),H(105),REC(105)
DIMENSION A(14),B(14)
CALL GEOGSW_08 (XGEO,YGEO,ZGEO,XGSW,YGSW,ZGSW,-1)
RHO2=XGEO**2+YGEO**2
R=SQRT(RHO2+ZGEO**2)
C=ZGEO/R
RHO=SQRT(RHO2)
S=RHO/R
IF (S.LT.1.E-5) THEN
CF=1.
SF=0.
ELSE
CF=XGEO/RHO
SF=YGEO/RHO
ENDIF
C
PP=1./R
P=PP
C
C IN THIS VERSION, THE OPTIMAL VALUE OF THE PARAMETER NM (MAXIMAL ORDER OF THE SPHERICAL
C HARMONIC EXPANSION) IS NOT USER-PRESCRIBED, BUT CALCULATED INSIDE THE SUBROUTINE, BASED
C ON THE VALUE OF THE RADIAL DISTANCE R:
C
IRP3=R+2
NM=3+30/IRP3
IF (NM.GT.13) NM=13
K=NM+1
DO 150 N=1,K
P=P*PP
A(N)=P
150 B(N)=P*N
P=1.
D=0.
BBR=0.
BBT=0.
BBF=0.
DO 200 M=1,K
IF(M.EQ.1) GOTO 160
MM=M-1
W=X
X=W*CF+Y*SF
Y=Y*CF-W*SF
GOTO 170
160 X=0.
Y=1.
170 Q=P
Z=D
BI=0.
P2=0.
D2=0.
DO 190 N=M,K
AN=A(N)
MN=N*(N-1)/2+M
E=G(MN)
HH=H(MN)
W=E*Y+HH*X
BBR=BBR+B(N)*W*Q
BBT=BBT-AN*W*Z
IF(M.EQ.1) GOTO 180
QQ=Q
IF(S.LT.1.E-5) QQ=Z
BI=BI+AN*(E*X-HH*Y)*QQ
180 XK=REC(MN)
DP=C*Z-S*Q-XK*D2
PM=C*Q-XK*P2
D2=Z
P2=Q
Z=DP
190 Q=PM
D=S*D+C*P
P=S*P
IF(M.EQ.1) GOTO 200
BI=BI*MM
BBF=BBF+BI
200 CONTINUE
C
BR=BBR
BT=BBT
IF(S.LT.1.E-5) GOTO 210
BF=BBF/S
GOTO 211
210 IF(C.LT.0.) BBF=-BBF
BF=BBF
211 HE=BR*S+BT*C
HXGEO=HE*CF-BF*SF
HYGEO=HE*SF+BF*CF
HZGEO=BR*C-BT*S
C
CALL GEOGSW_08 (HXGEO,HYGEO,HZGEO,HXGSW,HYGSW,HZGSW,1)
C
RETURN
END
C
c==========================================================================================
C
c
SUBROUTINE IGRF_GEO_08 (R,THETA,PHI,BR,BTHETA,BPHI)
c
C CALCULATES COMPONENTS OF THE MAIN (INTERNAL) GEOMAGNETIC FIELD IN THE SPHERICAL GEOGRAPHIC
C (GEOCENTRIC) COORDINATE SYSTEM, USING IAGA INTERNATIONAL GEOMAGNETIC REFERENCE MODEL
C COEFFICIENTS (e.g., http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, revised: 22 March, 2005)
C
C BEFORE THE FIRST CALL OF THIS SUBROUTINE, OR IF THE DATE (IYEAR AND IDAY) WAS CHANGED,
C THE MODEL COEFFICIENTS SHOULD BE UPDATED BY CALLING THE SUBROUTINE RECALC_08
C
C-----INPUT PARAMETERS:
C
C R, THETA, PHI - SPHERICAL GEOGRAPHIC (GEOCENTRIC) COORDINATES:
C RADIAL DISTANCE R IN UNITS RE=6371.2 KM, COLATITUDE THETA AND LONGITUDE PHI IN RADIANS
C
C-----OUTPUT PARAMETERS:
C
C BR, BTHETA, BPHI - SPHERICAL COMPONENTS OF THE MAIN GEOMAGNETIC FIELD IN NANOTESLA
C (POSITIVE BR OUTWARD, BTHETA SOUTHWARD, BPHI EASTWARD)
C
C LAST MODIFICATION: MAY 4, 2005.
C THIS VERSION OF THE CODE ACCEPTS DATES FROM 1965 THROUGH 2015.
c
C AUTHOR: N. A. TSYGANENKO
C
C
COMMON /GEOPACK2/ G(105),H(105),REC(105)
DIMENSION A(14),B(14)
C=COS(THETA)
S=SIN(THETA)
CF=COS(PHI)
SF=SIN(PHI)
C
PP=1./R
P=PP
C
C IN THIS NEW VERSION, THE OPTIMAL VALUE OF THE PARAMETER NM (MAXIMAL ORDER OF THE SPHERICAL
C HARMONIC EXPANSION) IS NOT USER-PRESCRIBED, BUT CALCULATED INSIDE THE SUBROUTINE, BASED
C ON THE VALUE OF THE RADIAL DISTANCE R:
C
IRP3=R+2
NM=3+30/IRP3
IF (NM.GT.13) NM=13
K=NM+1
DO 150 N=1,K
P=P*PP
A(N)=P
150 B(N)=P*N
P=1.
D=0.
BBR=0.
BBT=0.
BBF=0.
DO 200 M=1,K
IF(M.EQ.1) GOTO 160
MM=M-1
W=X
X=W*CF+Y*SF
Y=Y*CF-W*SF
GOTO 170
160 X=0.
Y=1.
170 Q=P
Z=D
BI=0.
P2=0.
D2=0.
DO 190 N=M,K
AN=A(N)
MN=N*(N-1)/2+M
E=G(MN)
HH=H(MN)
W=E*Y+HH*X
BBR=BBR+B(N)*W*Q
BBT=BBT-AN*W*Z
IF(M.EQ.1) GOTO 180
QQ=Q
IF(S.LT.1.E-5) QQ=Z
BI=BI+AN*(E*X-HH*Y)*QQ
180 XK=REC(MN)
DP=C*Z-S*Q-XK*D2
PM=C*Q-XK*P2
D2=Z
P2=Q
Z=DP
190 Q=PM
D=S*D+C*P
P=S*P
IF(M.EQ.1) GOTO 200
BI=BI*MM
BBF=BBF+BI
200 CONTINUE
C
BR=BBR
BTHETA=BBT
IF(S.LT.1.E-5) GOTO 210
BPHI=BBF/S
RETURN
210 IF(C.LT.0.) BBF=-BBF
BPHI=BBF
RETURN
END
C
c==========================================================================================
c
SUBROUTINE DIP_08 (XGSW,YGSW,ZGSW,BXGSW,BYGSW,BZGSW)
C
C CALCULATES GSW (GEOCENTRIC SOLAR-WIND) COMPONENTS OF GEODIPOLE FIELD WITH THE DIPOLE MOMENT
C CORRESPONDING TO THE EPOCH, SPECIFIED BY CALLING SUBROUTINE RECALC_08 (SHOULD BE
C INVOKED BEFORE THE FIRST USE OF THIS ONE, OR IF THE DATE/TIME, AND/OR THE OBSERVED
C SOLAR WIND DIRECTION, HAVE CHANGED.
C
C THE GSW COORDINATE SYSTEM IS ESSENTIALLY SIMILAR TO THE STANDARD GSM (THE TWO SYSTEMS BECOME
C IDENTICAL TO EACH OTHER IN THE CASE OF STRICTLY RADIAL ANTI-SUNWARD SOLAR WIND FLOW). ITS
C DETAILED DEFINITION IS GIVEN IN INTRODUCTORY COMMENTS FOR THE SUBROUTINE GSWGSE_08 .
C--INPUT PARAMETERS: XGSW,YGSW,ZGSW - GSW COORDINATES IN RE (1 RE = 6371.2 km)
C
C--OUTPUT PARAMETERS: BXGSW,BYGSW,BZGSW - FIELD COMPONENTS IN GSW SYSTEM, IN NANOTESLA.
C
C LAST MODIFICATION: JAN 28, 2008.
C
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ AA(10),SPS,CPS,BB(22)
COMMON /GEOPACK2/ G(105),H(105),REC(105)
C
DIPMOM=SQRT(G(2)**2+G(3)**2+H(3)**2)
C
P=XGSW**2
U=ZGSW**2
V=3.*ZGSW*XGSW
T=YGSW**2
Q=DIPMOM/SQRT(P+T+U)**5
BXGSW=Q*((T+U-2.*P)*SPS-V*CPS)
BYGSW=-3.*YGSW*Q*(XGSW*SPS+ZGSW*CPS)
BZGSW=Q*((P+T-2.*U)*CPS-V*SPS)
RETURN
END
C*******************************************************************
c
SUBROUTINE SUN_08 (IYEAR,IDAY,IHOUR,MIN,ISEC,GST,SLONG,SRASN,SDEC)
C
C CALCULATES FOUR QUANTITIES NECESSARY FOR COORDINATE TRANSFORMATIONS
C WHICH DEPEND ON SUN POSITION (AND, HENCE, ON UNIVERSAL TIME AND SEASON)
C
C------- INPUT PARAMETERS:
C IYR,IDAY,IHOUR,MIN,ISEC - YEAR, DAY, AND UNIVERSAL TIME IN HOURS, MINUTES,
C AND SECONDS (IDAY=1 CORRESPONDS TO JANUARY 1).
C
C------- OUTPUT PARAMETERS:
C GST - GREENWICH MEAN SIDEREAL TIME, SLONG - LONGITUDE ALONG ECLIPTIC
C SRASN - RIGHT ASCENSION, SDEC - DECLINATION OF THE SUN (RADIANS)
C ORIGINAL VERSION OF THIS SUBROUTINE HAS BEEN COMPILED FROM:
C RUSSELL, C.T., COSMIC ELECTRODYNAMICS, 1971, V.2, PP.184-196.
C
C LAST MODIFICATION: MARCH 31, 2003 (ONLY SOME NOTATION CHANGES)
C
C ORIGINAL VERSION WRITTEN BY: Gilbert D. Mead
C
DOUBLE PRECISION DJ,FDAY
DATA RAD/57.295779513/
C
IF(IYEAR.LT.1901.OR.IYEAR.GT.2099) RETURN
FDAY=DFLOAT(IHOUR*3600+MIN*60+ISEC)/86400.D0
DJ=365*(IYEAR-1900)+(IYEAR-1901)/4+IDAY-0.5D0+FDAY
T=DJ/36525.
VL=DMOD(279.696678+0.9856473354*DJ,360.D0)
GST=DMOD(279.690983+.9856473354*DJ+360.*FDAY+180.,360.D0)/RAD
G=DMOD(358.475845+0.985600267*DJ,360.D0)/RAD
SLONG=(VL+(1.91946-0.004789*T)*SIN(G)+0.020094*SIN(2.*G))/RAD
IF(SLONG.GT.6.2831853) SLONG=SLONG-6.2831853
IF (SLONG.LT.0.) SLONG=SLONG+6.2831853
OBLIQ=(23.45229-0.0130125*T)/RAD
SOB=SIN(OBLIQ)
SLP=SLONG-9.924E-5
C
C THE LAST CONSTANT IS A CORRECTION FOR THE ANGULAR ABERRATION DUE TO
C EARTH'S ORBITAL MOTION
C
SIND=SOB*SIN(SLP)
COSD=SQRT(1.-SIND**2)
SC=SIND/COSD
SDEC=ATAN(SC)
SRASN=3.141592654-ATAN2(COS(OBLIQ)/SOB*SC,-COS(SLP)/COSD)
RETURN
END
C
C================================================================================
c
SUBROUTINE SPHCAR_08 (R,THETA,PHI,X,Y,Z,J)
C
C CONVERTS SPHERICAL COORDS INTO CARTESIAN ONES AND VICE VERSA
C (THETA AND PHI IN RADIANS).
C
C J>0 J<0
C-----INPUT: J,R,THETA,PHI J,X,Y,Z
C----OUTPUT: X,Y,Z R,THETA,PHI
C
C NOTE: AT THE POLES (X=0 AND Y=0) WE ASSUME PHI=0 WHEN CONVERTING
C FROM CARTESIAN TO SPHERICAL COORDS (I.E., FOR J<0)
C
C LAST MOFIFICATION: APRIL 1, 2003 (ONLY SOME NOTATION CHANGES AND MORE
C COMMENTS ADDED)
C
C AUTHOR: N. A. TSYGANENKO
C
IF(J.GT.0) GOTO 3
SQ=X**2+Y**2
R=SQRT(SQ+Z**2)
IF (SQ.NE.0.) GOTO 2
PHI=0.
IF (Z.LT.0.) GOTO 1
THETA=0.
RETURN
1 THETA=3.141592654
RETURN
2 SQ=SQRT(SQ)
PHI=ATAN2(Y,X)
THETA=ATAN2(SQ,Z)
IF (PHI.LT.0.) PHI=PHI+6.28318531
RETURN
3 SQ=R*SIN(THETA)
X=SQ*COS(PHI)
Y=SQ*SIN(PHI)
Z=R*COS(THETA)
RETURN
END
C
C===========================================================================
c
SUBROUTINE BSPCAR_08 (THETA,PHI,BR,BTHETA,BPHI,BX,BY,BZ)
C
C CALCULATES CARTESIAN FIELD COMPONENTS FROM LOCAL SPHERICAL ONES
C
C-----INPUT: THETA,PHI - SPHERICAL ANGLES OF THE POINT IN RADIANS
C BR,BTHETA,BPHI - LOCAL SPHERICAL COMPONENTS OF THE FIELD
C-----OUTPUT: BX,BY,BZ - CARTESIAN COMPONENTS OF THE FIELD
C
C LAST MOFIFICATION: APRIL 1, 2003 (ONLY SOME NOTATION CHANGES)
C
C WRITTEN BY: N. A. TSYGANENKO
C
S=SIN(THETA)
C=COS(THETA)
SF=SIN(PHI)
CF=COS(PHI)
BE=BR*S+BTHETA*C
BX=BE*CF-BPHI*SF
BY=BE*SF+BPHI*CF
BZ=BR*C-BTHETA*S
RETURN
END
c
C==============================================================================
C
SUBROUTINE BCARSP_08 (X,Y,Z,BX,BY,BZ,BR,BTHETA,BPHI)
C
CALCULATES LOCAL SPHERICAL FIELD COMPONENTS FROM THOSE IN CARTESIAN SYSTEM
C
C-----INPUT: X,Y,Z - CARTESIAN COMPONENTS OF THE POSITION VECTOR
C BX,BY,BZ - CARTESIAN COMPONENTS OF THE FIELD VECTOR
C-----OUTPUT: BR,BTHETA,BPHI - LOCAL SPHERICAL COMPONENTS OF THE FIELD VECTOR
C
C NOTE: AT THE POLES (THETA=0 OR THETA=PI) WE ASSUME PHI=0,
C AND HENCE BTHETA=BX, BPHI=BY
C
C WRITTEN AND ADDED TO THIS PACKAGE: APRIL 1, 2003,
C AUTHOR: N. A. TSYGANENKO
C
RHO2=X**2+Y**2
R=SQRT(RHO2+Z**2)
RHO=SQRT(RHO2)
IF (RHO.NE.0.) THEN
CPHI=X/RHO
SPHI=Y/RHO
ELSE
CPHI=1.
SPHI=0.
ENDIF
CT=Z/R
ST=RHO/R
BR=(X*BX+Y*BY+Z*BZ)/R
BTHETA=(BX*CPHI+BY*SPHI)*CT-BZ*ST
BPHI=BY*CPHI-BX*SPHI
RETURN
END
C
c=====================================================================================
C
SUBROUTINE RECALC_08 (IYEAR,IDAY,IHOUR,MIN,ISEC,VGSEX,VGSEY,VGSEZ)
C
C 1. PREPARES ELEMENTS OF ROTATION MATRICES FOR TRANSFORMATIONS OF VECTORS BETWEEN
C SEVERAL COORDINATE SYSTEMS, MOST FREQUENTLY USED IN SPACE PHYSICS.
C
C 2. PREPARES COEFFICIENTS USED IN THE CALCULATION OF THE MAIN GEOMAGNETIC FIELD
C (IGRF MODEL)
C
C THIS SUBROUTINE SHOULD BE INVOKED BEFORE USING THE FOLLOWING SUBROUTINES:
C IGRF_GEO_08, IGRF_GSW_08, DIP_08, GEOMAG_08, GEOGSW_08, MAGSW_08, SMGSW_08, GSWGSE_08,
c GEIGEO_08, TRACE_08, STEP_08, RHAND_08.
C
C THERE IS NO NEED TO REPEATEDLY INVOKE RECALC_08, IF MULTIPLE CALCULATIONS ARE MADE
C FOR THE SAME DATE/TIME AND SOLAR WIND FLOW DIRECTION.
C
C-----INPUT PARAMETERS:
C
C IYEAR - YEAR NUMBER (FOUR DIGITS)
C IDAY - DAY OF YEAR (DAY 1 = JAN 1)
C IHOUR - HOUR OF DAY (00 TO 23)
C MIN - MINUTE OF HOUR (00 TO 59)
C ISEC - SECONDS OF MINUTE (00 TO 59)
C VGSEX,VGSEY,VGSEZ - GSE (GEOCENTRIC SOLAR-ECLIPTIC) COMPONENTS OF THE OBSERVED
C SOLAR WIND FLOW VELOCITY (IN KM/S)
C
C IMPORTANT: IF ONLY QUESTIONABLE INFORMATION (OR NO INFORMATION AT ALL) IS AVAILABLE
C ON THE SOLAR WIND SPEED, OR, IF THE STANDARD GSM AND/OR SM COORDINATES ARE
C INTENDED TO BE USED, THEN SET VGSEX=-400.0 AND VGSEY=VGSEZ=0. IN THIS CASE,
C THE GSW COORDINATE SYSTEM BECOMES IDENTICAL TO THE STANDARD GSM.
C
C IF ONLY SCALAR SPEED V OF THE SOLAR WIND IS KNOWN, THEN SETTING
C VGSEX=-V, VGSEY=29.78, VGSEZ=0.0 WILL TAKE INTO ACCOUNT THE ~4 degs
C ABERRATION OF THE MAGNETOSPHERE DUE TO EARTH'S ORBITAL MOTION
C
C IF ALL THREE GSE COMPONENTS OF THE SOLAR WIND VELOCITY ARE AVAILABLE,
C PLEASE NOTE THAT IN SOME SOLAR WIND DATABASES THE ABERRATION EFFECT
C HAS ALREADY BEEN TAKEN INTO ACCOUNT BY SUBTRACTING 29.78 KM/S FROM VYGSE;
C IN THAT CASE, THE UNABERRATED (OBSERVED) VYGSE VALUES SHOULD BE RESTORED
C BY ADDING BACK THE 29.78 KM/S CORRECTION. WHETHER OR NOT TO DO THAT, MUST
C BE EITHER VERIFIED WITH THE DATA ORIGINATOR OR DETERMINED BY AVERAGING
C VGSEY OVER A SUFFICIENTLY LONG TIME INTERVAL.
C
C-----OUTPUT PARAMETERS: NONE (ALL OUTPUT QUANTITIES ARE PLACED
C INTO THE COMMON BLOCKS /GEOPACK1/ AND /GEOPACK2/)
C
C OTHER SUBROUTINES CALLED BY THIS ONE: SUN_08
C
C AUTHOR: N.A. TSYGANENKO
C
C ORIGINALLY WRITTEN: DEC.1, 1991
C
C MOST RECENT REVISION: JANUARY 01, 2020:
C
C The table of IGRF coefficients was extended to include those for the epoch 2020 (igrf-13)
c (for details, see https://www.ngdc.noaa.gov/IAGA/vmod/coeffs/igrf13coeffs.txt)
C-----------------------------------------------------------------------------------
c EARLIER REVISIONS:
c
C REVISION OF NOVEMBER 30, 2010:
C
C The table of IGRF coefficients was extended to include those for the epoch 2010
c (for details, see http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html)
C------------------------------------------------------------------------------------
C REVISION OF NOVEMBER 15, 2007: ADDED THE POSSIBILITY TO TAKE INTO ACCOUNT THE OBSERVED
C DEFLECTION OF THE SOLAR WIND FLOW FROM STRICTLY RADIAL DIRECTION. TO THAT END, THREE
C GSE COMPONENTS OF THE SOLAR WIND VELOCITY WERE ADDED TO THE INPUT PARAMETERS.
C ---------------------------------------------------------------------------------------
c CORRECTION OF MAY 9, 2006: INTERPOLATION OF THE COEFFICIENTS (BETWEEN
C LABELS 50 AND 105) IS NOW MADE THROUGH THE LAST ELEMENT OF THE ARRAYS
C G(105) AND H(105) (PREVIOUSLY MADE ONLY THROUGH N=66, WHICH IN SOME
C CASES CAUSED RUNTIME ERRORS)
c --------------------------------------------------------------------------------------------
C REVISION OF MAY 3, 2005:
C The table of IGRF coefficients was extended to include those for the epoch 2005
c the maximal order of spherical harmonics was also increased up to 13
c (for details, see http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html)
c ---------------------------------------------------------------------------------------------
C REVISION OF APRIL 3, 2003:
c The code now includes preparation of the model coefficients for the subroutines
c IGRF_08 and GEOMAG_08. This eliminates the need for the SAVE statements, used
c in the old versions, making the codes easier and more compiler-independent.
C---------------------------------------------------------------------------------------------------
C
COMMON /GEOPACK1/ ST0,CT0,SL0,CL0,CTCL,STCL,CTSL,STSL,SFI,CFI,
* SPS,CPS,DS3,CGST,SGST,PSI,A11,A21,A31,A12,A22,A32,A13,A23,A33,
* E11,E21,E31,E12,E22,E32,E13,E23,E33
C
C THE COMMON BLOCK /GEOPACK1/ CONTAINS ELEMENTS OF THE ROTATION MATRICES AND OTHER
C PARAMETERS RELATED TO THE COORDINATE TRANSFORMATIONS PERFORMED BY THIS PACKAGE
C
COMMON /GEOPACK2/ G(105),H(105),REC(105)
C
C THE COMMON BLOCK /GEOPACK2/ CONTAINS COEFFICIENTS OF THE IGRF FIELD MODEL, CALCULATED
C FOR A GIVEN YEAR AND DAY FROM THEIR STANDARD EPOCH VALUES. THE ARRAY REC CONTAINS
C COEFFICIENTS USED IN THE RECURSION RELATIONS FOR LEGENDRE ASSOCIATE POLYNOMIALS.
C
DIMENSION G65(105),H65(105),G70(105),H70(105),G75(105),H75(105),
+ G80(105),H80(105),G85(105),H85(105),G90(105),H90(105),G95(105),
+ H95(105),G00(105),H00(105),G05(105),H05(105),G10(105),H10(105),
+ G15(105),H15(105),DG15(45),DH15(45),
+ G20(105),H20(105),DG20(45),DH20(45)
C
DATA G65/0.,-30334.,-2119.,-1662.,2997.,1594.,1297.,-2038.,1292.,
*856.,957.,804.,479.,-390.,252.,-219.,358.,254.,-31.,-157.,-62.,
*45.,61.,8.,-228.,4.,1.,-111.,75.,-57.,4.,13.,-26.,-6.,13.,1.,13.,
*5.,-4.,-14.,0.,8.,-1.,11.,4.,8.,10.,2.,-13.,10.,-1.,-1.,5.,1.,-2.,
*-2.,-3.,2.,-5.,-2.,4.,4.,0.,2.,2.,0.,39*0./
DATA H65/0.,0.,5776.,0.,-2016.,114.,0.,-404.,240.,-165.,0.,148.,
*-269.,13.,-269.,0.,19.,128.,-126.,-97.,81.,0.,-11.,100.,68.,-32.,
*-8.,-7.,0.,-61.,-27.,-2.,6.,26.,-23.,-12.,0.,7.,-12.,9.,-16.,4.,
*24.,-3.,-17.,0.,-22.,15.,7.,-4.,-5.,10.,10.,-4.,1.,0.,2.,1.,2.,
*6.,-4.,0.,-2.,3.,0.,-6.,39*0./
c
DATA G70/0.,-30220.,-2068.,-1781.,3000.,1611.,1287.,-2091.,1278.,
*838.,952.,800.,461.,-395.,234.,-216.,359.,262.,-42.,-160.,-56.,
*43.,64.,15.,-212.,2.,3.,-112.,72.,-57.,1.,14.,-22.,-2.,13.,-2.,
*14.,6.,-2.,-13.,-3.,5.,0.,11.,3.,8.,10.,2.,-12.,10.,-1.,0.,3.,
*1.,-1.,-3.,-3.,2.,-5.,-1.,6.,4.,1.,0.,3.,-1.,39*0./
DATA H70/0.,0.,5737.,0.,-2047.,25.,0.,-366.,251.,-196.,0.,167.,
*-266.,26.,-279.,0.,26.,139.,-139.,-91.,83.,0.,-12.,100.,72.,-37.,
*-6.,1.,0.,-70.,-27.,-4.,8.,23.,-23.,-11.,0.,7.,-15.,6.,-17.,6.,
*21.,-6.,-16.,0.,-21.,16.,6.,-4.,-5.,10.,11.,-2.,1.,0.,1.,1.,3.,
*4.,-4.,0.,-1.,3.,1.,-4.,39*0./
c
DATA G75/0.,-30100.,-2013.,-1902.,3010.,1632.,1276.,-2144.,1260.,
*830.,946.,791.,438.,-405.,216.,-218.,356.,264.,-59.,-159.,-49.,
*45.,66.,28.,-198.,1.,6.,-111.,71.,-56.,1.,16.,-14.,0.,12.,-5.,
*14.,6.,-1.,-12.,-8.,4.,0.,10.,1.,7.,10.,2.,-12.,10.,-1.,-1.,4.,
*1.,-2.,-3.,-3.,2.,-5.,-2.,5.,4.,1.,0.,3.,-1.,39*0./
DATA H75/0.,0.,5675.,0.,-2067.,-68.,0.,-333.,262.,-223.,0.,191.,
*-265.,39.,-288.,0.,31.,148.,-152.,-83.,88.,0.,-13.,99.,75.,-41.,
*-4.,11.,0.,-77.,-26.,-5.,10.,22.,-23.,-12.,0.,6.,-16.,4.,-19.,6.,
*18.,-10.,-17.,0.,-21.,16.,7.,-4.,-5.,10.,11.,-3.,1.,0.,1.,1.,3.,
*4.,-4.,-1.,-1.,3.,1.,-5.,39*0./
c
DATA G80/0.,-29992.,-1956.,-1997.,3027.,1663.,1281.,-2180.,1251.,
*833.,938.,782.,398.,-419.,199.,-218.,357.,261.,-74.,-162.,-48.,
*48.,66.,42.,-192.,4.,14.,-108.,72.,-59.,2.,21.,-12.,1.,11.,-2.,
*18.,6.,0.,-11.,-7.,4.,3.,6.,-1.,5.,10.,1.,-12.,9.,-3.,-1.,7.,2.,
*-5.,-4.,-4.,2.,-5.,-2.,5.,3.,1.,2.,3.,0.,39*0./
DATA H80/0.,0.,5604.,0.,-2129.,-200.,0.,-336.,271.,-252.,0.,212.,
*-257.,53.,-297.,0.,46.,150.,-151.,-78.,92.,0.,-15.,93.,71.,-43.,
*-2.,17.,0.,-82.,-27.,-5.,16.,18.,-23.,-10.,0.,7.,-18.,4.,-22.,9.,
*16.,-13.,-15.,0.,-21.,16.,9.,-5.,-6.,9.,10.,-6.,2.,0.,1.,0.,3.,
*6.,-4.,0.,-1.,4.,0.,-6.,39*0./
c
DATA G85/0.,-29873.,-1905.,-2072.,3044.,1687.,1296.,-2208.,1247.,
*829.,936.,780.,361.,-424.,170.,-214.,355.,253.,-93.,-164.,-46.,
*53.,65.,51.,-185.,4.,16.,-102.,74.,-62.,3.,24.,-6.,4.,10.,0.,21.,
*6.,0.,-11.,-9.,4.,4.,4.,-4.,5.,10.,1.,-12.,9.,-3.,-1.,7.,1.,-5.,
*-4.,-4.,3.,-5.,-2.,5.,3.,1.,2.,3.,0.,39*0./
DATA H85/0.,0.,5500.,0.,-2197.,-306.,0.,-310.,284.,-297.,0.,232.,
*-249.,69.,-297.,0.,47.,150.,-154.,-75.,95.,0.,-16.,88.,69.,-48.,
*-1.,21.,0.,-83.,-27.,-2.,20.,17.,-23.,-7.,0.,8.,-19.,5.,-23.,11.,
*14.,-15.,-11.,0.,-21.,15.,9.,-6.,-6.,9.,9.,-7.,2.,0.,1.,0.,3.,
*6.,-4.,0.,-1.,4.,0.,-6.,39*0./
c
DATA G90/0., -29775., -1848., -2131., 3059., 1686., 1314.,
* -2239., 1248., 802., 939., 780., 325., -423.,
* 141., -214., 353., 245., -109., -165., -36.,
* 61., 65., 59., -178., 3., 18., -96.,
* 77., -64., 2., 26., -1., 5., 9.,
* 0., 23., 5., -1., -10., -12., 3.,
* 4., 2., -6., 4., 9., 1., -12.,
* 9., -4., -2., 7., 1., -6., -3.,
* -4., 2., -5., -2., 4., 3., 1.,
* 3., 3., 0., 39*0./
C
DATA H90/0., 0., 5406., 0., -2279., -373., 0.,
* -284., 293., -352., 0., 247., -240., 84.,
* -299., 0., 46., 154., -153., -69., 97.,
* 0., -16., 82., 69., -52., 1., 24.,
* 0., -80., -26., 0., 21., 17., -23.,
* -4., 0., 10., -19., 6., -22., 12.,
* 12., -16., -10., 0., -20., 15., 11.,
* -7., -7., 9., 8., -7., 2., 0.,
* 2., 1., 3., 6., -4., 0., -2.,
* 3., -1., -6., 39*0./
C
DATA G95/0., -29692., -1784., -2200., 3070., 1681., 1335.,
* -2267., 1249., 759., 940., 780., 290., -418.,
* 122., -214., 352., 235., -118., -166., -17.,
* 68., 67., 68., -170., -1., 19., -93.,
* 77., -72., 1., 28., 5., 4., 8.,
* -2., 25., 6., -6., -9., -14., 9.,
* 6., -5., -7., 4., 9., 3., -10.,
* 8., -8., -1., 10., -2., -8., -3.,
* -6., 2., -4., -1., 4., 2., 2.,
* 5., 1., 0., 39*0./
C
DATA H95/0., 0., 5306., 0., -2366., -413., 0.,
* -262., 302., -427., 0., 262., -236., 97.,
* -306., 0., 46., 165., -143., -55., 107.,
* 0., -17., 72., 67., -58., 1., 36.,
* 0., -69., -25., 4., 24., 17., -24.,
* -6., 0., 11., -21., 8., -23., 15.,
* 11., -16., -4., 0., -20., 15., 12.,
* -6., -8., 8., 5., -8., 3., 0.,
* 1., 0., 4., 5., -5., -1., -2.,
* 1., -2., -7., 39*0./
C
DATA G00/0.,-29619.4, -1728.2, -2267.7, 3068.4, 1670.9, 1339.6,
* -2288., 1252.1, 714.5, 932.3, 786.8, 250., -403.,
* 111.3, -218.8, 351.4, 222.3, -130.4, -168.6, -12.9,
* 72.3, 68.2, 74.2, -160.9, -5.9, 16.9, -90.4,
* 79.0, -74.0, 0., 33.3, 9.1, 6.9, 7.3,
* -1.2, 24.4, 6.6, -9.2, -7.9, -16.6, 9.1,
* 7.0, -7.9, -7., 5., 9.4, 3., - 8.4,
* 6.3, -8.9, -1.5, 9.3, -4.3, -8.2, -2.6,
* -6., 1.7, -3.1, -0.5, 3.7, 1., 2.,
* 4.2, 0.3, -1.1, 2.7, -1.7, -1.9, 1.5,
* -0.1, 0.1, -0.7, 0.7, 1.7, 0.1, 1.2,
* 4.0, -2.2, -0.3, 0.2, 0.9, -0.2, 0.9,
* -0.5, 0.3, -0.3, -0.4, -0.1, -0.2, -0.4,
* -0.2, -0.9, 0.3, 0.1, -0.4, 1.3, -0.4,
* 0.7, -0.4, 0.3, -0.1, 0.4, 0., 0.1/
C
DATA H00/0., 0., 5186.1, 0., -2481.6, -458.0, 0.,
* -227.6, 293.4, -491.1, 0., 272.6, -231.9, 119.8,
* -303.8, 0., 43.8, 171.9, -133.1, -39.3, 106.3,
* 0., -17.4, 63.7, 65.1, -61.2, 0.7, 43.8,
* 0., -64.6, -24.2, 6.2, 24., 14.8, -25.4,
* -5.8, 0.0, 11.9, -21.5, 8.5, -21.5, 15.5,
* 8.9, -14.9, -2.1, 0.0, -19.7, 13.4, 12.5,
* -6.2, -8.4, 8.4, 3.8, -8.2, 4.8, 0.0,
* 1.7, 0.0, 4.0, 4.9, -5.9, -1.2, -2.9,
* 0.2, -2.2, -7.4, 0.0, 0.1, 1.3, -0.9,
* -2.6, 0.9, -0.7, -2.8, -0.9, -1.2, -1.9,
* -0.9, 0.0, -0.4, 0.3, 2.5, -2.6, 0.7,
* 0.3, 0.0, 0.0, 0.3, -0.9, -0.4, 0.8,
* 0.0, -0.9, 0.2, 1.8, -0.4, -1.0, -0.1,
* 0.7, 0.3, 0.6, 0.3, -0.2, -0.5, -0.9/
C
DATA G05/0.,-29554.6, -1669.0, -2337.2, 3047.7, 1657.8, 1336.3,
* -2305.8, 1246.4, 672.5, 920.6, 798.0, 210.7, -379.9,
* 100.0, -227.0, 354.4, 208.9, -136.5, -168.1, -13.6,
* 73.6, 69.6, 76.7, -151.3, -14.6, 14.6, -86.4,
* 79.9, -74.5, -1.7, 38.7, 12.3, 9.4, 5.4,
* 1.9, 24.8, 7.6, -11.7, -6.9, -18.1, 10.2,
* 9.4, -11.3, -4.9, 5.6, 9.8, 3.6, -6.9,
* 5.0, -10.8, -1.3, 8.8, -6.7, -9.2, -2.2,
* -6.1, 1.4, -2.4, -0.2, 3.1, 0.3, 2.1,
* 3.8, -0.2, -2.1, 2.9, -1.6, -1.9, 1.4,
* -0.3, 0.3, -0.8, 0.5, 1.8, 0.2, 1.0,
* 4.0, -2.2, -0.3, 0.2, 0.9, -0.4, 1.0,
* -0.3, 0.5, -0.4, -0.4, 0.1, -0.5, -0.1,
* -0.2, -0.9, 0.3, 0.3, -0.4, 1.2, -0.4,
* 0.8, -0.3, 0.4, -0.1, 0.4, -0.1, -0.2/
C
DATA H05/0., 0.0, 5078.0, 0.0, -2594.5, -515.4, 0.0,
* -198.9, 269.7, -524.7, 0.0, 282.1, -225.2, 145.2,
* -305.4, 0.0, 42.7, 180.3, -123.5, -19.6, 103.9,
* 0.0, -20.3, 54.8, 63.6, -63.5, 0.2, 50.9,
* 0.0, -61.1, -22.6, 6.8, 25.4, 10.9, -26.3,
* -4.6, 0.0, 11.2, -20.9, 9.8, -19.7, 16.2,
* 7.6, -12.8, -0.1, 0.0, -20.1, 12.7, 12.7,
* -6.7, -8.2, 8.1, 2.9, -7.7, 6.0, 0.0,
* 2.2, 0.1, 4.5, 4.8, -6.7, -1.0, -3.5,
* -0.9, -2.3, -7.9, 0.0, 0.3, 1.4, -0.8,
* -2.3, 0.9, -0.6, -2.7, -1.1, -1.6, -1.9,
* -1.4, 0.0, -0.6, 0.2, 2.4, -2.6, 0.6,
* 0.4, 0.0, 0.0, 0.3, -0.9, -0.3, 0.9,
* 0.0, -0.8, 0.3, 1.7, -0.5, -1.1, 0.0,
* 0.6, 0.2, 0.5, 0.4, -0.2, -0.6, -0.9/
C
DATA G10/0.00,-29496.57,-1586.42,-2396.06,3026.34,1668.17,1339.85,
* -2326.54, 1232.10, 633.73, 912.66, 808.97, 166.58,-356.83,
* 89.40, -230.87, 357.29, 200.26,-141.05,-163.17, -8.03,
* 72.78, 68.69, 75.92, -141.40, -22.83, 13.10, -78.09,
* 80.44, -75.00, -4.55, 45.24, 14.00, 10.46, 1.64,
* 4.92, 24.41, 8.21, -14.50, -5.59, -19.34, 11.61,
* 10.85, -14.05, -3.54, 5.50, 9.45, 3.45, -5.27,
* 3.13, -12.38, -0.76, 8.43, -8.42, -10.08, -1.94,
* -6.24, 0.89, -1.07, -0.16, 2.45, -0.33, 2.13,
* 3.09, -1.03, -2.80, 3.05, -1.48, -2.03, 1.65,
* -0.51, 0.54, -0.79, 0.37, 1.79, 0.12, 0.75,
* 3.75, -2.12, -0.21, 0.30, 1.04, -0.63, 0.95,
* -0.11, 0.52, -0.39, -0.37, 0.21, -0.77, 0.04,
* -0.09, -0.89, 0.31, 0.42, -0.45, 1.08, -0.31,
* 0.78, -0.18, 0.38, 0.02, 0.42, -0.26, -0.26/
C
DATA H10/0.00, 0.00, 4944.26, 0.00,-2708.54, -575.73, 0.00,
* -160.40,251.75, -537.03, 0.00, 286.48, -211.03, 164.46,
* -309.72, 0.00, 44.58, 189.01, -118.06, -0.01, 101.04,
* 0.00,-20.90, 44.18, 61.54, -66.26, 3.02, 55.40,
* 0.00,-57.80, -21.20, 6.54, 24.96, 7.03, -27.61,
* -3.28, 0.00, 10.84, -20.03, 11.83, -17.41, 16.71,
* 6.96,-10.74, 1.64, 0.00, -20.54, 11.51, 12.75,
* -7.14, -7.42, 7.97, 2.14, -6.08, 7.01, 0.00,
* 2.73, -0.10, 4.71, 4.44, -7.22, -0.96, -3.95,
* -1.99, -1.97, -8.31, 0.00, 0.13, 1.67, -0.66,
* -1.76, 0.85, -0.39, -2.51, -1.27, -2.11, -1.94,
* -1.86, 0.00, -0.87, 0.27, 2.13, -2.49, 0.49,
* 0.59, 0.00, 0.13, 0.27, -0.86, -0.23, 0.87,
* 0.00, -0.87, 0.30, 1.66, -0.59, -1.14, -0.07,
* 0.54, 0.10, 0.49, 0.44, -0.25, -0.53, -0.79/
C
DATA G15/0.00,-29441.46,-1501.77,-2445.88,3012.20,1676.35,1350.33,
* -2352.26, 1225.85, 581.69, 907.42, 813.68, 120.49,-334.85,
* 70.38, -232.91, 360.14, 192.35,-140.94,-157.40, 4.30,
* 69.55, 67.57, 72.79, -129.85, -28.93, 13.14, -70.85,
* 81.29, -75.99, -6.79, 51.82, 15.07, 9.32, -2.88,
* 6.61, 23.98, 8.89, -16.78, -3.16, -20.56, 13.33,
* 11.76, -15.98, -2.02, 5.33, 8.83, 3.02, -3.22,
* 0.67, -13.20, -0.10, 8.68, -9.06, -10.54, -2.01,
* -6.26, 0.17, 0.55, -0.55, 1.70, -0.67, 2.13,
* 2.33, -1.80, -3.59, 3.00, -1.40, -2.30, 2.08,
* -0.79, 0.58, -0.70, 0.14, 1.70, -0.22, 0.44,
* 3.49, -2.09, -0.16, 0.46, 1.23, -0.89, 0.85,
* 0.10, 0.54, -0.37, -0.43, 0.22, -0.94, -0.03,
* -0.02, -0.92, 0.42, 0.63, -0.42, 0.96, -0.19,
* 0.81, -0.13, 0.38, 0.08, 0.46, -0.35, -0.36/
c
DATA H15/0.00, 0.00, 4795.99, 0.00,-2845.41,-642.17, 0.00,
* -115.29, 245.04, -538.70, 0.00, 283.54,-188.43, 180.95,
* -329.23, 0.00, 46.98, 196.98, -119.14, 15.98, 100.12,
* 0.00, -20.61, 33.30, 58.74, -66.64, 7.35, 62.41,
* 0.00, -54.27, -19.53, 5.59, 24.45, 3.27, -27.50,
* -2.32, 0.00, 10.04, -18.26, 13.18, -14.60, 16.16,
* 5.69, -9.10, 2.26, 0.00, -21.77, 10.76, 11.74,
* -6.74, -6.88, 7.79, 1.04, -3.89, 8.44, 0.00,
* 3.28, -0.40, 4.55, 4.40, -7.92, -0.61, -4.16,
* -2.85, -1.12, -8.72, 0.00, 0.00, 2.11, -0.60,
* -1.05, 0.76, -0.20, -2.12, -1.44, -2.57, -2.01,
* -2.34, 0.00, -1.08, 0.37, 1.75, -2.19, 0.27,
* 0.72, -0.09, 0.29, 0.23, -0.89, -0.16, 0.72,
* 0.00, -0.88, 0.49, 1.56, -0.50, -1.24, -0.10,
* 0.42, -0.04, 0.48, 0.48, -0.30, -0.43, -0.71/
c
DATA G20/0.0, -29404.8, -1450.9, -2499.6, 2982.0, 1677.0, 1363.2,
* -2381.2, 1236.2, 525.7, 903.0, 809.5, 86.3, -309.4,
* 48.0, -234.3, 363.2, 187.8, -140.7, -151.2, 13.5,
* 66.0, 65.5, 72.9, -121.5, -36.2, 13.5, -64.7,
* 80.6, -76.7, -8.2, 56.5, 15.8, 6.4, -7.2,
* 9.8, 23.7, 9.7, -17.6, -0.5, -21.1, 15.3,
* 13.7, -16.5, -0.3, 5.0, 8.4, 2.9, -1.5,
* -1.1, -13.2, 1.1, 8.8, -9.3, -11.9, -1.9,
* -6.2, -0.1, 1.7, -0.9, 0.7, -0.9, 1.9,
* 1.4, -2.4, -3.8, 3.0, -1.4, -2.5, 2.3,
* -0.9, 0.3, -0.7, -0.1, 1.4, -0.6, 0.2,
* 3.1, -2.0, -0.1, 0.5, 1.3, -1.2, 0.7,
* 0.3, 0.5, -0.3, -0.5, 0.1, -1.1, -0.3,
* 0.1, -0.9, 0.5, 0.7, -0.3, 0.8, 0.0,
* 0.8, 0.0, 0.4, 0.1, 0.5, -0.5, -0.4/
c
DATA H20/0.0, 0.0, 4652.5, 0.0, -2991.6, -734.6, 0.0,
* -82.1, 241.9, -543.4, 0.0, 281.9, -158.4, 199.7,
* -349.7, 0.0, 47.7, 208.3, -121.2, 32.3, 98.9,
* 0.0, -19.1, 25.1, 52.8, -64.5, 8.9, 68.1,
* 0.0, -51.5, -16.9, 2.2, 23.5, -2.2, -27.2,
* -1.8, 0.0, 8.4, -15.3, 12.8, -11.7, 14.9,
* 3.6, -6.9, 2.8, 0.0, -23.4, 11.0, 9.8,
* -5.1, -6.3, 7.8, 0.4, -1.4, 9.6, 0.0,
* 3.4, -0.2, 3.6, 4.8, -8.6, -0.1, -4.3,
* -3.4, -0.1, -8.8, 0.0, 0.0, 2.5, -0.6,
* -0.4, 0.6, -0.2, -1.7, -1.6, -3.0, -2.0,
* -2.6, 0.0, -1.2, 0.5, 1.4, -1.8, 0.1,
* 0.8, -0.2, 0.6, 0.2, -0.9, 0.0, 0.5,
* 0.0, -0.9, 0.6, 1.4, -0.4, -1.3, -0.1,
* 0.3, -0.1, 0.5, 0.5, -0.4, -0.4, -0.6/
c
DATA DG20/0.0, 5.7, 7.4, -11.0, -7.0, -2.1, 2.2,
* -5.9, 3.1, -12.0, -1.2, -1.6, -5.9, 5.2,
* -5.1, -0.3, 0.5, -0.6, 0.2, 1.3, 0.9,
* -0.5, -0.3, 0.4, 1.3, -1.4, 0.0, 0.9,
* -0.1, -0.2, 0.0, 0.7, 0.1, -0.5, -0.8,
* 0.8, 0.0, 0.1, -0.1, 0.4, -0.1, 0.4,
* 0.3, -0.1, 0.4/
c
DATA DH20/0.0, 0.0, -25.9, 0.0, -30.2, -22.4, 0.0,
* 6.0, -1.1, 0.5, 0.0, -0.1, 6.5, 3.6,
* -5.0, 0.0, 0.0, 2.5, -0.6, 3.0, 0.3,
* 0.0, 0.0, -1.6, -1.3, 0.8, 0.0, 1.0,
* 0.0, 0.6, 0.6, -0.8, -0.2, -1.1, 0.1,
* 0.3, 0.0, -0.2, 0.6, -0.2, 0.5, -0.3,
* -0.4, 0.5, 0.0/
C
IY=IYEAR
C
C WE ARE RESTRICTED BY THE INTERVAL 1965-2025, FOR WHICH EITHER THE IGRF/DGRF COEFFICIENTS OR SECULAR VELOCITIES
c ARE KNOWN; IF IYEAR IS OUTSIDE THIS INTERVAL, THEN THE SUBROUTINE USES THE
C NEAREST LIMITING VALUE AND PRINTS A WARNING:
C
IF(IY.LT.1965) THEN
IY=1965
WRITE (*,10) IYEAR,IY
ENDIF
IF(IY.GT.2025) THEN
IY=2025
WRITE (*,10) IYEAR,IY
ENDIF
C
C CALCULATE THE ARRAY REC, CONTAINING COEFFICIENTS FOR THE RECURSION RELATIONS,
C USED IN THE IGRF SUBROUTINE FOR CALCULATING THE ASSOCIATE LEGENDRE POLYNOMIALS
C AND THEIR DERIVATIVES:
c
DO 20 N=1,14
N2=2*N-1
N2=N2*(N2-2)
DO 20 M=1,N
MN=N*(N-1)/2+M
20 REC(MN)=FLOAT((N-M)*(N+M-2))/FLOAT(N2)
C
IF (IY.LT.1970) GOTO 50 !INTERPOLATE BETWEEN 1965 - 1970
IF (IY.LT.1975) GOTO 60 !INTERPOLATE BETWEEN 1970 - 1975
IF (IY.LT.1980) GOTO 70 !INTERPOLATE BETWEEN 1975 - 1980
IF (IY.LT.1985) GOTO 80 !INTERPOLATE BETWEEN 1980 - 1985
IF (IY.LT.1990) GOTO 90 !INTERPOLATE BETWEEN 1985 - 1990
IF (IY.LT.1995) GOTO 100 !INTERPOLATE BETWEEN 1990 - 1995
IF (IY.LT.2000) GOTO 110 !INTERPOLATE BETWEEN 1995 - 2000
IF (IY.LT.2005) GOTO 120 !INTERPOLATE BETWEEN 2000 - 2005
IF (IY.LT.2010) GOTO 130 !INTERPOLATE BETWEEN 2005 - 2010
IF (IY.LT.2015) GOTO 140 !INTERPOLATE BETWEEN 2010 - 2015
IF (IY.LT.2020) GOTO 150 !INTERPOLATE BETWEEN 2015 - 2020
C
C EXTRAPOLATE BEYOND 2020:
C
DT=FLOAT(IY)+FLOAT(IDAY-1)/365.25-2020.
DO 40 N=1,105
G(N)=G20(N)
H(N)=H20(N)
IF (N.GT.45) GOTO 40
G(N)=G(N)+DG20(N)*DT
H(N)=H(N)+DH20(N)*DT
40 CONTINUE
GOTO 300
C
C INTERPOLATE BETWEEEN 1965 - 1970:
C
50 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1965)/5.
F1=1.-F2
DO 55 N=1,105
G(N)=G65(N)*F1+G70(N)*F2
55 H(N)=H65(N)*F1+H70(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1970 - 1975:
C
60 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1970)/5.
F1=1.-F2
DO 65 N=1,105
G(N)=G70(N)*F1+G75(N)*F2
65 H(N)=H70(N)*F1+H75(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1975 - 1980:
C
70 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1975)/5.
F1=1.-F2
DO 75 N=1,105
G(N)=G75(N)*F1+G80(N)*F2
75 H(N)=H75(N)*F1+H80(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1980 - 1985:
C
80 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1980)/5.
F1=1.-F2
DO 85 N=1,105
G(N)=G80(N)*F1+G85(N)*F2
85 H(N)=H80(N)*F1+H85(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1985 - 1990:
C
90 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1985)/5.
F1=1.-F2
DO 95 N=1,105
G(N)=G85(N)*F1+G90(N)*F2
95 H(N)=H85(N)*F1+H90(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1990 - 1995:
C
100 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1990)/5.
F1=1.-F2
DO 105 N=1,105
G(N)=G90(N)*F1+G95(N)*F2
105 H(N)=H90(N)*F1+H95(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 1995 - 2000:
C
110 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-1995)/5.
F1=1.-F2
DO 115 N=1,105 ! THE 2000 COEFFICIENTS (G00) GO THROUGH THE ORDER 13, NOT 10
G(N)=G95(N)*F1+G00(N)*F2
115 H(N)=H95(N)*F1+H00(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 2000 - 2005:
C
120 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-2000)/5.
F1=1.-F2
DO 125 N=1,105
G(N)=G00(N)*F1+G05(N)*F2
125 H(N)=H00(N)*F1+H05(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 2005 - 2010:
C
130 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-2005)/5.
F1=1.-F2
DO 135 N=1,105
G(N)=G05(N)*F1+G10(N)*F2
135 H(N)=H05(N)*F1+H10(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 2010 - 2015:
C
140 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-2010)/5.
F1=1.-F2
DO 145 N=1,105
G(N)=G10(N)*F1+G15(N)*F2
145 H(N)=H10(N)*F1+H15(N)*F2
GOTO 300
C
C INTERPOLATE BETWEEN 2015 - 2020:
C
150 F2=(FLOAT(IY)+FLOAT(IDAY-1)/365.25-2015)/5.
F1=1.-F2
DO 155 N=1,105
G(N)=G15(N)*F1+G20(N)*F2
155 H(N)=H15(N)*F1+H20(N)*F2
GOTO 300
c
C COEFFICIENTS FOR A GIVEN YEAR HAVE BEEN CALCULATED; NOW MULTIPLY
C THEM BY SCHMIDT NORMALIZATION FACTORS:
C
300 S=1.
DO 250 N=2,14
MN=N*(N-1)/2+1
S=S*FLOAT(2*N-3)/FLOAT(N-1)
G(MN)=G(MN)*S
H(MN)=H(MN)*S
P=S
DO 250 M=2,N
AA=1.
IF (M.EQ.2) AA=2.
P=P*SQRT(AA*FLOAT(N-M+1)/FLOAT(N+M-2))
MNN=MN+M-1
G(MNN)=G(MNN)*P
250 H(MNN)=H(MNN)*P
G_10=-G(2)
G_11= G(3)
H_11= H(3)
C
C NOW CALCULATE GEO COMPONENTS OF THE UNIT VECTOR EzMAG, PARALLEL TO GEODIPOLE AXIS:
C SIN(TETA0)*COS(LAMBDA0), SIN(TETA0)*SIN(LAMBDA0), AND COS(TETA0)
C ST0 * CL0 ST0 * SL0 CT0
C
SQ=G_11**2+H_11**2
SQQ=SQRT(SQ)
SQR=SQRT(G_10**2+SQ)
SL0=-H_11/SQQ
CL0=-G_11/SQQ
ST0=SQQ/SQR
CT0=G_10/SQR
STCL=ST0*CL0
STSL=ST0*SL0
CTSL=CT0*SL0
CTCL=CT0*CL0
C
C NOW CALCULATE GEI COMPONENTS (S1,S2,S3) OF THE UNIT VECTOR S = EX_GSE
C POINTING FROM THE EARTH'S CENTER TO SUN
C
CALL SUN_08 (IY,IDAY,IHOUR,MIN,ISEC,GST,SLONG,SRASN,SDEC)
C
S1=COS(SRASN)*COS(SDEC)
S2=SIN(SRASN)*COS(SDEC)
S3=SIN(SDEC)
C
C NOW CALCULATE GEI COMPONENTS (DZ1,DZ2,DZ3) OF THE UNIT VECTOR EZGSE
C POINTING NORTHWARD AND ORTHOGONAL TO THE ECLIPTIC PLANE, AS
C (0,-SIN(OBLIQ),COS(OBLIQ)). FOR THE EPOCH 1978, OBLIQ = 23.44214 DEGS.
C HERE WE USE A MORE ACCURATE TIME-DEPENDENT VALUE, DETERMINED AS:
C
DJ=FLOAT(365*(IY-1900)+(IY-1901)/4 +IDAY)
* -0.5+FLOAT(IHOUR*3600+MIN*60+ISEC)/86400.
T=DJ/36525.
OBLIQ=(23.45229-0.0130125*T)/57.2957795
DZ1=0.
DZ2=-SIN(OBLIQ)
DZ3=COS(OBLIQ)
C
C NOW OBTAIN GEI COMPONENTS OF THE UNIT VECTOR EYGSE=(DY1,DY2,DY3),
C COMPLETING THE RIGHT-HANDED SYSTEM. THEY CAN BE FOUND FROM THE VECTOR
C PRODUCT EZGSE x EXGSE = (DZ1,DZ2,DZ3) x (S1,S2,S3):
C
DY1=DZ2*S3-DZ3*S2
DY2=DZ3*S1-DZ1*S3
DY3=DZ1*S2-DZ2*S1
C
C NOW CALCULATE GEI COMPONENTS OF THE UNIT VECTOR X = EXGSW, DIRECTED ANTIPARALLEL
C TO THE OBSERVED SOLAR WIND FLOW. FIRST, CALCULATE ITS COMPONENTS IN GSE:
C
V=SQRT(VGSEX**2+VGSEY**2+VGSEZ**2)
DX1=-VGSEX/V
DX2=-VGSEY/V
DX3=-VGSEZ/V
C
C THEN IN GEI:
C
X1=DX1*S1+DX2*DY1+DX3*DZ1
X2=DX1*S2+DX2*DY2+DX3*DZ2
X3=DX1*S3+DX2*DY3+DX3*DZ3
C
C NOW CALCULATE GEI COMPONENTS (DIP1,DIP2,DIP3) OF THE UNIT VECTOR DIP = EZ_SM = EZ_MAG,
C ALIGNED WITH THE GEODIPOLE AND POINTING NORTHWARD FROM ECLIPTIC PLANE:
C
CGST=COS(GST)
SGST=SIN(GST)
C
DIP1=STCL*CGST-STSL*SGST
DIP2=STCL*SGST+STSL*CGST
DIP3=CT0
C
C THIS ALLOWS US TO CALCULATE GEI COMPONENTS OF THE UNIT VECTOR Y = EYGSW
C BY TAKING THE VECTOR PRODUCT DIP x X AND NORMALIZING IT TO UNIT LENGTH:
C
Y1=DIP2*X3-DIP3*X2
Y2=DIP3*X1-DIP1*X3
Y3=DIP1*X2-DIP2*X1
Y=SQRT(Y1*Y1+Y2*Y2+Y3*Y3)
Y1=Y1/Y
Y2=Y2/Y
Y3=Y3/Y
C
C AND GEI COMPONENTS OF THE UNIT VECTOR Z = EZGSW = EXGSW x EYGSW = X x Y:
C
Z1=X2*Y3-X3*Y2
Z2=X3*Y1-X1*Y3
Z3=X1*Y2-X2*Y1
C
C ELEMENTS OF THE MATRIX GSE TO GSW ARE THE SCALAR PRODUCTS:
C
C E11=(EXGSE,EXGSW) E12=(EXGSE,EYGSW) E13=(EXGSE,EZGSW)
C E21=(EYGSE,EXGSW) E22=(EYGSE,EYGSW) E23=(EYGSE,EZGSW)
C E31=(EZGSE,EXGSW) E32=(EZGSE,EYGSW) E33=(EZGSE,EZGSW)
C
E11= S1*X1 +S2*X2 +S3*X3
E12= S1*Y1 +S2*Y2 +S3*Y3
E13= S1*Z1 +S2*Z2 +S3*Z3
E21=DY1*X1+DY2*X2+DY3*X3
E22=DY1*Y1+DY2*Y2+DY3*Y3
E23=DY1*Z1+DY2*Z2+DY3*Z3
E31=DZ1*X1+DZ2*X2+DZ3*X3
E32=DZ1*Y1+DZ2*Y2+DZ3*Y3
E33=DZ1*Z1+DZ2*Z2+DZ3*Z3
C
C GEODIPOLE TILT ANGLE IN THE GSW SYSTEM: PSI=ARCSIN(DIP,EXGSW)
C
SPS=DIP1*X1+DIP2*X2+DIP3*X3
CPS=SQRT(1.-SPS**2)
PSI=ASIN(SPS)
C
C ELEMENTS OF THE MATRIX GEO TO GSW ARE THE SCALAR PRODUCTS:
C
C A11=(EXGEO,EXGSW), A12=(EYGEO,EXGSW), A13=(EZGEO,EXGSW),
C A21=(EXGEO,EYGSW), A22=(EYGEO,EYGSW), A23=(EZGEO,EYGSW),
C A31=(EXGEO,EZGSW), A32=(EYGEO,EZGSW), A33=(EZGEO,EZGSW),
C
C ALL THE UNIT VECTORS IN BRACKETS ARE ALREADY DEFINED IN GEI:
C
C EXGEO=(CGST,SGST,0), EYGEO=(-SGST,CGST,0), EZGEO=(0,0,1)
C EXGSW=(X1,X2,X3), EYGSW=(Y1,Y2,Y3), EZGSW=(Z1,Z2,Z3)
C AND THEREFORE:
C
A11=X1*CGST+X2*SGST
A12=-X1*SGST+X2*CGST
A13=X3
A21=Y1*CGST+Y2*SGST
A22=-Y1*SGST+Y2*CGST
A23=Y3
A31=Z1*CGST+Z2*SGST
A32=-Z1*SGST+Z2*CGST
A33=Z3
C
C NOW CALCULATE ELEMENTS OF THE MATRIX MAG TO SM (ONE ROTATION ABOUT THE GEODIPOLE AXIS);
C THEY ARE FOUND AS THE SCALAR PRODUCTS: CFI=GM22=(EYSM,EYMAG)=(EYGSW,EYMAG),
C SFI=GM23=(EYSM,EXMAG)=(EYGSW,EXMAG),
C DERIVED AS FOLLOWS:
C
C IN GEO, THE VECTORS EXMAG AND EYMAG HAVE THE COMPONENTS (CT0*CL0,CT0*SL0,-ST0)
C AND (-SL0,CL0,0), RESPECTIVELY. HENCE, IN GEI THEIR COMPONENTS ARE:
C EXMAG: CT0*CL0*COS(GST)-CT0*SL0*SIN(GST)
C CT0*CL0*SIN(GST)+CT0*SL0*COS(GST)
C -ST0
C EYMAG: -SL0*COS(GST)-CL0*SIN(GST)
C -SL0*SIN(GST)+CL0*COS(GST)
C 0
C NOW, NOTE THAT GEI COMPONENTS OF EYSM=EYGSW WERE FOUND ABOVE AS Y1, Y2, AND Y3,
C AND WE ONLY HAVE TO COMBINE THESE QUANTITIES INTO SCALAR PRODUCTS:
C
EXMAGX=CT0*(CL0*CGST-SL0*SGST)
EXMAGY=CT0*(CL0*SGST+SL0*CGST)
EXMAGZ=-ST0
EYMAGX=-(SL0*CGST+CL0*SGST)
EYMAGY=-(SL0*SGST-CL0*CGST)
CFI=Y1*EYMAGX+Y2*EYMAGY
SFI=Y1*EXMAGX+Y2*EXMAGY+Y3*EXMAGZ
C
10 FORMAT(//1X,
*'**** RECALC_08 WARNS: YEAR IS OUT OF INTERVAL 1965-2025: IYEAR=',
*I4,/,6X,'CALCULATIONS WILL BE DONE FOR IYEAR=',I4,/)
RETURN
END
c
c==================================================================================
SUBROUTINE GSWGSE_08 (XGSW,YGSW,ZGSW,XGSE,YGSE,ZGSE,J)
C
C THIS SUBROUTINE TRANSFORMS COMPONENTS OF ANY VECTOR BETWEEN THE STANDARD GSE
C COORDINATE SYSTEM AND THE GEOCENTRIC SOLAR-WIND (GSW, aka GSWM), DEFINED AS FOLLOWS
C (HONES ET AL., PLANET.SPACE SCI., V.34, P.889, 1986; TSYGANENKO ET AL., JGRA,
C V.103(A4), P.6827, 1998):
C
C IN THE GSW SYSTEM, X AXIS IS ANTIPARALLEL TO THE OBSERVED DIRECTION OF THE SOLAR WIND FLOW.
C TWO OTHER AXES, Y AND Z, ARE DEFINED IN THE SAME WAY AS FOR THE STANDARD GSM, THAT IS,
C Z AXIS ORTHOGONAL TO X AXIS, POINTS NORTHWARD, AND LIES IN THE PLANE DEFINED BY THE X-
C AND GEODIPOLE AXIS. THE Y AXIS COMPLETES THE RIGHT-HANDED SYSTEM.
C
C THE GSW SYSTEM BECOMES IDENTICAL TO THE STANDARD GSM IN THE CASE OF
C A STRICTLY RADIAL SOLAR WIND FLOW.
C
C AUTHOR: N. A. TSYGANENKO
C ADDED TO 2008 VERSION OF GEOPACK: JAN 27, 2008.
C
C J>0 J<0
C-----INPUT: J,XGSW,YGSW,ZGSW J,XGSE,YGSE,ZGSE
C-----OUTPUT: XGSE,YGSE,ZGSE XGSW,YGSW,ZGSW
C
C IMPORTANT THINGS TO REMEMBER:
C
C (1) BEFORE CALLING GSWGSE_08, BE SURE TO INVOKE SUBROUTINE RECALC_08, IN ORDER
C TO DEFINE ALL NECESSARY ELEMENTS OF TRANSFORMATION MATRICES
C
C (2) IN THE ABSENCE OF INFORMATION ON THE SOLAR WIND DIRECTION, E.G., WITH ONLY SCALAR
C SPEED V KNOWN, THIS SUBROUTINE CAN BE USED TO CONVERT VECTORS TO ABERRATED
C COORDINATE SYSTEM, TAKING INTO ACCOUNT EARTH'S ORBITAL SPEED OF 29 KM/S.
C TO DO THAT, SPECIFY THE LAST 3 PARAMETERS IN RECALC_08 AS FOLLOWS:
C VGSEX=-V, VGSEY=29.0, VGSEZ=0.0.
C
C IT SHOULD ALSO BE KEPT IN MIND THAT IN SOME SOLAR WIND DATABASES THE ABERRATION
C EFFECT HAS ALREADY BEEN TAKEN INTO ACCOUNT BY SUBTRACTING 29 KM/S FROM VYGSE;
C IN THAT CASE, THE ORIGINAL VYGSE VALUES SHOULD BE RESTORED BY ADDING BACK THE
C 29 KM/S CORRECTION. WHETHER OR NOT TO DO THAT, MUST BE VERIFIED WITH THE DATA
C ORIGINATOR (OR CAN BE DETERMINED BY CALCULATING THE AVERAGE VGSEY OVER
C A SUFFICIENTLY LONG TIME INTERVAL)
C
C (3) IF NO INFORMATION IS AVAILABLE ON THE SOLAR WIND SPEED, THEN SET VGSEX=-400.0
c AND VGSEY=VGSEZ=0. IN THAT CASE, THE GSW COORDINATE SYSTEM BECOMES
c IDENTICAL TO THE STANDARD ONE.
C
COMMON /GEOPACK1/ AAA(25),E11,E21,E31,E12,E22,E32,E13,E23,E33
C
C DIRECT TRANSFORMATION:
C
IF (J.GT.0) THEN
XGSE=XGSW*E11+YGSW*E12+ZGSW*E13
YGSE=XGSW*E21+YGSW*E22+ZGSW*E23
ZGSE=XGSW*E31+YGSW*E32+ZGSW*E33
ENDIF
C
C INVERSE TRANSFORMATION: CARRIED OUT USING THE TRANSPOSED MATRIX:
C
IF (J.LT.0) THEN
XGSW=XGSE*E11+YGSE*E21+ZGSE*E31
YGSW=XGSE*E12+YGSE*E22+ZGSE*E32
ZGSW=XGSE*E13+YGSE*E23+ZGSE*E33
ENDIF
C
RETURN
END
C
C========================================================================================
C
SUBROUTINE GEOMAG_08 (XGEO,YGEO,ZGEO,XMAG,YMAG,ZMAG,J)
C
C CONVERTS GEOGRAPHIC (GEO) TO DIPOLE (MAG) COORDINATES OR VICE VERSA.
C
C J>0 J<0
C-----INPUT: J,XGEO,YGEO,ZGEO J,XMAG,YMAG,ZMAG
C-----OUTPUT: XMAG,YMAG,ZMAG XGEO,YGEO,ZGEO
C
C ATTENTION: SUBROUTINE RECALC_08 MUST BE INVOKED BEFORE GEOMAG_08 IN TWO CASES:
C /A/ BEFORE THE FIRST TRANSFORMATION OF COORDINATES
C /B/ IF THE VALUES OF IYEAR AND/OR IDAY HAVE BEEN CHANGED
C
C NO INFORMATION IS REQUIRED HERE ON THE SOLAR WIND VELOCITY, SO ONE
C CAN SET VGSEX=-400.0, VGSEY=0.0, VGSEZ=0.0 IN RECALC_08.
C
C LAST MOFIFICATION: JAN 28, 2008
C
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ ST0,CT0,SL0,CL0,CTCL,STCL,CTSL,STSL,AB(26)
IF(J.GT.0) THEN
XMAG=XGEO*CTCL+YGEO*CTSL-ZGEO*ST0
YMAG=YGEO*CL0-XGEO*SL0
ZMAG=XGEO*STCL+YGEO*STSL+ZGEO*CT0
ELSE
XGEO=XMAG*CTCL-YMAG*SL0+ZMAG*STCL
YGEO=XMAG*CTSL+YMAG*CL0+ZMAG*STSL
ZGEO=ZMAG*CT0-XMAG*ST0
ENDIF
RETURN
END
c
c=========================================================================================
c
SUBROUTINE GEIGEO_08 (XGEI,YGEI,ZGEI,XGEO,YGEO,ZGEO,J)
C
C CONVERTS EQUATORIAL INERTIAL (GEI) TO GEOGRAPHICAL (GEO) COORDS
C OR VICE VERSA.
C J>0 J<0
C----INPUT: J,XGEI,YGEI,ZGEI J,XGEO,YGEO,ZGEO
C----OUTPUT: XGEO,YGEO,ZGEO XGEI,YGEI,ZGEI
C
C ATTENTION: SUBROUTINE RECALC_08 MUST BE INVOKED BEFORE GEIGEO_08 IN TWO CASES:
C /A/ BEFORE THE FIRST TRANSFORMATION OF COORDINATES
C /B/ IF THE CURRENT VALUES OF IYEAR,IDAY,IHOUR,MIN,ISEC HAVE BEEN CHANGED
C
C NO INFORMATION IS REQUIRED HERE ON THE SOLAR WIND VELOCITY, SO ONE
C CAN SET VGSEX=-400.0, VGSEY=0.0, VGSEZ=0.0 IN RECALC_08.
C
C LAST MODIFICATION: JAN 28, 2008
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ A(13),CGST,SGST,B(19)
C
IF(J.GT.0) THEN
XGEO=XGEI*CGST+YGEI*SGST
YGEO=YGEI*CGST-XGEI*SGST
ZGEO=ZGEI
ELSE
XGEI=XGEO*CGST-YGEO*SGST
YGEI=YGEO*CGST+XGEO*SGST
ZGEI=ZGEO
ENDIF
RETURN
END
C
C=======================================================================================
C
SUBROUTINE MAGSM_08 (XMAG,YMAG,ZMAG,XSM,YSM,ZSM,J)
C
C CONVERTS DIPOLE (MAG) TO SOLAR MAGNETIC (SM) COORDINATES OR VICE VERSA
C
C J>0 J<0
C----INPUT: J,XMAG,YMAG,ZMAG J,XSM,YSM,ZSM
C----OUTPUT: XSM,YSM,ZSM XMAG,YMAG,ZMAG
C
C ATTENTION: SUBROUTINE RECALC_08 MUST BE INVOKED BEFORE MAGSM_08 IN THREE CASES:
C /A/ BEFORE THE FIRST TRANSFORMATION OF COORDINATES, OR
C /B/ IF THE VALUES OF IYEAR,IDAY,IHOUR,MIN,ISEC HAVE CHANGED, AND/OR
C /C/ IF THE VALUES OF COMPONENTS OF THE SOLAR WIND FLOW VELOCITY HAVE CHANGED
C
C IMPORTANT NOTE:
C
C A NON-STANDARD DEFINITION IS IMPLIED HERE FOR THE SOLAR MAGNETIC COORDINATE
C SYSTEM: IT IS ASSUMED THAT THE XSM AXIS LIES IN THE PLANE DEFINED BY THE
C GEODIPOLE AXIS AND THE OBSERVED VECTOR OF THE SOLAR WIND FLOW (RATHER THAN
C THE EARTH-SUN LINE). IN ORDER TO CONVERT MAG COORDINATES TO AND FROM THE
C STANDARD SM COORDINATES, INVOKE RECALC_08 WITH VGSEX=-400.0, VGSEY=0.0, VGSEZ=0.0
C
C LAST MODIFICATION: FEB 07, 2008
C
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ A(8),SFI,CFI,B(24)
C
IF (J.GT.0) THEN
XSM=XMAG*CFI-YMAG*SFI
YSM=XMAG*SFI+YMAG*CFI
ZSM=ZMAG
ELSE
XMAG=XSM*CFI+YSM*SFI
YMAG=YSM*CFI-XSM*SFI
ZMAG=ZSM
ENDIF
RETURN
END
C
C=====================================================================================
C
SUBROUTINE SMGSW_08 (XSM,YSM,ZSM,XGSW,YGSW,ZGSW,J)
C
C CONVERTS SOLAR MAGNETIC (SM) TO GEOCENTRIC SOLAR-WIND (GSW) COORDINATES OR VICE VERSA.
C
C J>0 J<0
C-----INPUT: J,XSM,YSM,ZSM J,XGSW,YGSW,ZGSW
C----OUTPUT: XGSW,YGSW,ZGSW XSM,YSM,ZSM
C
C ATTENTION: SUBROUTINE RECALC_08 MUST BE INVOKED BEFORE SMGSW_08 IN THREE CASES:
C /A/ BEFORE THE FIRST TRANSFORMATION OF COORDINATES
C /B/ IF THE VALUES OF IYEAR,IDAY,IHOUR,MIN,ISEC HAVE BEEN CHANGED
C /C/ IF THE VALUES OF COMPONENTS OF THE SOLAR WIND FLOW VELOCITY HAVE CHANGED
C
C IMPORTANT NOTE:
C
C A NON-STANDARD DEFINITION IS IMPLIED HERE FOR THE SOLAR MAGNETIC (SM) COORDINATE
C SYSTEM: IT IS ASSUMED THAT THE XSM AXIS LIES IN THE PLANE DEFINED BY THE
C GEODIPOLE AXIS AND THE OBSERVED VECTOR OF THE SOLAR WIND FLOW (RATHER THAN
C THE EARTH-SUN LINE). IN ORDER TO CONVERT MAG COORDINATES TO AND FROM THE
C STANDARD SM COORDINATES, INVOKE RECALC_08 WITH VGSEX=-400.0, VGSEY=0.0, VGSEZ=0.0
C
C LAST MODIFICATION: FEB 07, 2008
C
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ A(10),SPS,CPS,B(22)
IF (J.GT.0) THEN
XGSW=XSM*CPS+ZSM*SPS
YGSW=YSM
ZGSW=ZSM*CPS-XSM*SPS
ELSE
XSM=XGSW*CPS-ZGSW*SPS
YSM=YGSW
ZSM=XGSW*SPS+ZGSW*CPS
ENDIF
RETURN
END
C
C==========================================================================================
C
SUBROUTINE GEOGSW_08 (XGEO,YGEO,ZGEO,XGSW,YGSW,ZGSW,J)
C
C CONVERTS GEOGRAPHIC (GEO) TO GEOCENTRIC SOLAR-WIND (GSW) COORDINATES OR VICE VERSA.
C
C J>0 J<0
C----- INPUT: J,XGEO,YGEO,ZGEO J,XGSW,YGSW,ZGSW
C---- OUTPUT: XGSW,YGSW,ZGSW XGEO,YGEO,ZGEO
C
C ATTENTION: SUBROUTINE RECALC_08 MUST BE INVOKED BEFORE GEOGSW_08 IN THREE CASES:
C /A/ BEFORE THE FIRST TRANSFORMATION OF COORDINATES, OR
C /B/ IF THE VALUES OF IYEAR,IDAY,IHOUR,MIN,ISEC HAVE CHANGED, AND/OR
C /C/ IF THE VALUES OF COMPONENTS OF THE SOLAR WIND FLOW VELOCITY HAVE CHANGED
C
C NOTE: THIS SUBROUTINE CONVERTS GEO VECTORS TO AND FROM THE SOLAR-WIND GSW COORDINATE
C SYSTEM, TAKING INTO ACCOUNT POSSIBLE DEFLECTIONS OF THE SOLAR WIND DIRECTION FROM
C STRICTLY RADIAL. BEFORE CONVERTING TO/FROM STANDARD GSM COORDINATES, INVOKE RECALC_08
C WITH VGSEX=-400.0 and VGSEY=0.0, VGSEZ=0.0
C
C LAST MODIFICATION: FEB 07, 2008
C
C AUTHOR: N. A. TSYGANENKO
C
COMMON /GEOPACK1/ AA(16),A11,A21,A31,A12,A22,A32,A13,A23,A33,B(9)
C
IF (J.GT.0) THEN
XGSW=A11*XGEO+A12*YGEO+A13*ZGEO
YGSW=A21*XGEO+A22*YGEO+A23*ZGEO
ZGSW=A31*XGEO+A32*YGEO+A33*ZGEO
ELSE
XGEO=A11*XGSW+A21*YGSW+A31*ZGSW
YGEO=A12*XGSW+A22*YGSW+A32*ZGSW
ZGEO=A13*XGSW+A23*YGSW+A33*ZGSW
ENDIF
RETURN
END
C
C=====================================================================================
C
SUBROUTINE GEODGEO_08 (H,XMU,R,THETA,J)
C
C THIS SUBROUTINE (1) CONVERTS VERTICAL LOCAL HEIGHT (ALTITUDE) H AND GEODETIC
C LATITUDE XMU INTO GEOCENTRIC COORDINATES R AND THETA (GEOCENTRIC RADIAL
C DISTANCE AND COLATITUDE, RESPECTIVELY; ALSO KNOWN AS ECEF COORDINATES),
C AS WELL AS (2) PERFORMS THE INVERSE TRANSFORMATION FROM {R,THETA} TO {H,XMU}.
C
C THE SUBROUTINE USES WORLD GEODETIC SYSTEM WGS84 PARAMETERS FOR THE EARTH'S
C ELLIPSOID. THE ANGULAR QUANTITIES (GEO COLATITUDE THETA AND GEODETIC LATITUDE
C XMU) ARE IN RADIANS, AND THE DISTANCES (GEOCENTRIC RADIUS R AND ALTITUDE H
C ABOVE THE EARTH'S ELLIPSOID) ARE IN KILOMETERS.
C
C IF J>0, THE TRANSFORMATION IS MADE FROM GEODETIC TO GEOCENTRIC COORDINATES
C USING SIMPLE DIRECT EQUATIONS.
C IF J<0, THE INVERSE TRANSFORMATION FROM GEOCENTRIC TO GEODETIC COORDINATES
C IS MADE BY MEANS OF A FAST ITERATIVE ALGORITHM.
C
c-------------------------------------------------------------------------------
C J>0 | J<0
c-------------------------------------------|-----------------------------------
C--INPUT: J H XMU | J R THETA
c flag altitude (km) geodetic | flag geocentric spherical
c latitude | distance (km) colatitude
c (radians) | (radians)
c-------------------------------------------|-----------------------------------
c |
C----OUTPUT: R THETA | H XMU
C geocentric spherical | altitude (km) geodetic
C distance (km) colatitude | latitude
C (radians) | (radians)
C-------------------------------------------------------------------------------
C
C AUTHOR: N. A. TSYGANENKO
c DATE: DEC 5, 2007
C
DATA R_EQ, BETA /6378.137, 6.73949674228E-3/
c
c R_EQ is the semi-major axis of the Earth's ellipsoid, and BETA is its
c second eccentricity squared
c
DATA TOL /1.E-6/
c
c Direct transformation (GEOD=>GEO):
c
IF (J.GT.0) THEN
COSXMU=COS(XMU)
SINXMU=SIN(XMU)
DEN=SQRT(COSXMU**2+(SINXMU/(1.0+BETA))**2)
COSLAM=COSXMU/DEN
SINLAM=SINXMU/(DEN*(1.0+BETA))
RS=R_EQ/SQRT(1.0+BETA*SINLAM**2)
X=RS*COSLAM+H*COSXMU
Z=RS*SINLAM+H*SINXMU
R=SQRT(X**2+Z**2)
THETA=ACOS(Z/R)
ENDIF
c
c Inverse transformation (GEO=>GEOD):
c
IF (J.LT.0) THEN
N=0
PHI=1.570796327-THETA
PHI1=PHI
1 SP=SIN(PHI1)
ARG=SP*(1.0D0+BETA)/SQRT(1.0+BETA*(2.0+BETA)*SP**2)
XMUS=ASIN(ARG)
RS=R_EQ/SQRT(1.0+BETA*SIN(PHI1)**2)
COSFIMS=COS(PHI1-XMUS)
H=SQRT((RS*COSFIMS)**2+R**2-RS**2)-RS*COSFIMS
Z=RS*SIN(PHI1)+H*SIN(XMUS)
X=RS*COS(PHI1)+H*COS(XMUS)
RR=SQRT(X**2+Z**2)
DPHI=ASIN(Z/RR)-PHI
PHI1=PHI1-DPHI
N=N+1
IF (ABS(DPHI).GT.TOL.AND.N.LT.100) GOTO 1
XMU=XMUS
ENDIF
RETURN
END
C
C=====================================================================================
C
SUBROUTINE RHAND_08 (X,Y,Z,R1,R2,R3,IOPT,PARMOD,EXNAME,INNAME)
C
C CALCULATES THE COMPONENTS OF THE RIGHT HAND SIDE VECTOR IN THE GEOMAGNETIC FIELD
C LINE EQUATION (a subsidiary subroutine for the subroutine STEP_08)
C
C LAST MODIFICATION: FEB 07, 2008
C
C AUTHOR: N. A. TSYGANENKO
C
DIMENSION PARMOD(10)
C
C EXNAME AND INNAME ARE NAMES OF SUBROUTINES FOR THE EXTERNAL AND INTERNAL
C PARTS OF THE TOTAL FIELD, E.G., T96_01 AND IGRF_GSW_08
C
COMMON /GEOPACK1/ A(12),DS3,BB(2),PSI,CC(18)
CALL EXNAME (IOPT,PARMOD,PSI,X,Y,Z,BXGSW,BYGSW,BZGSW)
CALL INNAME (X,Y,Z,HXGSW,HYGSW,HZGSW)
BX=BXGSW+HXGSW
BY=BYGSW+HYGSW
BZ=BZGSW+HZGSW
B=DS3/SQRT(BX**2+BY**2+BZ**2)
R1=BX*B
R2=BY*B
R3=BZ*B
RETURN
END
C
C===================================================================================
C
SUBROUTINE STEP_08(X,Y,Z,DS,DSMAX,ERRIN,IOPT,PARMOD,EXNAME,INNAME)
C
C RE-CALCULATES THE INPUT VALUES {X,Y,Z} (IN GSW COORDINATES) FOR ANY POINT ON A FIELD LINE,
C BY MAKING A STEP ALONG THAT LINE USING RUNGE-KUTTA-MERSON ALGORITHM (G.N. Lance, Numerical
C methods for high-speed computers, Iliffe & Sons, London 1960.)
C DS IS A PRESCRIBED VALUE OF THE CURRENT STEP SIZE, DSMAX IS ITS UPPER LIMIT.
C ERRIN IS A PERMISSIBLE ERROR (ITS OPTIMAL VALUE SPECIFIED IN THE S/R TRACE_08)
C IF THE ACTUAL ERROR (ERRCUR) AT THE CURRENT STEP IS LARGER THAN ERRIN, THE STEP IS REJECTED,
C AND THE CALCULATION IS REPEATED ANEW WITH HALVED STEPSIZE DS.
C IF ERRCUR IS SMALLER THAN ERRIN, THE STEP IS ACCEPTED, AND THE CURRENT VALUE OF DS IS RETAINED
C FOR THE NEXT STEP.
C IF ERRCUR IS SMALLER THAN 0.04*ERRIN, THE STEP IS ACCEPTED, AND THE VALUE OF DS FOR THE NEXT STEP
C IS INCREASED BY THE FACTOR 1.5, BUT NOT LARGER THAN DSMAX.
C IOPT IS A FLAG, RESERVED FOR SPECIFYNG A VERSION OF THE EXTERNAL FIELD MODEL EXNAME.
C ARRAY PARMOD(10) CONTAINS INPUT PARAMETERS FOR THE MODEL EXNAME.
C EXNAME IS THE NAME OF THE SUBROUTINE FOR THE EXTERNAL FIELD MODEL.
C INNAME IS THE NAME OF THE SUBROUTINE FOR THE INTERNAL FIELD MODEL (EITHER DIP_08 OR IGRF_GSW_08)
C
C ALL THE ABOVE PARAMETERS ARE INPUT ONES; OUTPUT IS THE RECALCULATED VALUES OF X,Y,Z
C
C LAST MODIFICATION: APR 21, 2008 (SEE ERRATA AS OF THIS DATE)
C
C AUTHOR: N. A. TSYGANENKO
C
DIMENSION PARMOD(10)
COMMON /GEOPACK1/ A(12),DS3,B(21)
EXTERNAL EXNAME,INNAME
1 DS3=-DS/3.
CALL RHAND_08 (X,Y,Z,R11,R12,R13,IOPT,PARMOD,EXNAME,INNAME)
CALL RHAND_08 (X+R11,Y+R12,Z+R13,R21,R22,R23,IOPT,PARMOD,EXNAME,
* INNAME)
CALL RHAND_08 (X+.5*(R11+R21),Y+.5*(R12+R22),Z+.5*
*(R13+R23),R31,R32,R33,IOPT,PARMOD,EXNAME,INNAME)
CALL RHAND_08 (X+.375*(R11+3.*R31),Y+.375*(R12+3.*R32
*),Z+.375*(R13+3.*R33),R41,R42,R43,IOPT,PARMOD,EXNAME,INNAME)
CALL RHAND_08 (X+1.5*(R11-3.*R31+4.*R41),Y+1.5*(R12-
*3.*R32+4.*R42),Z+1.5*(R13-3.*R33+4.*R43),
*R51,R52,R53,IOPT,PARMOD,EXNAME,INNAME)
ERRCUR=ABS(R11-4.5*R31+4.*R41-.5*R51)+ABS(R12-4.5*R32+4.*R42-.5*
*R52)+ABS(R13-4.5*R33+4.*R43-.5*R53)
C
C READY FOR MAKING THE STEP, BUT CHECK THE ACCURACY; IF INSUFFICIENT,
C REPEAT THE STEP WITH HALVED STEPSIZE:
C
IF (ERRCUR.GT.ERRIN) THEN
DS=DS*.5
GOTO 1
ENDIF
C
C ACCURACY IS ACCEPTABLE, BUT CHECK IF THE STEPSIZE IS NOT TOO LARGE;
C OTHERWISE REPEAT THE STEP WITH DS=DSMAX
C
IF (ABS(DS).GT.DSMAX) THEN
DS=SIGN(DSMAX,DS)
GOTO 1
ENDIF
C
C MAKING THE STEP:
C
2 X=X+.5*(R11+4.*R41+R51)
Y=Y+.5*(R12+4.*R42+R52)
Z=Z+.5*(R13+4.*R43+R53)
C
C IF THE ACTUAL ERROR IS TOO SMALL (LESS THAN 4% OF ERRIN) AND DS SMALLER
C THAN DSMAX/1.5, THEN WE INCREASE THE STEPSIZE FOR THE NEXT STEP BY 50%
C
IF(ERRCUR.LT.ERRIN*.04.AND.DS.LT.DSMAX/1.5) DS=DS*1.5
RETURN
END
C
C==============================================================================
C
SUBROUTINE TRACE_08 (XI,YI,ZI,DIR,DSMAX,ERR,RLIM,R0,IOPT,PARMOD,
* EXNAME,INNAME,XF,YF,ZF,XX,YY,ZZ,L,LMAX)
C
C TRACES A FIELD LINE FROM AN ARBITRARY POINT OF SPACE TO THE EARTH'S
C SURFACE OR TO A MODEL LIMITING BOUNDARY.
C
C THIS SUBROUTINE ALLOWS TWO OPTIONS:
C
C (1) IF INNAME=IGRF_GSW_08, THEN THE IGRF MODEL WILL BE USED FOR CALCULATING
C CONTRIBUTION FROM EARTH'S INTERNAL SOURCES. IN THIS CASE, SUBROUTINE
C RECALC_08 MUST BE CALLED BEFORE USING TRACE_08, WITH PROPERLY SPECIFIED DATE,
C UNIVERSAL TIME, AND SOLAR WIND VELOCITY COMPONENTS, TO CALCULATE IN ADVANCE
C ALL QUANTITIES NEEDED FOR THE MAIN FIELD MODEL AND FOR TRANSFORMATIONS
C BETWEEN INVOLVED COORDINATE SYSTEMS.
C
C (2) IF INNAME=DIP_08, THEN A PURE DIPOLE FIELD WILL BE USED INSTEAD OF THE IGRF MODEL.
C IN THIS CASE, THE SUBROUTINE RECALC_08 MUST ALSO BE CALLED BEFORE TRACE_08.
C HERE ONE CAN CHOOSE EITHER TO
C (a) CALCULATE DIPOLE TILT ANGLE BASED ON DATE, TIME, AND SOLAR WIND DIRECTION,
C OR (b) EXPLICITLY SPECIFY THAT ANGLE, WITHOUT ANY REFERENCE TO DATE/UT/SOLAR WIND.
C IN THE LAST CASE (b), THE SINE (SPS) AND COSINE (CPS) OF THE DIPOLE TILT
C ANGLE MUST BE SPECIFIED IN ADVANCE (BUT AFTER HAVING CALLED RECALC_08) AND FORWARDED
C IN THE COMMON BLOCK /GEOPACK1/ (IN ITS 11th AND 12th ELEMENTS, RESPECTIVELY).
C IN THIS CASE THE ROLE OF THE SUBROUTINE RECALC_08 IS REDUCED TO ONLY CALCULATING
C THE COMPONENTS OF THE EARTH'S DIPOLE MOMENT.
C
C------------- INPUT PARAMETERS:
C
C XI,YI,ZI - GSW COORDS OF THE FIELD LINE STARTING POINT (IN EARTH RADII, 1 RE = 6371.2 km),
C
C DIR - SIGN OF THE TRACING DIRECTION: IF DIR=1.0 THEN THE TRACING IS MADE ANTIPARALLEL
C TO THE TOTAL FIELD VECTOR (E.G., FROM NORTHERN TO SOUTHERN CONJUGATE POINT);
C IF DIR=-1.0 THEN THE TRACING PROCEEDS IN THE OPPOSITE DIRECTION, THAT IS, PARALLEL TO
C THE TOTAL FIELD VECTOR.
C
C DSMAX - UPPER LIMIT ON THE STEPSIZE (SETS A DESIRED MAXIMAL SPACING BETWEEN
C THE FIELD LINE POINTS)
C
C ERR - PERMISSIBLE STEP ERROR. A REASONABLE ESTIMATE PROVIDING A SUFFICIENT ACCURACY FOR MOST
C APPLICATIONS IS ERR=0.0001. SMALLER/LARGER VALUES WILL RESULT IN LARGER/SMALLER NUMBER
C OF STEPS AND, HENCE, OF OUTPUT FIELD LINE POINTS. NOTE THAT USING MUCH SMALLER VALUES
C OF ERR MAY REQUIRE USING A DOUBLE PRECISION VERSION OF THE ENTIRE PACKAGE.
C
C R0 - RADIUS OF A SPHERE (IN RE), DEFINING THE INNER BOUNDARY OF THE TRACING REGION
C (USUALLY, EARTH'S SURFACE OR THE IONOSPHERE, WHERE R0~1.0)
C IF THE FIELD LINE REACHES THAT SPHERE FROM OUTSIDE, ITS INBOUND TRACING IS
C TERMINATED AND THE CROSSING POINT COORDINATES XF,YF,ZF ARE CALCULATED.
C
C RLIM - RADIUS OF A SPHERE (IN RE), DEFINING THE OUTER BOUNDARY OF THE TRACING REGION;
C IF THE FIELD LINE REACHES THAT BOUNDARY FROM INSIDE, ITS OUTBOUND TRACING IS
C TERMINATED AND THE CROSSING POINT COORDINATES XF,YF,ZF ARE CALCULATED.
C
C IOPT - A MODEL INDEX; CAN BE USED FOR SPECIFYING A VERSION OF THE EXTERNAL FIELD
C MODEL (E.G., A NUMBER OF THE KP-INDEX INTERVAL). ALTERNATIVELY, ONE CAN USE THE ARRAY
C PARMOD FOR THAT PURPOSE (SEE BELOW); IN THAT CASE IOPT IS JUST A DUMMY PARAMETER.
C
C PARMOD - A 10-ELEMENT ARRAY CONTAINING INPUT PARAMETERS NEEDED FOR A UNIQUE
C SPECIFICATION OF THE EXTERNAL FIELD MODEL. THE CONCRETE MEANING OF THE COMPONENTS
C OF PARMOD DEPENDS ON A SPECIFIC VERSION OF THAT MODEL.
C
C EXNAME - NAME OF A SUBROUTINE PROVIDING COMPONENTS OF THE EXTERNAL MAGNETIC FIELD
C (E.G., T89, OR T96_01, ETC.).
C INNAME - NAME OF A SUBROUTINE PROVIDING COMPONENTS OF THE INTERNAL MAGNETIC FIELD
C (EITHER DIP_08 OR IGRF_GSW_08).
C
C LMAX - MAXIMAL LENGTH OF THE ARRAYS XX,YY,ZZ, IN WHICH COORDINATES OF THE FIELD
C LINE POINTS ARE STORED. LMAX SHOULD BE SET EQUAL TO THE ACTUAL LENGTH OF
C THE ARRAYS, DEFINED IN THE MAIN PROGRAM AS ACTUAL ARGUMENTS OF THIS SUBROUTINE.
C
C-------------- OUTPUT PARAMETERS:
C
C XF,YF,ZF - GSW COORDINATES OF THE ENDPOINT OF THE TRACED FIELD LINE.
C XX,YY,ZZ - ARRAYS OF LENGTH LMAX, CONTAINING COORDINATES OF THE FIELD LINE POINTS.
C L - ACTUAL NUMBER OF FIELD LINE POINTS, GENERATED BY THIS SUBROUTINE.
C
C ----------------------------------------------------------
C
C LAST MODIFICATION: JAN 30, 2008.
C
C AUTHOR: N. A. TSYGANENKO
C
DIMENSION XX(LMAX),YY(LMAX),ZZ(LMAX), PARMOD(10)
COMMON /GEOPACK1/ AA(12),DD,BB(21)
EXTERNAL EXNAME,INNAME
C
L=0
NREV=0
DD=DIR
C
C INITIALIZE THE STEP SIZE AND STARTING PONT:
C
DS=0.5*DIR
X=XI
Y=YI
Z=ZI
c
c here we call RHAND_08 just to find out the sign of the radial component of the field
c vector, and to determine the initial direction of the tracing (i.e., either away
c or towards Earth):
c
CALL RHAND_08 (X,Y,Z,R1,R2,R3,IOPT,PARMOD,EXNAME,INNAME)
AD=0.01
IF (X*R1+Y*R2+Z*R3.LT.0.) AD=-0.01
C
c |AD|=0.01 and its sign follows the rule:
c (1) if DIR=1 (tracing antiparallel to B vector) then the sign of AD is the same as of Br
c (2) if DIR=-1 (tracing parallel to B vector) then the sign of AD is opposite to that of Br
c AD is defined in order to initialize the value of RR (radial distance at previous step):
RR=SQRT(X**2+Y**2+Z**2)+AD
c
1 L=L+1
IF(L.GT.LMAX) GOTO 7
XX(L)=X
YY(L)=Y
ZZ(L)=Z
RYZ=Y**2+Z**2
R2=X**2+RYZ
R=SQRT(R2)
C
c check if the line hit the outer tracing boundary; if yes, then terminate
c the tracing (label 8). The outer boundary is assumed reached, when the line
c crosses any of the 3 surfaces: (1) a sphere R=RLIM, (2) a cylinder of radius 40Re,
c coaxial with the XGSW axis, (3) the plane X=20Re:
IF (R.GT.RLIM.OR.RYZ.GT.1600..OR.X.GT.20.) GOTO 8
c
c check whether or not the inner tracing boundary was crossed from outside,
c if yes, then calculate the footpoint position by interpolation (go to label 6):
c
IF (R.LT.R0.AND.RR.GT.R) GOTO 6
c check if we are moving outward, or R is still larger than 3Re; if yes, proceed further:
c
IF (R.GE.RR.OR.R.GE.3.) GOTO 4
c
c now we entered inside the sphere R=3: to avoid too large steps (and hence
c inaccurate interpolated position of the footpoint), enforce the progressively
c smaller stepsize values as we approach the inner boundary R=R0:
c
FC=0.2
IF(R-R0.LT.0.05) FC=0.05
AL=FC*(R-R0+0.2)
DS=DIR*AL
c
4 XR=X
YR=Y
ZR=Z
c
DRP=R-RR
RR=R
c
CALL STEP_08 (X,Y,Z,DS,DSMAX,ERR,IOPT,PARMOD,EXNAME,INNAME)
c
C check the total number NREV of changes in the tracing radial direction; (NREV.GT.2) means
c that the line started making multiple loops, in which case we stop the process:
C
R=SQRT(X**2+Y**2+Z**2)
DR=R-RR
IF (DRP*DR.LT.0.) NREV=NREV+1
IF (NREV.GT.4) GOTO 8
C
GOTO 1
c
c find the footpoint position by interpolating between the current and previous
c field line points:
c
6 R1=(R0-R)/(RR-R)
X=X-(X-XR)*R1
Y=Y-(Y-YR)*R1
Z=Z-(Z-ZR)*R1
GOTO 8
7 WRITE (*,10)
L=LMAX
8 XF=X
YF=Y
ZF=Z
C
C replace the coordinates of the last (L-th) point in the XX,YY,ZZ arrays
C so that they correspond to the estimated footpoint position {XF,YF,ZF},
c satisfying: sqrt(XF**2+YF**2+ZF**2}=R0
C
XX(L)=XF
YY(L)=YF
ZZ(L)=ZF
C
RETURN
10 FORMAT(//,1X,'**** COMPUTATIONS IN THE SUBROUTINE TRACE_08 ARE',
*' TERMINATED: THE NUMBER OF POINTS EXCEEDED LMAX ****'//)
END
c
C====================================================================================
C
SUBROUTINE SHUETAL_MGNP_08(XN_PD,VEL,BZIMF,XGSW,YGSW,ZGSW,
* XMGNP,YMGNP,ZMGNP,DIST,ID)
C
C FOR ANY POINT OF SPACE WITH COORDINATES (XGSW,YGSW,ZGSW) AND SPECIFIED CONDITIONS
C IN THE INCOMING SOLAR WIND, THIS SUBROUTINE:
C
C (1) DETERMINES IF THE POINT (XGSW,YGSW,ZGSW) LIES INSIDE OR OUTSIDE THE
C MODEL MAGNETOPAUSE OF SHUE ET AL. (JGR-A, V.103, P. 17691, 1998).
C
C (2) CALCULATES THE GSW POSITION OF A POINT {XMGNP,YMGNP,ZMGNP}, LYING AT THE MODEL
C MAGNETOPAUSE AND ASYMPTOTICALLY TENDING TO THE NEAREST BOUNDARY POINT WITH
C RESPECT TO THE OBSERVATION POINT {XGSW,YGSW,ZGSW}, AS IT APPROACHES THE MAGNETO-
C PAUSE.
C
C INPUT: XN_PD - EITHER SOLAR WIND PROTON NUMBER DENSITY (PER C.C.) (IF VEL>0)
C OR THE SOLAR WIND RAM PRESSURE IN NANOPASCALS (IF VEL<0)
C BZIMF - IMF BZ IN NANOTESLAS
C
C VEL - EITHER SOLAR WIND VELOCITY (KM/SEC)
C OR ANY NEGATIVE NUMBER, WHICH INDICATES THAT XN_PD STANDS
C FOR THE SOLAR WIND PRESSURE, RATHER THAN FOR THE DENSITY
C
C XGSW,YGSW,ZGSW - GSW POSITION OF THE OBSERVATION POINT IN EARTH RADII
C
C OUTPUT: XMGNP,YMGNP,ZMGNP - GSW POSITION OF THE BOUNDARY POINT
C DIST - DISTANCE (IN RE) BETWEEN THE OBSERVATION POINT (XGSW,YGSW,ZGSW)
C AND THE MODEL NAGNETOPAUSE
C ID - POSITION FLAG: ID=+1 (-1) MEANS THAT THE OBSERVATION POINT
C LIES INSIDE (OUTSIDE) OF THE MODEL MAGNETOPAUSE, RESPECTIVELY.
C
C OTHER SUBROUTINES USED: T96_MGNP_08
C
c AUTHOR: N.A. TSYGANENKO,
C DATE: APRIL 4, 2003.
C
IF (VEL.LT.0.) THEN
P=XN_PD
ELSE
P=1.94E-6*XN_PD*VEL**2 ! P IS THE SOLAR WIND DYNAMIC PRESSURE (IN nPa)
ENDIF
c
c DEFINE THE ANGLE PHI, MEASURED DUSKWARD FROM THE NOON-MIDNIGHT MERIDIAN PLANE;
C IF THE OBSERVATION POINT LIES ON THE X AXIS, THE ANGLE PHI CANNOT BE UNIQUELY
C DEFINED, AND WE SET IT AT ZERO:
c
IF (YGSW.NE.0..OR.ZGSW.NE.0.) THEN
PHI=ATAN2(YGSW,ZGSW)
ELSE
PHI=0.
ENDIF
C
C FIRST, FIND OUT IF THE OBSERVATION POINT LIES INSIDE THE SHUE ET AL BDRY
C AND SET THE VALUE OF THE ID FLAG:
C
ID=-1
R0=(10.22+1.29*TANH(0.184*(BZIMF+8.14)))*P**(-.15151515)
ALPHA=(0.58-0.007*BZIMF)*(1.+0.024*ALOG(P))
R=SQRT(XGSW**2+YGSW**2+ZGSW**2)
RM=R0*(2./(1.+XGSW/R))**ALPHA
IF (R.LE.RM) ID=+1
C
C NOW, FIND THE CORRESPONDING T96 MAGNETOPAUSE POSITION, TO BE USED AS
C A STARTING APPROXIMATION IN THE SEARCH OF A CORRESPONDING SHUE ET AL.
C BOUNDARY POINT:
C
CALL T96_MGNP_08(P,-1.,XGSW,YGSW,ZGSW,XMT96,YMT96,ZMT96,DIST,ID96)
C
RHO2=YMT96**2+ZMT96**2
R=SQRT(RHO2+XMT96**2)
ST=SQRT(RHO2)/R
CT=XMT96/R
C
C NOW, USE NEWTON'S ITERATIVE METHOD TO FIND THE NEAREST POINT AT THE
C SHUE ET AL.'S BOUNDARY:
C
NIT=0
1 T=ATAN2(ST,CT)
RM=R0*(2./(1.+CT))**ALPHA
F=R-RM
GRADF_R=1.
GRADF_T=-ALPHA/R*RM*ST/(1.+CT)
GRADF=SQRT(GRADF_R**2+GRADF_T**2)
DR=-F/GRADF**2
DT= DR/R*GRADF_T
R=R+DR
T=T+DT
ST=SIN(T)
CT=COS(T)
DS=SQRT(DR**2+(R*DT)**2)
NIT=NIT+1
IF (NIT.GT.1000) THEN
PRINT *,
*' BOUNDARY POINT COULD NOT BE FOUND; ITERATIONS DO NOT CONVERGE'
ENDIF
IF (DS.GT.1.E-4) GOTO 1
XMGNP=R*COS(T)
RHO= R*SIN(T)
YMGNP=RHO*SIN(PHI)
ZMGNP=RHO*COS(PHI)
DIST=SQRT((XGSW-XMGNP)**2+(YGSW-YMGNP)**2+(ZGSW-ZMGNP)**2)
RETURN
END
C
C=======================================================================================
C
SUBROUTINE T96_MGNP_08(XN_PD,VEL,XGSW,YGSW,ZGSW,XMGNP,YMGNP,ZMGNP,
* DIST,ID)
C
C FOR ANY POINT OF SPACE WITH GIVEN COORDINATES (XGSW,YGSW,ZGSW), THIS SUBROUTINE DEFINES
C THE POSITION OF A POINT (XMGNP,YMGNP,ZMGNP) AT THE T96 MODEL MAGNETOPAUSE WITH THE
C SAME VALUE OF THE ELLIPSOIDAL TAU-COORDINATE, AND THE DISTANCE BETWEEN THEM. THIS IS
C NOT THE SHORTEST DISTANCE D_MIN TO THE BOUNDARY, BUT DIST ASYMPTOTICALLY TENDS TO D_MIN,
C AS THE OBSERVATION POINT GETS CLOSER TO THE MAGNETOPAUSE.
C
C INPUT: XN_PD - EITHER SOLAR WIND PROTON NUMBER DENSITY (PER C.C.) (IF VEL>0)
C OR THE SOLAR WIND RAM PRESSURE IN NANOPASCALS (IF VEL<0)
C VEL - EITHER SOLAR WIND VELOCITY (KM/SEC)
C OR ANY NEGATIVE NUMBER, WHICH INDICATES THAT XN_PD STANDS
C FOR THE SOLAR WIND PRESSURE, RATHER THAN FOR THE DENSITY
C
C XGSW,YGSW,ZGSW - COORDINATES OF THE OBSERVATION POINT IN EARTH RADII
C
C OUTPUT: XMGNP,YMGNP,ZMGNP - GSW POSITION OF THE BOUNDARY POINT, HAVING THE SAME
C VALUE OF TAU-COORDINATE AS THE OBSERVATION POINT (XGSW,YGSW,ZGSW)
C DIST - THE DISTANCE BETWEEN THE TWO POINTS, IN RE,
C ID - POSITION FLAG; ID=+1 (-1) MEANS THAT THE POINT (XGSW,YGSW,ZGSW)
C LIES INSIDE (OUTSIDE) THE MODEL MAGNETOPAUSE, RESPECTIVELY.
C
C THE PRESSURE-DEPENDENT MAGNETOPAUSE IS THAT USED IN THE T96_01 MODEL
C (TSYGANENKO, JGR, V.100, P.5599, 1995; ESA SP-389, P.181, OCT. 1996)
C
c AUTHOR: N.A. TSYGANENKO
C DATE: AUG.1, 1995, REVISED APRIL 3, 2003.
C
C
C DEFINE SOLAR WIND DYNAMIC PRESSURE (NANOPASCALS, ASSUMING 4% OF ALPHA-PARTICLES),
C IF NOT EXPLICITLY SPECIFIED IN THE INPUT:
IF (VEL.LT.0.) THEN
PD=XN_PD
ELSE
PD=1.94E-6*XN_PD*VEL**2
C
ENDIF
C
C RATIO OF PD TO THE AVERAGE PRESSURE, ASSUMED EQUAL TO 2 nPa:
RAT=PD/2.0
RAT16=RAT**0.14
C (THE POWER INDEX 0.14 IN THE SCALING FACTOR IS THE BEST-FIT VALUE OBTAINED FROM DATA
C AND USED IN THE T96_01 VERSION)
C
C VALUES OF THE MAGNETOPAUSE PARAMETERS FOR PD = 2 nPa:
C
A0=70.
S00=1.08
X00=5.48
C
C VALUES OF THE MAGNETOPAUSE PARAMETERS, SCALED BY THE ACTUAL PRESSURE:
C
A=A0/RAT16
S0=S00
X0=X00/RAT16
XM=X0-A
C
C (XM IS THE X-COORDINATE OF THE "SEAM" BETWEEN THE ELLIPSOID AND THE CYLINDER)
C
C (FOR DETAILS OF THE ELLIPSOIDAL COORDINATES, SEE THE PAPER:
C N.A.TSYGANENKO, SOLUTION OF CHAPMAN-FERRARO PROBLEM FOR AN
C ELLIPSOIDAL MAGNETOPAUSE, PLANET.SPACE SCI., V.37, P.1037, 1989).
C
IF (YGSW.NE.0..OR.ZGSW.NE.0.) THEN
PHI=ATAN2(YGSW,ZGSW)
ELSE
PHI=0.
ENDIF
C
RHO=SQRT(YGSW**2+ZGSW**2)
C
IF (XGSW.LT.XM) THEN
XMGNP=XGSW
RHOMGNP=A*SQRT(S0**2-1)
YMGNP=RHOMGNP*SIN(PHI)
ZMGNP=RHOMGNP*COS(PHI)
DIST=SQRT((XGSW-XMGNP)**2+(YGSW-YMGNP)**2+(ZGSW-ZMGNP)**2)
IF (RHOMGNP.GT.RHO) ID=+1
IF (RHOMGNP.LE.RHO) ID=-1
RETURN
ENDIF
C
XKSI=(XGSW-X0)/A+1.
XDZT=RHO/A
SQ1=SQRT((1.+XKSI)**2+XDZT**2)
SQ2=SQRT((1.-XKSI)**2+XDZT**2)
SIGMA=0.5*(SQ1+SQ2)
TAU=0.5*(SQ1-SQ2)
C
C NOW CALCULATE (X,Y,Z) FOR THE CLOSEST POINT AT THE MAGNETOPAUSE
C
XMGNP=X0-A*(1.-S0*TAU)
ARG=(S0**2-1.)*(1.-TAU**2)
IF (ARG.LT.0.) ARG=0.
RHOMGNP=A*SQRT(ARG)
YMGNP=RHOMGNP*SIN(PHI)
ZMGNP=RHOMGNP*COS(PHI)
C
C NOW CALCULATE THE DISTANCE BETWEEN THE POINTS {XGSW,YGSW,ZGSW} AND {XMGNP,YMGNP,ZMGNP}:
C (IN GENERAL, THIS IS NOT THE SHORTEST DISTANCE D_MIN, BUT DIST ASYMPTOTICALLY TENDS
C TO D_MIN, AS WE ARE GETTING CLOSER TO THE MAGNETOPAUSE):
C
DIST=SQRT((XGSW-XMGNP)**2+(YGSW-YMGNP)**2+(ZGSW-ZMGNP)**2)
C
IF (SIGMA.GT.S0) ID=-1 ! ID=-1 MEANS THAT THE POINT LIES OUTSIDE
IF (SIGMA.LE.S0) ID=+1 ! ID=+1 MEANS THAT THE POINT LIES INSIDE
C THE MAGNETOSPHERE
RETURN
END
C
C===================================================================================
C
c</pre>