ex89ae.f
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
subroutine ex89ae (indval,tilt,x,y,z,bx,by,bz,ier)
c*
c***********************************************************************
c*
c* "Copyright [c] CNES 98 - tous droits reserves"
c* **********************************************
c*
c*PRO MAGLIB
c*
c*VER 99.03.31 - V 1.0
c*VER 01.05.30 - V 2.0
c*VER 03.01.06 - V 2.1
c*
c*AUT spec. Nikolai A. Tsyganenko
c*AUT Institute of Physics, Leningrad University
c*AUT Stary Petergof 198904 Leningrad USSR
c*AUT port. CISI
c*
c*ROL Theme : Modeles de champs magnetiques
c*ROL Calcul du champ externe d'origine magnetospherique en
c*ROL fonction de l'angle de tilt et de l'indice geomagnetique Ae.
c*
c*PAR indval (I) : indice geomagnetique : niveau d'amplitude du champ
c*
c*PAR tilt (I) : angle de tilt (radians)
c*
c*PAR x (I) : coordonnee solaire magnetique en x (rayons terrestres)
c*PAR y (I) : coordonnee solaire magnetique en y (rayons terrestres)
c*PAR z (I) : coordonnee solaire magnetique en z (rayons terrestres)
c*
c*PAR bx (O) : composante en x dans le systeme solaire magnetospherique
c*PAR : (gauss)
c*PAR by (O) : composante en y dans le systeme solaire magnetospherique
c*PAR : (gauss)
c*PAR bz (O) : composante en z dans le systeme solaire magnetospherique
c*PAR : (gauss)
c*
c*PAR ier (O) : code de retour
c*
c*NOT ier : sans objet
c*
c*NOT indval : 1 = Ae = 0 - 50
c*NOT indval : 2 = Ae = 50 - 100
c*NOT indval : 3 = Ae = 100 - 150
c*NOT indval : 4 = Ae = 150 - 250
c*NOT indval : 5 = Ae = 250 - 400
c*NOT indval : 6 = Ae >= 400
c*
c*NOT Traite les composants GSM du champ magnetique produits par les
c*NOT systemes extraterrestres courants dans la geomagnetosphere.
c*NOT Le modele est valide jusqu'a des distances geocentriques de
c*NOT 70 rayons terrestres et bases sur l'union des jeux de donnees
c*NOT satellite imp-a,c,d,e,f,g,h,i,j (1966-1974) and heos-1,-2
c*NOT (1969-1974).
c*NOT Reference: n.a. Tsyganenko, A magnetospheric
c*NOT magnetic field model with a warped tail current sheet: planet.
c*NOT space. sci., v.37, pp.5-20, 1989.
c*
c*INF utilise : sans objet
c*
c*HST version 1.0 - 99.03.31 - creation de la maglib au CDPP
c*HST version 2.0 - 01.05.30 - correction de commentaires de code
c*HST version 2.1 - 03.01.06 - corrections en compilation avec g77
c*
c***********************************************************************
c*
implicit none
c
c ---------------------------------
c*FON Declaration identificateur rcs_id
c ---------------------------------
c
character rcs_id*100
c
c --------------------------
c*FON Declaration des parametres
c --------------------------
c
integer indval
double precision tilt
double precision x, y, z
double precision bx, by, bz
integer ier
c
c ---------------------------------
c*FON Declaration des variables locales
c ---------------------------------
c
integer ip
c*LOC ip : valeur initiale de indval (=100)
c
integer i
c*LOC i : indice de boucles
c
double precision ga1(28),ga2(28),ga3(28),ga4(28),ga5(28)
double precision ga6(28),pa(28)
c
double precision a,a02,aa4sps,adr,adrt,adrt2,adt2r2,at
double precision brzr1,brzr2,bxc,bxcf,bxdr,bxt,byc,bycf
double precision byt,bzc,bzcf,bzt,cps,d,d0,dadd,dadd05,dd,ddel
double precision ddop,ddopdx,ddr,ddx,dadd18,ddy,del,delx
double precision dfdrx,drdycm,dwcx,dwcy,dwx,dwy,dy,dyc
double precision dzsx,dzsy,ex,f3,f5,f7,f9,fcy,fdr,fk1,fk2
double precision fr,fs,fxm,fxp,fy,fym,fyp,fzm,f1,fzp
double precision g,gam,gspm,h,ha02,hldxm,hlwc2m
double precision hsx,htps,hxlw2m,hy,hys,psi,rc,rdy2,rdyc2
double precision ro2,rq,rqc2,rsmrt,rsprt,rsqxdl,rt
double precision rx2a2,s1,sm,sp,sps,srq,srqc2,srx2a2
double precision sx,sxc,sxrc16,sxsix,t,tdr
double precision w,wc,wcsm,wcsp,wt,wtfs,x2sm,xd
double precision xld2,xlw2,xlwc2,xrc,xsixt,xsixtd
double precision xsm,xsx,xsxc,xwcywc,xwyw,xxd,xxd2l2,y2,y4
double precision y410,yz,z2,zm,zp,zr,zs,zsm,drdy2m
c*LOC Variables de travail intermediaires
c
SAVE
c
c ---------------------------------
c*FON Affectation identificateur rcs_id
c ---------------------------------
c
data rcs_id /"
>$Id$"/
c
c --------------------------
c*FON Affectation des constantes
c --------------------------
c
data ga1/ -77.38d0, -10921.d0, -2.89d0, 193.9d0,
> -10954.d0, 2.048d0, 28.83d0, -0.0367d0,
> -0.0625d0, 0.00104d0, -1.246d0, 0.00166d0,
> 0.000792d0, 20.81d0, -0.03608d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 25.82d0,
> 7.656d0, 2.106d0, -0.30d0, 8.753d0,
> 2.733d0, 13.17d0, 27.09d0, 5.184d0/
c
data ga2/ -59.2d0, -13647.d0, 11.6d0, 237.2d0,
> -14465.d0, 2.326d0, 36.54d0, -0.07084d0,
> -0.1182d0, 0.000146d0, -1.626d0, 0.002466d0,
> 0.001355d0, 23.49d0, -0.04602d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 23.15d0,
> 7.6d0, 1.6d0, 1.457d0, 8.373d0,
> 3.883d0, 14.18d0, 28.79d0, 5.97d0/
c
data ga3/ -65.91d0, -15267.d0, 64.48d0, 230.6d0,
> -14870.d0, 2.712d0, 43.28d0, -0.09687d0,
> -0.1671d0, 0.009814d0, -1.835d0, 0.0026d0,
> 0.0017d0, 22.73d0, -0.05049d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 20.76d0,
> 6.314d0, 1.42d0, 4.141d0, 9.436d0,
> 6.266d0, 15.07d0, 30.35d0, 6.852d0/
c
data ga4/ -57.97d0, -16106.d0, 86.28d0, 199.7d0,
> -16796.d0, 3.033d0, 46.80d0, -0.1057d0,
> -0.1992d0, 0.01509d0, -1.534d0, 0.001783d0,
> -0.000542d0, 22.29d0, -0.04664d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 19.79d0,
> 5.788d0, 1.177d0, 5.007d0, 9.60d0,
> 7.32d0, 15.78d0, 33.53d0, 7.401d0/
c
data ga5/ -118.1d0, -16473.d0, 136.3d0, 158.7d0,
> -21134.d0, 3.135d0, 49.78d0, -0.1088d0,
> -0.2245d0, 0.01759d0, -1.874d0, 0.003243d0,
> -0.000268d0, 21.97d0, -0.04913d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 18.48d0,
> 6.25d0, 0.8643d0, 5.821d0, 9.552d0,
> 6.051d0, 16.14d0, 31.27d0, 9.062d0/
c
data ga6/ -223.7d0, -15054.d0, 219.1d0, 83.84d0,
> -31140.d0, 3.777d0, 51.08d0, -0.1261d0,
> -0.2393d0, 0.02507d0, -1.426d0, 0.001678d0,
> 0.002039d0, 19.10d0, -0.05344d0, 0.d0,
> 0.d0, 0.d0, 0.d0, 16.73d0,
> 6.532d0, 0.382d0, 5.807d0, 8.099d0,
> 6.726d0, 16.21d0, 25.63d0, 9.431d0/
c
data del /0.01d0/
c
data gam /4.d0/
c
data dyc /20.d0/
c
data xd /0.d0/
c
data xld2 /40.d0/
c
data xlw2 /170.d0/
c
data a02 /25.d0/
c
data rt /30.d0/
c
data sxc /4.d0/
c
data xlwc2 /50.d0/
c
data dadd /1.d0/
c
data ip /100/
c
data psi /10.d0/
c
c ******************
c Debut de programme
c ******************
c
ier = 0
c
c --------------------------------------------------------------
c*FON Calcul initial des constantes a partir d'un jeu donne de
c*FON parametres d'un modele specifie par le numero en option (indval)
c --------------------------------------------------------------
c
c Cas ou indval est egal a 100
if (indval.ne.ip) then
c
ip = indval
c
do 10 i = 1, 28
if (ip .eq. 1) pa(i) = ga1(i)
if (ip .eq. 2) pa(i) = ga2(i)
if (ip .eq. 3) pa(i) = ga3(i)
if (ip .eq. 4) pa(i) = ga4(i)
if (ip .eq. 5) pa(i) = ga5(i)
if (ip .eq. 6) pa(i) = ga6(i)
10 continue
c
delx = pa(20)
adr = pa(21)
d0 = pa(22)
dd = pa(23)
rc = pa(24)
g = pa(25)
a = pa(26)
dy = pa(27)
sx = pa(28)
ha02 = 0.5d0 * a02
rdyc2 = 1.d0 / dyc**2
hlwc2m = -0.5d0 * xlwc2
drdycm = -2.d0 * rdyc2
hldxm = -0.5d0 * xld2
ddel = 2.d0 * del
rdy2 = 1.d0 / dy**2
drdy2m = -2.d0 * rdy2
hxlw2m = -0.5d0 * xlw2
dadd05 = dadd * 0.5d0
dadd18 = -18.d0 * dadd
c
c ------------------------------------------------------------
c*FON Les coefficients pa(16)-pa(19) sont deduits de pa(6)-pa(13)
c*FON de facon a ce que le champ magnetique soit moins divergent
c -----------------------------------------------------------
c
pa(16) = -0.5d0 * (pa(6) / delx + pa(10))
pa(17) = -(pa(7) / delx + pa(11))
pa(18) = -(pa(8) / delx + 3.d0 * pa(12))
pa(19) = -(pa(9) / delx + pa(13)) / 3.d0
c
psi = tilt
sps = sin(tilt)
cps = cos(tilt)
htps = sps / (2.d0 * cps)
gspm = -g * sps
c
c cas ou indval prend les autres valeurs
else
c
if (abs(tilt - psi) .lt. 1.d-6) then
c aucun traitement
else
psi = tilt
sps = sin(tilt)
cps = cos(tilt)
htps = sps / (2.d0 * cps)
gspm = -g * sps
endif
c
endif
c
c ------------------------------------------------------------
c*FON Le traitement commence ici si indval et tilt sont identiques
c ------------------------------------------------------------
c
xsm = x * cps - z * sps
zsm = z * cps + x * sps
x2sm = xsm**2
y2 = y * y
ro2 = x2sm + y2
xxd = xsm - xd
xxd2l2 = 1.d0 / (xxd**2 + xld2)
rsqxdl = sqrt(xxd2l2)
h = 0.5d0 * (1.d0 + xxd * rsqxdl)
hsx = -hldxm * xxd2l2 * rsqxdl
xsixt = xsm + 16.d0
xsixtd = 1.d0 / (xsixt**2 + 36.d0)
sxsix = sqrt(xsixtd)
ddop = dadd05 * (1.d0 - xsixt * sxsix)
ddopdx = dadd18 * xsixtd * sxsix
d = d0 + del * y2 + gam * h + ddop
ddx = gam * hsx + ddopdx
ddy = ddel * y
xrc = xsm + rc
sxrc16 = sqrt(xrc**2 + 16.d0)
y4 = y2 * y2
y410 = 1.d0 / (y4 + 1.d4)
hy = y2 * y410 * y
hys = hy * y410 * 4.d4
hy = hy * y
zs = htps * (xrc - sxrc16) + gspm * hy
dzsx = htps * (1.d0 - xrc / sxrc16)
dzsy = gspm * hys
c
c -------------------------------------------------------
c*FON zs = zs(xsm,ysm) definissent le format du champ courant
c -------------------------------------------------------
c
xsx = xsm - sx
rq = 1.d0 /(xsx**2 + xlw2)
srq = sqrt(rq)
fy = 1.d0 / (1.d0 + y2 * rdy2)
w = 0.5d0 * (1.d0 - xsx * srq) * fy
dwx = hxlw2m * rq * srq * fy
dwy = drdy2m * w * y * fy
zr = zsm - zs
t = sqrt(zr**2 + d**2)
at = a + t
s1 = sqrt(at**2 + ro2)
f5 = 1.d0 / s1
f7 = 1.d0 / (s1 + at)
f1 = f5 * f7
f3 = f5**3
f9 = at * f3
xwyw = xsm * dwx + y * dwy
fr = zr *(xsm * dzsx + y * dzsy)
fs = fr - d * (xsm * ddx + y * ddy)
wt = w / t
wtfs = wt * fs
brzr1 = wt * f1
brzr2 = wt * f3
bxt = (pa(1) * brzr1 + pa(2) * brzr2) * zr
byt = bxt * y
bxt = bxt * xsm
bzt = pa(1) * (w * f5 + xwyw * f7 + wtfs * f1) +
> pa(2) * (w * f9 + xwyw * f1 + wtfs * f3)
c
c ---------------------------------------------------------
c*FON La contribution de la page courante de la queue centrale
c*FON (bxt,byt,bzt) est trouvee. Maintenant traitons les champs
c*FON peripheriques
c ----------------------------------------------------------
c
rx2a2 = 1.d0 / (x2sm + a02)
srx2a2 = sqrt(rx2a2)
fdr = 0.5d0 * (1.d0 + xsm * srx2a2)
dfdrx = ha02 * rx2a2 * srx2a2
ddr = d0 + dd * fdr + ddop
tdr = sqrt(zr**2 + ddr**2)
adrt = adr + tdr
adrt2 = adrt**2
adt2r2 = 1.d0 / (adrt2 + ro2)
fk1 = adt2r2**2 * sqrt(adt2r2)
fk2 = 3.d0 * adrt * fk1 / tdr
bxdr = pa(5) * zr * fk2
byt = byt + bxdr * y
bxt = bxt + bxdr * xsm
bzt = bzt + pa(5) * ((2.d0 * adrt2 - ro2) * fk1 + fk2
> * (fr - ddr * (dd * dfdrx + ddopdx) * xsm))
c
c ---------------------------------------------------
c*FON Calcul du champ Chapman-Ferraro et de la moyenne de
c*FON la contribution des champs alignes courants
c ---------------------------------------------------
c
ex = exp(x / delx)
z2 = z * z
yz = y * z
bxcf = ex * (cps * pa(6) * z + sps *
> (pa(7) + pa(8) * y2 + pa(9) * z2))
bycf = ex * (cps * pa(10) * yz + sps * y *
> (pa(11) + pa(12) * y2 + pa(13) * z2))
bzcf = ex * (cps * (pa(14) + pa(15) * y2 + pa(16) * z2)
> + sps * z * (pa(17) + pa(18) * y2 + pa(19) * z2))
c
c -----------------------------------------------------------
c*FON La queue magnetique renvoie les composants du champ courant
c*FON (bxc,byc,bzc)
c -----------------------------------------------------------
c
fcy = 1.d0 / (1.d0 + y2 * rdyc2)
xsxc = x - sxc
rqc2 = 1.d0 / (xsxc**2 + xlwc2)
srqc2 = sqrt(rqc2)
wc = 0.5d0 * (1.d0 - xsxc * srqc2) * fcy
dwcx = hlwc2m * rqc2 * srqc2 * fcy
dwcy = drdycm * wc * y * fcy
xwcywc = x * dwcx + y * dwcy
ro2 = y2 + x**2
zp = z + rt
zm = z - rt
sp = sqrt(zp**2 + ro2)
sm = sqrt(zm**2 + ro2)
wcsp = wc / sp
wcsm = wc / sm
rsprt = 1.d0 / (sp + zp)
rsmrt = 1.d0 / (sm - zm)
fxp = wcsp * rsprt
fxm = - wcsm * rsmrt
fyp = fxp * y
fym = fxm * y
fxp = fxp * x
fxm = fxm * x
fzp = wcsp + xwcywc *rsprt
fzm = wcsm + xwcywc *rsmrt
aa4sps = pa(4) * sps
bxc = pa(3) * (fxp + fxm) + (fxp - fxm) * aa4sps
byc = pa(3) * (fyp + fym) + (fyp - fym) * aa4sps
bzc = pa(3) * (fzp + fzm) + (fzp - fzm) * aa4sps
c
c ---------------------------------------------------
c*FON Somme des champs. Les composants centraux du champ
c*FON courant sont transformes en coordonnees GSM
c ---------------------------------------------------
c
bx = bxc + bxt * cps + bzt * sps + bxcf
by = byc + byt + bycf
bz = bzc + bzt * cps - bxt * sps + bzcf
c
c ****************
c Fin de programme
c ****************
c
return
end