mp_shear_angle.py
10.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
"""
Created on Tue May 12 15:45:20 2020
@author: Daniel
"""
import matplotlib.pyplot as plt
import numpy as np
import datetime
import tsyg
from scipy.spatial import ConvexHull
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import matplotlib.cm as cm
from matplotlib.colors import Normalize
def KF94_field(Rbs, Rmp, Bimfx, Bimfy, Bimfz, x, y, z):
"""Magnetosheath magnetic field (Kobela and Fluckiger 1994)."""
A = (2 * Rbs - Rmp) / (2 * (Rbs - Rmp))
l = 3 * Rmp / 2 - x
Bmsx = -A * (-Bimfx * (1 - Rmp / (2 * l))
+ Bimfy * (y / l)
+ Bimfz * (z / l))
Bmsy = A * (-Bimfx * (y / (2 * l))
+ Bimfy * (2 - (y**2) / (l * Rmp))
- Bimfz * (y * z / (l * Rmp)))
Bmsz = A * (-Bimfx * (z / (2 * l))
- Bimfy * (y * z / (l * Rmp))
+ Bimfz * (2 - (z**2) / (l * Rmp)))
return Bmsx, Bmsy, Bmsz
def Sibeck_Rmp(pdyn, A0, B0, C0, p0):
"""
Magnetopause stand-off distance, Sibeck, 1991.
R^2 + A*x^2+B*(p0/p)^(1/6)*x + C * (p0/p)^(1/3) = 0
Rmp (stand-off dist) = x for R = 0
pdyn : solar wind pressure [nPa ]
p0 : reference solar wind pressure [nPa]
A0, B0, C0 : magnetopause coefficients
"""
p = pdyn
p1 = (p0/p)**(1/6)
p2 = (p0/p)**(1/3)
Rmp = (-B0*p1+np.sqrt(B0**2*p1**2 - 4*A0*C*p2))/(2*A0)
return Rmp
def centroid(arr):
"""
Compute face centroid (intersection of medians).
This is the position where the value of the shear angle for the face will
be computed. It will give the face color.
"""
length = arr.shape[0]
midpoints_ = np.zeros((length, 3))
for i in range(0, length):
sum_x = np.sum(arr[i, :, 0])
sum_y = np.sum(arr[i, :, 1])
sum_z = np.sum(arr[i, :, 2])
midpoints_[i] = [sum_x/3, sum_y/3, sum_z/3]
return midpoints_
def Sibeck_to_KF94(xs, ys, zs, Rmp, A, B, C):
"""
Map Sibeck's magnetopause points to KF94 magnetopause.
xs, ys, zs : coordinates of a point on the Sibeck magnetopause [R_E]
Rmp : magnetopause stand-off distance [R_E]
A, B, C : Sibeck's magnetopause parameters
Compute the intersection of the normal to Sibeck magnetopause
at xs,ys,zs with KF94 magnetopause
"""
t0 = (
2*B*Rmp + 4*A*Rmp*xs + 4*ys**2 + 4*zs**2 -
np.sqrt((-2*B*Rmp - 4*A*Rmp*xs - 4*ys**2 - 4*zs**2)**2 -
4*(-4*ys**2 - 4*zs**2) *
(2*Rmp**2 - 2*Rmp*xs - ys**2 - zs**2))
)/(2*(-4*ys**2 - 4*zs**2))
xin0 = xs + (B+2*A*xs)*t0
yin0 = ys + 2*ys*t0
zin0 = zs + 2*zs*t0
return xin0, yin0, zin0 # point on KF94 mpause
def find_color_for_point(pt, cmap, R_bs, R_mp,
A, B, C,
pdyn, dst, ps, Bimfx, Bimfy, Bimfz):
"""
Compute the shear angle and the corresponding face color for point pt.
pt : numpy array of size 3
cmap : color map
R_bs : bow shock standoff distance [R_E]
R_mp : magnetopause standoff distance [R_E]
A, B, C : Sibeck's magnetopause parameters'
ps : dipole tilt
Bimfx, Bimfy, Bimfz: IMF components
"""
iopt = 0 # dummy variable for T96
parmod1 = [pdyn, dst, Bimfy, Bimfz, 0, 0, 0, 0, 0, 0]
x_, y_, z_ = pt
bxgsm_, bygsm_, bzgsm_ = [0., 0., 0.]
Bmsx_, Bmsy_, Bmsz_ = [0., 0., 0.]
B_, b_, alpha_, dp_ = [0., 0., 0., 0.]
hxgsw_, hygsw_, hzgsw_ = [0.0, 0.0, 0.0]
bx1, by1, bz1 = [0., 0., 0.]
bxgsm0_, bygsm0_, bzgsm0_ = tsyg.igrf_gsw_08(x_, y_, z_,
hxgsw_, hygsw_, hzgsw_)
bxgsm1_, bygsm1_, bzgsm1_ = tsyg.t96_01(iopt, parmod1,
ps, x_, y_, z_, bx1, by1, bz1)
bxgsm_ = bxgsm0_ + bxgsm1_
bygsm_ = bygsm0_ + bygsm1_
bzgsm_ = bzgsm0_ + bzgsm1_
x_k, y_k, z_k = Sibeck_to_KF94(x_, y_, z_, R_mp, A, B, C)
Bmsx_, Bmsy_, Bmsz_ = KF94_field(R_bs, R_mp, Bimfx, Bimfy, Bimfz,
x_k, y_k, z_k)
# print('bxgsm_,bygsm_,bzgsm_: ', bxgsm_,bygsm_,bzgsm_)
# print('Bmsx_, Bmsy_, Bmsz_: ', Bmsx_, Bmsy_, Bmsz_)
dp_ = Bmsx_ * bxgsm_ + Bmsy_ * bygsm_ + Bmsz_ * bzgsm_ # dot product
B_ = np.sqrt(Bmsx_**2 + Bmsy_**2 + Bmsz_**2)
b_ = np.sqrt(bxgsm_**2 + bygsm_**2 + bzgsm_**2)
# angle between B msheath and b msphere
alpha_ = np.degrees(np.arccos(dp_ / b_ / B_))
# print('x,y,z, alpha_: ',x_, y_, z_,alpha_)
norm = Normalize(vmin=0, vmax=180)
col = cmap(norm(alpha_))
return col
def main(): """Plot the shear angle on a 3D magnetopause."""
# input------------------------------------------------------
year, month, day, hour, min, sec = [1997, 5, 9, 12, 10, 0]
Bimfx = 1.0 # nT
Bimfy = -2.6
Bimfz = -1.8
dst = -9 # DST index
vsw = 300. # solar wind speed
n = 11.0 # solar wind number density cm^-3
# Sibeck s magnetopause parameters
# Use the coefficients for the pressure bin [1.47, 2.60] nPa
# p0 is the reference solar wind pressure
A = 0.14
B = 18.2
C = -217.2
p0 = 2.04 # nPa
# plot features
N = 20 # number of yz ellipses to plot
npe = 100 # number of points per yz ellipse
# end input---------------------------------------------------
imf_clock_angle = np.arctan2(Bimfy, Bimfz)
if imf_clock_angle < 0:
imf_clock_angle = imf_clock_angle + 2*np.pi
imf_clock_angle = np.degrees(imf_clock_angle)
print('imf clock angle : ', imf_clock_angle)
vgse = [-vsw, 0, 0] # solar wind velocity in GSE: T96 input.
m_p = 1.6726219e-27 # proton mass kg
# solar wind dynamic pressure nPa
pdyn = (0.85 * n * 1e6 * m_p * (vsw * 1000)**2)*1e9
# Standoff distance of the Earth’s bow shock (Jelinek)
Rbs = 15.02 * pdyn**(-1 / 6.55)
print("R_bsj = ", Rbs, ' R_E')
Rmp = Sibeck_Rmp(pdyn, A, B, C, p0)
print("Rmp (Sibeck) = ", Rmp, ' R_E')
# Plot -----------------------------------------------------------------------
fig = plt.figure()
ax = fig.gca(projection='3d')
fig.tight_layout()
# Create the triangulations of the T96 and KF94 magnetopauses
# Magnetopause Kobela and Fluckiger, 1994
pts3d = np.zeros((N*npe, 3))
X = np.zeros((N, npe))
Y = np.zeros((N, npe))
Z = np.zeros((N, npe))
R = 0.
for i in range(0, N):
R = R + 1
# R=4.
alpha = np.linspace(-1 * np.pi / 2, 3 * np.pi/2, npe)
Z[i] = R * np.cos(alpha)
# Y=np.zeros_like(Z)
Y[i] = R * np.sin(alpha)
X[i] = -(-2 * (Rmp**2) + Y[i]**2 + Z[i]**2) / (2 * Rmp)
# print('X= ', X)
# ax0.plot(X)
# Magnetopause T96
# xmp, ymp, zmp : closest points of T96 mpause to KF94 mpause
xn_pd = pdyn
vel = -vsw
xmp = np.zeros_like(X)
ymp = np.zeros_like(Y)
zmp = np.zeros_like(Z)
for i in range(0, N):
for j in range(0, npe):
xgsm = X[i][j]
ygsm = Y[i][j]
zgsm = Z[i][j]
xmgnp, ymgnp, zmgnp, dist, id = tsyg.t96_mgnp_08(xn_pd, vel,
xgsm, ygsm, zgsm)
xmp[i][j] = xmgnp
ymp[i][j] = ymgnp
zmp[i][j] = zmgnp
# print('GSM in: ', xgsm,ygsm,zgsm)
# print('GSM MP: ', xmgnp,ymgnp,zmgnp, dist, id)
# ax.plot3D(X[i], Y[i], Z[i], 'red', label='KF94')
# ax.plot3D(xmp[i], ymp[i], zmp[i], 'blue', label='T96')
# #ax.scatter3D(xmp, ymp, zmp, c=zmp, cmap='Blues',label='T96')
ax.set_xlim(-20, 20)
ax.set_ylim(-20, 20)
ax.set_zlim(-20, 20)
# ax.set_aspect("equal")
ax.set_xlabel(r'$X_{GSM}$ ($R_E$)')
ax.set_ylabel(r'$Y_{GSM}$ ($R_E$)')
ax.set_zlabel(r'$Z_{GSM}$ ($R_E$)')
# ax.set_title('Magnetopause ')
fig.suptitle('Magnetopause' + ' ' + str(year)+'/'
+ "{:02d}".format(month) + '/'
+ "{:02d}".format(day) + ' ' + "{:02d}".format(hour) + ':'
+ "{:02d}".format(min)+':'+"{:02d}".format(sec)+' UT'
+ '\n' + 'IMF clock angle : '
+ "{:3.1f}".format(imf_clock_angle) + u"\N{DEGREE SIGN}")
ax.legend(fancybox=True, framealpha=0.5)
# Triangulation of T96 magnetopause
pts3d = np.zeros((N * npe, 3))
k = 0
for i in range(0, N):
for j in range(0, npe):
pts3d[k][0] = xmp[i][j]
pts3d[k][1] = ymp[i][j]
pts3d[k][2] = zmp[i][j]
k = k + 1
hull = ConvexHull(pts3d, qhull_options='QJ')
indices = hull.simplices
faces = pts3d[indices]
# delete triangles closing the Mpause (convex hull) at Xmin
# faces1=triangles to delete
# faces1=np.delete(faces, np.where(faces[:,:,0]>-7.7), axis=0)
# triangles to keep
x_min = np.min(faces[:, :, 0] + 0.01)
tri_to_delete = []
for i in range(0, np.size(faces, axis=0)):
if faces[i][0][0] < x_min or faces[i][1][0] < x_min or \
faces[i][2][0] < x_min:
tri_to_delete.append(i)
faces = np.delete(faces, tri_to_delete, axis=0)
# print('area: ', hull.area)
# print('volume: ', hull.volume)
# Compute the shear angle -------------------------------------------------
# Magnetosheath field
Bmsx, Bmsy, Bmsz = KF94_field(Rbs, Rmp, Bimfx, Bimfy, Bimfz, X, Y, Z)
bxgsm = np.zeros_like(Bmsx)
bygsm = np.zeros_like(Bmsx)
bzgsm = np.zeros_like(Bmsx)
t1 = datetime.datetime(year, month, day, hour, min, sec)
t0 = datetime.datetime(1970, 1, 1)
ut = (t1-t0).total_seconds()
# IGRF init
hxgsw, hygsw, hzgsw = [0.0, 0.0, 0.0]
doy = (t1 - datetime.datetime(t1.year, 1, 1)).days + 1
# print("doy = ", doy)
vgse = [-vsw, 0, 0] # solar wind velocity in GSE.
tsyg.recalc_08(year, doy, hour, min, sec, *vgse)
# get the dipole tilt ps from the geopack1 fortran common block
# the common block geopack1 is mapped into 2 arrays aa[10] and bb[22]
# and 2 scalars sps et cps
ps = tsyg.geopack1.bb[3]
# T96 init
bx1, by1, bz1 = [0.0, 0.0, 0.0]
cmap = cm.rainbow # set the colormap
# map the colormap cmap to shear angle range from 0 to 180 deg
norm = Normalize(vmin=0, vmax=180)
midp = centroid(faces)
facecolors = [find_color_for_point(pt, cmap, Rbs, Rmp,
A, B, C,
pdyn, dst, ps,
Bimfx, Bimfy, Bimfz)
for pt in midp] # smooth gradient
coll = Poly3DCollection(faces, facecolors=facecolors,
edgecolors='none', alpha=1.0)
ax.add_collection(coll)
cbar = fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), ax=ax)
cbar.ax.set_ylabel('Shear Angle (deg)')
plt.show()
if __name__ == "__main__":
main()