#!/bin/python from numpy import * e=4.8032068e-10 # esu (cgs units) qe=1.602176565e-12 # erg m=9.1093897e-28 # g me=510.998928 # kev c=2.99792458e10 # cm.s-1 k=1.380658E-16 # erg.K-1 h=6.62606957e-27 # erg.s hb=1.05457266E-27 # erg.s alpha=1./137.035999679 lambdaC=hb/(m*c) Mpc=(3.0856776e+16)*1e8 # Mpc to cm erg_to_GeV=1/(1.602176565e-3) degre=180/pi # Cosmology a0=1. H0=67.8*1e5/(Mpc) # s-1 omegaM = 0.3 omegaK = 0 omegaL = 0.7 # CMB Tcmb=2.7255 # K Tcmbp=(k*Tcmb)/(m*c*c) # Adimentionnal thermal energy nCMB=449 # cm^-3 Ecmb=3*Tcmbp*me*1e3 #eV rhoCMB=Ecmb*nCMB #eV.cm^-3 # EBL Eebl=1 #eV # Particles physics r0=e*e/(m*c*c) sigmaT=8.*pi*(r0**2)/3. # Thomson cross section # Compton accumulation Compton_threshold = 0.05 ECompton_threshold = Compton_threshold/(4/3*2.7*Tcmbp) *me*1e-6 #GeV # Value for analytic expression Ee=1e3 #GeV B=1e-17 #Gauss lambda_B=0.3 #Mpc # Compton scattering Dic= 3*(me*1e-6)**2/(4*sigmaT*rhoCMB*1e-9*Ee) /Mpc #Mpc lambdaIC=1/(nCMB*sigmaT*Mpc) #Mpc Eic= 4*Ecmb*Ee**2/(3*me**2)*1e3 #GeV # Larmor radius RL=(Ee/erg_to_GeV)/(e*B) /Mpc #Mpc # Magnetic deflection delta=lambdaIC/RL*degre Delta1=Dic/RL*degre #degre if Dic >> lambda_B Delta2=sqrt(Dic*lambda_B)/RL*degre #degre if Dic << lambda_B # Threshold energy when Dic = RL Ethreshold_ic = Eic*Dic/RL # GeV # Pair production Ethreshold_gg=(me)**2/Eebl *1e-3 #GeV lambda_gg=0.8 # (E_gamma/1TeV)^-1 Gpc (from Durrer and Neronov 2013)