from Constants import * from numpy import sqrt, abs, cos, sin, arcsin, searchsorted, loadtxt from Read import ReadProfile # Value for analytic expression Ee_default=1e3 #GeV Egamma_default=1 #GeV B_default=1e-17 #Gauss lambda_B_default=0.3 #Mpc def Analytic_flux(E_ic): return me*1e3/4*sqrt(3e9/Ecmb)*1e-9*E_ic**(1/2.) #GeV def Analytic_theta(E_ic,fileId): Esource,Dsource,B=ReadProfile(fileId,[0,2,4]) #GeV #Mpc #Gauss delta_to_theta=lambda_gg(Esource)/Dsource delta_to_theta=1.9440974051313842/Dsource RL0=RL(Esource/2,B) Dic0=Dic(Esource/2) delta=Dic0/(2*RL0)*((Esource/(2*Ee(E_ic)))**2 -1) return abs(arcsin(delta_to_theta*sin(delta)))*degre def Analytic_delay_vs_theta(theta,fileId): Esource,distSource=ReadProfile(fileId,[0,2]) #GeV #Mpc E0_source = Esource*1e-3 #TeV lgg = 1.94 #lambda_gg(E0_source) delta_ic = arcsin(distSource/lgg*sin(theta)) Dic0=Dic(E0_source/2) c_delta_t = lgg*(1-cos(delta_ic)) - distSource*(1-cos(theta)) return c_delta_t *Mpc/c # sec. def dt_approx(th): lgg = 1.94*Mpc D = 131.75*Mpc thetamax = arcsin(lgg/D) return D**2/lgg /c * th**2 / 2. def Analytic_delay_vs_Egamma(Egamma, fileId): Esource,Dsource,B=ReadProfile(fileId,[0,2,4]) #GeV #Mpc #Gauss RL0=RL(Esource/2,B) Dic0=Dic(Esource/2) E_e = Ee(Egamma) delta_ic = Dic0/(2*RL0)*((Esource/2/E_e)**2 -1) theta = arcsin(lambda_gg(Esource)/Dsource*sin(delta_ic)) c_delta_t = lambda_gg(Esource)*(1-cos(delta_ic)) - Dsource*(1-cos(theta)) return c_delta_t *Mpc/c # sec. # Compton accumulation def ECompton_threshold(Compton_threshold = 0.005,z=0): return Compton_threshold/(4/3*Ecmb*(1+z)/me*1e-3) *me*1e-6 #GeV # Compton scattering def Dic(Ee=Ee_default,z=0): # Ee (GeV) return 3*(me*1e3)**2/(4*sigmaT*Ee*1e9*rhoCMB*(1+z)**4) /Mpc #Mpc def lambdaIC(z=0): return 1/(sigmaT*Mpc*nCMB*(1+z)**3) #Mpc def Eic(Ee=Ee_default,z=0): return 4*Ecmb*(1+z) *Ee**2/(3*me**2)*1e3 #GeV def Ee(Egamma=Egamma_default,z=0): return me*sqrt((3*Egamma*1e-3 )/(4*Ecmb*(1+z))) #GeV def tIC(): return lambdaIC()/(c*yr/Mpc) #yr # Larmor radius def RL(Ee=Ee_default,B=B_default): return (Ee/erg_to_GeV)/(e*B) /Mpc #Mpc # Magnetic deflection def delta(Ee=Ee_default,B=B_default): return lambdaIC()/RL(Ee,B)*degre def Delta(Ee=Ee_default,B=B_default,lambda_B=lambda_B_default): Delta1=Dic(Ee)/RL(Ee,B)*degre #degre if Dic >> lambda_B Delta2=sqrt(Dic(Ee)*lambda_B)/RL(Ee,B)*degre #degre if Dic << lambda_B return Delta1, Delta2 # Threshold energy when Dic = RL def Ethreshold_ic(Ee=Ee_default,B=B_default): return Eic(Ee)*Dic(Ee)/RL(Ee,B) # GeV # Pair production def Ethreshold_gg(): return (me)**2/Eebl *1e-3 #GeV def lambda_gg(Egamma=1,z=0): # Egamma (GeV) # Bilinear interpolation z_tab = [0,0.5,1,2,3] E_tab = loadtxt("lambda_e.dat",unpack=True,usecols=[0])*me*1e-6 i2 = searchsorted(z_tab,z) if z<=0: fy=1 i1=i2 elif z>3: fy=1 i2-=1 i1=i2 else: i1 = i2-1 fy=(z-z_tab[i1])/(z_tab[i2]-z_tab[i1]) j2 = searchsorted(E_tab,Egamma) j1 = j2-1 fx=(Egamma-E_tab[j1])/(E_tab[j2]-E_tab[j1]) lambda_e = loadtxt("lambda_e.dat",unpack=True,usecols=[i1+1,i2+1,i1+6,i2+6]) lambda11 = lambda_e[0,j1]*((1-fx)*(1-fy)) lambda12 = lambda_e[1,j1]*((1-fx)*fy) lambda21 = lambda_e[0,j2]*(fx*(1-fy)) lambda22 = lambda_e[1,j2]*(fx*fy) lambda_proper = lambda11 + lambda12 + lambda21 + lambda22 lambda11 = lambda_e[2,j1]*((1-fx)*(1-fy)) lambda12 = lambda_e[3,j1]*((1-fx)*fy) lambda21 = lambda_e[2,j2]*(fx*(1-fy)) lambda22 = lambda_e[3,j2]*(fx*fy) lambda_comobile = lambda11 + lambda12 + lambda21 + lambda22 return lambda_proper, lambda_comobile, 800.e3/Egamma #Mpc (from Durrer and Neronov 2013)