#!/bin/python import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt from Constantes import * fig = plt.figure() ax = fig.add_subplot(111) z=2 # ==== Dominguez ==== lamb,lambdaI = np.loadtxt("EBL_files/lambdaI_Dominguez.dat",unpack=True,usecols=[0,15]) #lamb,lambdaI =np.loadtxt("EBL_files/lambdaI_Dominguez.dat",unpack=True,usecols=[0,1]) hv = h*c/(lamb*1e-4) # erg density = 1e-6*(4*pi/c)*lambdaI/(hv**2) /(erg_to_GeV*1e9) *(1+z)**3 hv = hv *(erg_to_GeV*1e9) ax.plot(hv,density,"--b",label="Dominguez and Al") # ==== Kneiske and Doll - "best fit" ==== hv,density = np.loadtxt("EBL_files/n_bestfit10.dat",unpack=True,usecols=[0,1]) ax.plot(hv,density,"--r",label="Kneiske and Doll - 'best fit'") # ==== Kneiske and Doll - "lower limit" ==== hv,density = np.loadtxt("EBL_files/n_lowerlimit10.dat",unpack=True,usecols=[0,179]) #hv,density =np.loadtxt("EBL_files/n_lowerlimit10.dat",unpack=True,usecols=[0,1]) density=density*(1+z)**3 ax.plot(hv,density,"--g",label="Kneiske and Doll - 'lower limit'") # ==== Fransceschini ==== hv,density = np.loadtxt("EBL_files/n_Fra.dat",unpack=True,usecols=[0,11]) #hv,density = np.loadtxt("EBL_files/n_Fra.dat",unpack=True,usecols=[0,1]) density=density*(1+z)**3 ax.plot(hv,density,"--c",label="Fraceschini") # ==== Finke ==== hv,density = np.loadtxt("EBL_files/n_Finke.dat",unpack=True,usecols=[0,201]) #hv,density = np.loadtxt("EBL_files/n_Finke.dat",unpack=True,usecols=[0,1]) density=density*(1+z)**3 ax.plot(hv,density,"--m",label="Finke and Al") # ==== Gilmore ==== hv,density = np.loadtxt("EBL_files/n_Gil.dat",unpack=True,usecols=[0,14]) #hv,density = np.loadtxt("EBL_files/n_Gil.dat",unpack=True,usecols=[0,1]) ax.plot(hv,density,"--y",label="Gilmore and Al") ax.set_xscale('log') ax.set_yscale('log') ax.grid(b=True,which='major') ax.legend(loc="best",title="z = %.0f"%z) ax.set_xlabel("energy [eV]") ax.set_ylabel("$n_{EBL}$ [$cm^{-3} eV^{-1}$]") plt.show()