Blame view

parameters_impact.py 5.46 KB
4d2bede0   Thomas Fitoussi   add script for me...
1
2
3
4
5
6
#!/bin/python
from numpy import zeros, size, nditer, average, savetxt, set_printoptions
from src.read import select_events
from src.analytic import degre, yr
set_printoptions(precision=2)

c419cc5a   Thomas Fitoussi   Updated analysis ...
7
Redshifts=["0.04","0.14","0.4","1","2"] 
4d2bede0   Thomas Fitoussi   add script for me...
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
powerlaw_index=1.2

###############################################################################
print "Compute mean obs vs EGMF strength ..."
EGMFs=["12","13","14","15","16","17","18","19","20","21","22"]

theta_mean  = zeros((size(Redshifts)+1,size(EGMFs)+1))
theta_mean1 = theta_mean.copy()
theta_mean2 = theta_mean.copy()
dt_mean     = theta_mean.copy()
dt_mean1    = theta_mean.copy()
dt_mean2    = theta_mean.copy()
ratio_gen   = theta_mean.copy()

def compute_mean_delay_and_theta(i,j):
   if i==0:
      theta_mean[i,0] = 0
      theta_mean1[i,0]= 0
      theta_mean2[i,0]= 0
      theta_mean[i,j] = 10**(-float(EGMFs[j-1]))
      theta_mean1[i,j]= 10**(-float(EGMFs[j-1]))
      theta_mean2[i,j]= 10**(-float(EGMFs[j-1]))
      
      dt_mean[i,0] = 0
      dt_mean1[i,0]= 0
      dt_mean2[i,0]= 0
      dt_mean[i,j] = 10**(-float(EGMFs[j-1]))
      dt_mean1[i,j]= 10**(-float(EGMFs[j-1]))
      dt_mean2[i,j]= 10**(-float(EGMFs[j-1]))
      
      ratio_gen[i,0]= 0
      ratio_gen[i,j]= 10**(-float(EGMFs[j-1]))
      
   else:
      theta_mean[i,0]  = Redshifts[i-1]
      theta_mean1[i,0] = Redshifts[i-1]
      theta_mean2[i,0] = Redshifts[i-1]
      dt_mean[i,0]     = Redshifts[i-1]
      dt_mean1[i,0]    = Redshifts[i-1]
      dt_mean2[i,0]    = Redshifts[i-1]
      ratio_gen[i,0]   = Redshifts[i-1]
      fileId="Simulations/z="+Redshifts[i-1]+"/EGMF=1e-"+EGMFs[j-1]+"G"
      weight, energy, time, theta, phi, Esource, gen = select_events(fileId,Erange=[1,1e3],powerlaw_index=1.2)
      dt_mean[i,j]=average(time,weights=weight)/yr
      theta_mean[i,j]=average(theta,weights=weight)/degre
      cond = (gen==2)
      nb_gen1 = sum(weight[cond])
      dt_mean1[i,j]=average(time[cond],weights=weight[cond])/yr
      theta_mean1[i,j]=average(theta[cond],weights=weight[cond])/degre
      cond = (gen==4)
      nb_gen2 = sum(weight[cond])
      dt_mean2[i,j]=average(time[cond],weights=weight[cond])/yr
      theta_mean2[i,j]=average(theta[cond],weights=weight[cond])/degre
      
      ratio_gen[i,j-1] = nb_gen2/nb_gen1  

it=nditer(theta_mean1, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
   compute_mean_delay_and_theta(it.multi_index[0],it.multi_index[1])    
   it.iternext()

savetxt("Results/theta_mean_vs_EGMF.dat"      ,theta_mean ,fmt='%1.4e')
savetxt("Results/theta_mean_vs_EGMF-gen=1.dat",theta_mean1,fmt='%1.4e')
savetxt("Results/theta_mean_vs_EGMF-gen=2.dat",theta_mean2,fmt='%1.4e')
savetxt("Results/delay_mean_vs_EGMF.dat"      ,dt_mean    ,fmt='%1.4e')
savetxt("Results/delay_mean_vs_EGMF-gen=1.dat",dt_mean1   ,fmt='%1.4e')
savetxt("Results/delay_mean_vs_EGMF-gen=2.dat",dt_mean2   ,fmt='%1.4e')
savetxt("Results/ratio_gen_EGMF.dat"          ,ratio_gen  ,fmt='%1.4e')
   
print(ratio_gen)


###############################################################################
print "Compute mean obs vs EGMF coherence length ..."

L_Bs=["0.001","0.010","0.100","1","10","100","1000"]

theta_mean=zeros((size(Redshifts)+1,size(L_Bs)+1))
dt_mean=theta_mean.copy()

def compute_mean_delay_and_theta(i,j):
   if i==0:
      theta_mean[i,0]=0
      dt_mean[i,0]=0
      theta_mean[i,j]=L_Bs[j-1]
      dt_mean[i,j]=L_Bs[j-1]

   else:
      theta_mean[i,0]  = Redshifts[i-1]
      dt_mean[i,0]     = Redshifts[i-1]
      if (L_Bs[j-1]=="1"):
         fileId="Simulations/z="+Redshifts[i-1]+"/EGMF=1e-15G"
      else:
         fileId="Simulations/z="+Redshifts[i-1]+"/lambda_B="+L_Bs[j-1]+"Mpc"
      weight, energy, time, theta, phi, Esource, generation = select_events(fileId,Erange=[1,1e3],powerlaw_index=1.2)
      dt_mean[i,j]=average(time,weights=weight)/yr
      theta_mean[i,j]=average(theta,weights=weight)/degre
   
it=nditer(theta_mean, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
   compute_mean_delay_and_theta(it.multi_index[0],it.multi_index[1])    
   it.iternext()
   
set_printoptions(precision=2)
print(theta_mean)
print "========================================"
print(dt_mean)

savetxt("Results/theta_mean_vs_LB.dat",theta_mean,fmt='%1.4e')
savetxt("Results/delay_mean_vs_LB.dat",dt_mean,fmt='%1.4e')

###############################################################################
print "Compute mean obs vs jet opening angle ..."
opening_angle = [90,75,60,45,30,15,10,5,2,1,0.7,0.5,0.1,1e-2] # degres 

def compute_theta_mean(i,j):
   if i==0:
      if j==0:
         theta_mean[i,j]=0
         dt_mean[i,0]=0
      else:
         theta_mean[i,j]=opening_angle[j-1]
         dt_mean[i,j]=opening_angle[j-1]
   else:
      if j==0:
         theta_mean[i,j]=float(Redshifts[i-1])
      else:
         fileId="Simulations/z="+Redshifts[i-1]+"/EGMF=1e-15G"
         weight, energy, time, theta, phi, Esource, gen = select_events(fileId,Erange=[1,1e3],powerlaw_index=1.2,tjet=opening_angle[j-1])
         theta_mean[i,j]=average(theta,weights=weight)/degre
         dt_mean[i,j]=average(time,weights=weight)/yr
   
theta_mean=zeros((size(Redshifts)+1,size(opening_angle)+1))
dt_mean=theta_mean.copy()
it=nditer(theta_mean, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
   compute_theta_mean(it.multi_index[0],it.multi_index[1])
   it.iternext()
    
set_printoptions(precision=3)
print(theta_mean)

savetxt("Results/theta_mean_vs_jet_opening.dat",theta_mean,fmt='%1.4e')
savetxt("Results/delay_mean_vs_jet_opening.dat",dt_mean,fmt='%1.4e')