Blame view

modules/observables.py 8.06 KB
d943e502   Thomas Fitoussi   Update 'analysis'...
1
import matplotlib.cm as colormap
188a8c6a   Thomas Fitoussi   Update analysis 2...
2
3
4
5
6
7
8
from matplotlib.pyplot     import figure, show, legend, gca
from numpy                 import sort, log10, histogram, pi, arange, where, ma
from numpy                 import rot90, flipud, histogram2d, logspace, size, loadtxt
from mpl_toolkits.mplot3d  import Axes3D
from modules.read          import ReadResults
from modules.analytic      import Analytic_delay_vs_theta, Analytic_observables_vs_energy
from modules.constants     import degre, yr
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
9
10

#=========================== CORELATION BETWEEN OBSERVABLES ===========================#
188a8c6a   Thomas Fitoussi   Update analysis 2...
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def observables_vs_energy(energy,theta,delay,weight,Erange=[1e-3,1e3],nbBins=20):
   #Erange=[1e-1,1e5],nbBins=16 <=> Arlen 2014 (energy binning)
   bins=logspace(log10(Erange[0]),log10(Erange[1]),nbBins+1)
   ener = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
   dtheta, dE = histogram(energy,bins,weights=weight*theta)
   dt,     dE = histogram(energy,bins,weights=weight*delay)
   dN,     dE = histogram(energy,bins,weights=weight)
   return ener, dtheta/dN, dt/dN

def observables_vs_delay(energy,theta,delay,weight,time_range=[10**-0.5,10**8.5],nbBins=9): 
   # <=> Taylor 2011 (time binning)
   bins=logspace(log10(time_range[0]),log10(time_range[1]),nbBins+1)
   time = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
   dtheta, dt = histogram(delay,bins,weights=weight*theta)
   dE,     dt = histogram(delay,bins,weights=weight*energy)
   dN,     dt = histogram(delay,bins,weights=weight)
   return time, dtheta/dN, dE/dN

def drawObservables(fileId,psf=180,plot_generation=True,plot_others_codes=False):
   #ax = figure(figsize=(12,9)).add_subplot(111,projection='3d')
   ax1 = figure(figsize=(12,9)).add_subplot(111)
   ax2 = figure(figsize=(12,9)).add_subplot(111)
   ax3 = figure(figsize=(12,9)).add_subplot(111)
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
34
35
36

   fileId = "Simulations/"+fileId

30f3bf5d   Thomas Fitoussi   Adapt reading of ...
37
38
   i=0
   nbBins = 100
188a8c6a   Thomas Fitoussi   Update analysis 2...
39
   generation, weight, energy, delay, pos, theta = ReadResults(fileId,cols=[0,1,2,3,4,8])
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
40
41
   theta *= degre

188a8c6a   Thomas Fitoussi   Update analysis 2...
42
   cond = (theta>1e-7*degre) & (delay>1e4) & (pos < psf)
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
43
44
45
   generation = generation[cond]
   energy = energy[cond]
   weight = weight[cond]
d943e502   Thomas Fitoussi   Update 'analysis'...
46
   delay = delay[cond]/yr
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
47
   theta = theta[cond]
188a8c6a   Thomas Fitoussi   Update analysis 2...
48
49
50
51
52

   theta_range = [min(theta),max(theta)]
   delay_range = [min(delay),max(delay)]
   #energy_range = [min(energy),max(energy)]
   energy_range = [1e-3,1e4]
d943e502   Thomas Fitoussi   Update 'analysis'...
53
54
    
   weight /= sum(weight)
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
55
 
188a8c6a   Thomas Fitoussi   Update analysis 2...
56
57
58
59
60
61
62
63
   if plot_generation: 
      cmaps=[colormap.Blues,colormap.Greens,colormap.Reds]
      colors=['b','g']
      for gen in [2,4,6]:#sort(list(set(generation))):
         cond = (generation==gen)
         H, xedges, yedges = histogram2d(log10(energy[cond]),log10(delay[cond]),bins=nbBins,weights=weight[cond])
         H = flipud(rot90(ma.masked_where(H==0,H)))
         im1 = ax1.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i]) 
d943e502   Thomas Fitoussi   Update 'analysis'...
64
           
188a8c6a   Thomas Fitoussi   Update analysis 2...
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
         H, xedges, yedges = histogram2d(log10(energy[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
         H = flipud(rot90(ma.masked_where(H==0,H)))
         im2 = ax2.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])    
              
         H, xedges, yedges = histogram2d(log10(delay[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
         H = flipud(rot90(ma.masked_where(H==0,H)))
         im3 = ax3.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
       
         if gen < 5:
            ener,angle,dt = observables_vs_energy(energy[cond],theta[cond],delay[cond],weight[cond])
            ax1.plot(ener,dt,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
            ax2.plot(ener,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
            dt,angle,ener = observables_vs_delay(energy[cond],theta[cond],delay[cond],weight[cond])
            ax3.plot(dt,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))

         i+=1

   ener,angle,dt = observables_vs_energy(energy,theta,delay,weight)
   ax1.plot(ener,dt,color='m',linewidth=2)
   ax2.plot(ener,angle,color='m',linewidth=2)
   dt,angle,ener = observables_vs_delay(energy,theta,delay,weight)
   ax3.plot(dt,angle,color='m',linewidth=2)

   nE = 5000 
   Emin = 1.e-3
   Emax = 1e4
   E = Emin*(Emax/Emin)**(arange(nE)/(nE-1.))
   theta_fit, delay_fit = Analytic_observables_vs_energy(E,"../"+fileId)
d943e502   Thomas Fitoussi   Update 'analysis'...
93
   ax1.plot(E,delay_fit/yr,'--k',linewidth=2)
188a8c6a   Thomas Fitoussi   Update analysis 2...
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
   ax2.plot(E,theta_fit,'--k',linewidth=2)
   ax3.scatter(delay_fit/yr,theta_fit,color='k',marker="+")
    
   if plot_others_codes:
      # Results from Arlen 2014 - fig. 2a, 2b
      # =====================================
      #   - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
      #   - PSF = 10 deg
      data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
      ax1.plot(data[:,0],data[:,1],color="m",linestyle='--',linewidth=2,label="Arlen 2014 -no  EBL")
      data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
      ax1.plot(data[:,0],data[:,1],color="m",linestyle='-.',linewidth=2,label="Arlen 2014 - EBL")

      # Results from Taylor 2011 - fig. 2
      # =================================
      data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
      ax1.plot(data[:,0]*1e-9,data[:,1],color="m",linestyle=':',linewidth=2,label="Taylor 2011")  
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
111
112
113
114
115
116
117

   #ax.legend(loc="best")
   #ax.set_xlabel("energy [GeV]")
   #ax.set_ylabel("$\\theta$ [deg]")
   #ax.set_zlabel("Time delay [s]")

   ax1.grid(b=True,which='major')
d943e502   Thomas Fitoussi   Update 'analysis'...
118
   ax1.legend(loc="best")   
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
119
120
   ax1.set_xscale('log')
   ax1.set_yscale('log')
188a8c6a   Thomas Fitoussi   Update analysis 2...
121
122
   ax1.set_xlim(energy_range)
   ax1.set_ylim(delay_range)
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
123
   ax1.set_xlabel("energy [GeV]")
d943e502   Thomas Fitoussi   Update 'analysis'...
124
   ax1.set_ylabel("Time delay [yrs]")
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
125
126
127
128
129

   ax2.grid(b=True,which='major')
   ax2.legend(loc="best")
   ax2.set_xscale('log')
   ax2.set_yscale('log')
188a8c6a   Thomas Fitoussi   Update analysis 2...
130
131
132
133
   ax2.set_xlim(energy_range)
   ax2.set_ylim(theta_range)
   ax2.set_xlabel("energy [GeV]")
   ax2.set_ylabel("$\\theta$ [deg]")
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
134
135
136
137
138

   ax3.grid(b=True,which='major')
   ax3.legend(loc="best")
   ax3.set_xscale('log')
   ax3.set_yscale('log')
188a8c6a   Thomas Fitoussi   Update analysis 2...
139
140
141
   ax3.set_xlim(delay_range)
   ax3.set_ylim(theta_range)
   ax3.set_xlabel("Time delay [yrs]")
30f3bf5d   Thomas Fitoussi   Adapt reading of ...
142
143
144
   ax3.set_ylabel("$\\theta$ [deg]")

   show()
188a8c6a   Thomas Fitoussi   Update analysis 2...
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

def drawDelays_vs_energy(files,psf=180,plot_others_codes=False):
   ax1 = figure(figsize=(12,9)).add_subplot(111)
   nbBins = 100

   for fileId0 in files:
      fileId = "Simulations/simple case/"+fileId0
      gen, weight, energy, delay, pos, arrival_angle = ReadResults(fileId,cols=[0,1,2,3,4,8])
      cond = (gen==2) & (pos < psf) #PSF_Taylor2011(energy) 
      #energy = energy[cond]
      #arrival_angle = arrival_angle[cond]
      #delay = delay[cond]
      #weight = weight[cond]
      ener,dtheta,dt = observables_vs_energy(energy,arrival_angle*degre,delay/yr,weight)
      p0, =ax1.plot(ener,dt,marker='*',linewidth=2,label=fileId0) 
      
      nth = 5000
      thmin = 0.1
      thmax = 1e4
      E = thmin*(thmax/thmin)**(arange(nth)/(nth-1.))
      delay_fit = Analytic_observables_vs_energy(E,fileId)[1]
      ax1.plot(E,delay_fit/yr,color=p0.get_color(),linestyle="-")
                                                     
      if plot_others_codes:
         # Results from Arlen 2014 - fig. 2a, 2b
         # =====================================
         #   - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
         #   - PSF = 10 deg
         data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
         p1,= ax1.plot(data[:,0],data[:,1],color=p0.get_color(),linestyle='--',linewidth=2)
         data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
         p2,= ax1.plot(data[:,0],data[:,1],color=p0.get_color(),linestyle='-.',linewidth=2)

         # Results from Taylor 2011 - fig. 2
         # =================================
         data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
         p3,= ax1.plot(data[:,0]*1e-9,data[:,1],color=p0.get_color(),linestyle=':',linewidth=2)

         leg1 = legend([p0,p1,p2,p3], ["our code","Arlen 2014 - fig 2a",
            "Arlen 2014 - fig 2b","Taylor 2011"], loc=1)
                                                               
   ax1.grid(b=True,which='major')  
   ax1.set_xscale('log')
   ax1.set_yscale('log')
   ax1.set_ylim([1,1e8])
   ax1.set_xlim([1e-1,1e3])
   ax1.set_xlabel("energy [GeV]")
   ax1.set_ylabel("Time delay [yrs]") 
   ax1.legend(loc=2)
   ax1 = gca().add_artist(leg1)

   show()