from django.db import models from common.models import Schedule, Sequence, ScheduleHasSequences from operator import attrgetter from decimal import * import time DEFAULT_PLAN_START = Decimal(2457485.250000) # April 6th 2016, 18:00:00.0 UT DEFAULT_PLAN_END = Decimal(2457485.916667) # April 7th 2016, 10:00:00.0 UT PRECISION = Decimal(0.0000000001) SIMULATION = False TIMESTAMP_JD = 2440587.500000 MAX_OVERHEAD = 25 MAX_OVERHEAD_JD = Decimal(MAX_OVERHEAD / (24 * 60 * 60)) REJECTED_QUOTA = "Insufficient quota" REJECTED_ROOM = "Insufficient room for this sequence" ''' Note : the following functions are necessary due to a too-high precision of Decimal objects ''' def is_nearby_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION): ''' Compare the two decimal, according to the given precision ''' return (True if abs(b - a) < PRECISION else False) def is_nearby_sup_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION): ''' Compare the two decimal, according to the given precision ''' if (a > b): return True return (True if abs(b - a) < PRECISION else False) def is_nearby_less_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION): ''' Compare the two decimal, according to the given precision ''' if (a < b): return True return (True if abs(b - a) < PRECISION else False) class Interval: """ Simple class that represents an interval of time Julian days should be used """ def __init__(self, start, end): self._start = Decimal(start) self._end = Decimal(end) self.duration = Decimal(end - start) def __str__(self): print("[" + str(self.start) + " - " + str(self.end) + "]") def _get_start(self): return self._start def _set_start(self, start): if start > self._end: raise ValueError( "Cannot set start (%d): must be lower than end (%d)" % (start, self._end)) self._start = start self.duration = self._end - self._start def _get_end(self): return self._end def _set_end(self, end): if end < self._start: raise ValueError( "Cannot set end (%d): must be bigger than start (%d)" % (end, self._start)) self._end = end self.duration = self._end - self._start start = property(fget=_get_start, fset=_set_start) end = property(fget=_get_end, fset=_set_end) class Scheduler(): """ Role : create a planning for the following/current night Read in DB : Sequence, PyrosUser and parents Create in DB : Schedule Update in DB : Schedule, Sequence Delete in DB : None Entry point(s) : - make_schedule - simulate_schedule """ """ TODO: - définition de plan_start et plan_end - calcul de la priorité - calcul des quotas - définir l'attribut 'flag' de Schedule - remplissage des espaces libres """ def __init__(self): self.schedule = Schedule.objects.create() # TODO: quel est le "flag" dans le schedule ?? self.intervals = [] self.max_overhead = MAX_OVERHEAD_JD def get_night_limits(self): ''' determines and set plan_start and plan_end (beginning & end of the observation night) ''' # TODO: définir comment on calcule plan_start et plan_end (via quels # moyens) self.schedule.plan_start = DEFAULT_PLAN_START # default value self.schedule.plan_end = DEFAULT_PLAN_END # default value def set_night_limits(self, plan_start, plan_end): ''' Sets given schedule start & end (in julian day) ''' self.schedule.plan_start = Decimal(plan_start) self.schedule.plan_end = Decimal(plan_end) def make_schedule(self, first_schedule): ''' ENTRY POINT Check all 'OBSERVABLE' sequences to create the most optimized planning for the following/current night It is assumed that all sequences that MUST and CAN be analyzed have the OBSERVABLE status shs means 'ScheduleHasSequences' self.sequences is a list of tuples (sequence, shs) :returns : The new schedule :side-effect : - modify sequences status and dates in DB ''' global SIMULATION SIMULATION = False #if first_schedule is False: if first_schedule: self.schedule.plan_night_start = self.schedule.plan_start else: self.copy_from_previous_schedule() self.sequences = list(Sequence.objects.filter(status=Sequence.OBSERVABLE)) # Add to each sequence its schedule id shs_list = [] #EP improved: ''' for sequence in self.sequences: shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule)) self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)] ''' self.sequences = [(sequence, ScheduleHasSequences(sequence=sequence, schedule=self.schedule)) for sequence in self.sequences] self.compute_schedule() self.save_schedule() return self.schedule def copy_from_previous_schedule(self): ''' Copy needed information from the previous schedule : - gets the executed sequences from the previous schedule and copy them into the new schedule - gets plan_night_start and plan_end - computes new plan_restart (plan_start) shs means 'ScheduleHasSequences' Side effects: - create new shs entries ''' # Get all EXECUTED sequences from last schedule previous_sched = Schedule.objects.order_by('-created')[1] previous_exc_seq = previous_sched.sequences.filter(status=Sequence.EXECUTED) # Associate each EXECUTED sequence to the new schedule in DB (by creating a new shs entry for each sequence) for seq in previous_exc_seq: shs = seq.shs shs.pk = None shs.schedule = self.schedule if SIMULATION == False: shs.save() self.schedule.plan_night_start = previous_sched.plan_night_start self.schedule.plan_end = previous_sched.plan_end ''' Schedule starts in MAX_OVERHEAD seconds ''' self.schedule.plan_start = time.time() / 86400 + TIMESTAMP_JD + self.max_overhead def simulate_schedule(self, sequences): ''' ENTRY POINT - SIMULATION Do the same as make_schedule but do not touch the DB :type sequences : list of Sequence :param sequences : sequences to plan :returns : a tuple (Schedule, list of sequences) ''' global SIMULATION SIMULATION = True self.schedule.plan_night_start = self.schedule.plan_start self.sequences = sequences shs_list = [] for sequence in self.sequences: shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule)) self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)] self.compute_schedule() return (self.schedule, self.sequences) def compute_schedule(self): #EP TODO: est-on sur ici que self.intervals est VIDE ??? # Create a unique big empty available interval that takes all the night duration [plan_start,plan_end] self.intervals.append( Interval(self.schedule.plan_start, self.schedule.plan_end)) ''' EP: Uniquement à cause des sequences de Alain Klotz (qui sont parfois invalides pour Pyros) ??? TODO: cette étape pourra être supprimée en production, car les sequences fabriquées par Pyros seront valides ''' #EP renamed #self.check_sequences_validity() self.remove_invalid_sequences() self.determine_priorities() self.remove_non_eligible_sequences() self.sort_by_jd2_and_priorities() #EP renamed: #self.organize_sequences() self.place_sequences() #EP renamed: #def check_sequences_validity(self): def remove_invalid_sequences(self): ''' Checks come sequence attributes to validate their integrity :side-effects : - remove invalid sequences from self.sequences - set INVALID status for invalid sequences in DB ''' ''' Note(1) ''' for sequence, shs in list(self.sequences): if sequence.jd1 < 0 or sequence.jd2 < 0 or is_nearby_less_or_equal(sequence.duration, 0) or sequence.jd2 - sequence.jd1 < sequence.duration: self.sequences.remove((sequence, shs)) sequence.status = Sequence.INVALID if SIMULATION == False: sequence.save() def determine_priorities(self): ''' Computes sequences priority according to the user, the scientific program, ... ''' # TODO: définir comment on calcule la priorité pass def remove_non_eligible_sequences(self): ''' Computes overlap between [jd1; jd2] and [plan_start; plan_end] Removes from self.sequences all the sequences that cannot be observed between plan_start and plan_end Set UNPLANNABLE sequences if jd2 < plan_start :side-effect : - remove unwanted sequences from self.sequences - mark them as UNPLANNABLE (in DB) ''' ''' Note (1) ''' for sequence, shs in list(self.sequences): overlap = min(self.schedule.plan_end, sequence.jd2) - \ max(self.schedule.plan_start, sequence.jd1) - self.max_overhead if overlap < sequence.duration: if sequence.jd1 < self.schedule.plan_start: """ Note (2) """ sequence.status = Sequence.UNPLANNABLE if SIMULATION == False: sequence.save() self.sequences.remove((sequence, shs)) def sort_by_jd2_and_priorities(self): ''' Sort by priority and jd2, priority being the main sorting parameter ''' self.sequences.sort(key=lambda x: x[0].jd2) self.sequences.sort(key=lambda x: x[0].priority) #EP renamed #def organize_sequences(self): def place_sequences(self): ''' Main function of the Scheduler Arrange a maximum of observable sequences in the planning Algorithm (for each sequence) : - check quota (remove sequence from list if quota is too low) - select matching intervals - IF matching intervals => place sequence according to tPrefered - IF NO matching intervals => try to move other sequences to place this one :side-effect : - remove unwanted sequences from self.sequences - change status and dates of sequences in self.sequences (but not in DB yet) ''' ''' Note (1) ''' for sequence, shs in list(self.sequences): quota = self.determine_quota(sequence) if quota < sequence.duration: shs.status = Sequence.REJECTED shs.desc = REJECTED_QUOTA continue matching_intervals = self.get_matching_intervals(sequence) if len(matching_intervals) > 0: self.place_sequence(sequence, shs, matching_intervals) sequence_placed = True else: sequence_placed = self.try_shifting_sequences(sequence, shs) if sequence_placed == True: shs.status = Sequence.PENDING self.update_quota(sequence) else: shs.status = Sequence.REJECTED shs.desc = REJECTED_ROOM def determine_quota(self, sequence: Sequence) -> float: ''' Determines the quota (in minutes) according to the current planning duration and the quota of the user and scientific program associated :returns : The quota (float) ''' # TODO: définir comment on calcule le quota return sequence.request.pyros_user.quota # default value def get_matching_intervals(self, sequence: Sequence): ''' Find the intervals where the sequence could be inserted :returns : list of matching Intervals ''' matching_intervals = [] for interval in self.intervals: overlap = min(sequence.jd2, interval.end) - \ max(sequence.jd1, interval.start) - self.max_overhead if overlap > sequence.duration or is_nearby_equal(overlap, sequence.duration): matching_intervals.append(interval) return matching_intervals def place_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, matching_intervals): ''' Place the sequence in the better interval, according to the t_prefered :type matching_intervals: list [Interval] :param matching_intervals: Intervals in which the sequence can be placed :side-effect : - changes self.intervals - change the sequence if it it placed ''' if len(matching_intervals) == 0: raise ValueError("matching_intervals shall not be empty") prefered_interval = self.get_prefered_interval( sequence, matching_intervals) sequence_position_in_interval = self.get_sequence_position_in_interval( sequence, prefered_interval) self.insert_sequence_in_interval( sequence, shs, prefered_interval, sequence_position_in_interval) self.cut_interval(sequence, shs, prefered_interval) self.update_other_deltas(sequence, shs, prefered_interval) def get_prefered_interval(self, sequence: Sequence, matching_intervals) -> Interval: ''' Find the better interval, according to the t_prefered (get the nearest) :type matching_intervals: list [Interval] :param matching_intervals: Intervals in which the sequence can be placed :returns : An Interval that fits sequence.t_prefered at most ''' if len(matching_intervals) == 0: raise ValueError("matching_intervals shall not be empty") if sequence.t_prefered == 0 or len(matching_intervals) == 1: prefered_interval = matching_intervals[0] else: for index, interval in enumerate(matching_intervals): if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end): prefered_interval = interval break elif sequence.t_prefered < interval.start: if index == 0: prefered_interval = interval elif interval.start + self.max_overhead - sequence.t_prefered < sequence.t_prefered - matching_intervals[index - 1].end: prefered_interval = interval else: prefered_interval = matching_intervals[index - 1] break return prefered_interval def get_sequence_position_in_interval(self, sequence: Sequence, interval: Interval) -> str: ''' Determines where the sequence will be inserted in the interval, regarding sequence.t_prefered :returns : A string in ["START", "END", "PREFERED"] describing where the sequence will be inserted in the interval ''' if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end): if is_nearby_less_or_equal(sequence.t_prefered - Decimal(0.5) * sequence.duration, interval.start): position_in_interval = "START" elif is_nearby_sup_or_equal(sequence.t_prefered + Decimal(0.5) * sequence.duration, interval.end): position_in_interval = "END" else: position_in_interval = "PREFERED" else: if sequence.t_prefered < interval.start: position_in_interval = "START" else: position_in_interval = "END" return position_in_interval def insert_sequence_in_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval, position: str): ''' Inserts the sequence in the interval: - sets sequence.tsp and sequence.tep - sets sequence.deltaTL and sequence.deltaTR :param interval: Interval in which the sequence will be inserted :param position: String describing where the sequence will be inserted in the interval :side-effect : - modify sequence attributes (tsp, tep, deltaTL, deltaTR) ''' if position not in ["START", "END", "PREFERED"]: raise ValueError( "position must be either 'START', 'END' or 'PREFERED'") if position == "START": shs.tsp = max( interval.start + self.max_overhead, sequence.jd1) shs.tep = shs.tsp + sequence.duration shs.deltaTL = 0 shs.deltaTR = min( interval.end, sequence.jd2) - shs.tep elif position == "END": shs.tep = min(interval.end, sequence.jd2) shs.tsp = shs.tep - sequence.duration shs.deltaTL = shs.tsp - \ max(interval.start + self.max_overhead, sequence.jd1) shs.deltaTR = 0 else: shs.tsp = max( sequence.jd1, sequence.t_prefered - Decimal(0.5) * sequence.duration) if shs.tsp - interval.start < self.max_overhead: shs.tsp = interval.start + self.max_overhead shs.tep = shs.tsp + sequence.duration shs.deltaTL = shs.tsp - \ max(interval.start + self.max_overhead, sequence.jd1) shs.deltaTR = min( interval.end, sequence.jd2) - shs.tep def cut_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval): ''' Separates the interval in two parts regarding to the sequence position Sorts the interval list in time order :param interval : the interval in which the sequence was added :side-effect : - removes interval from self.intervals - add created intervals to self.intervals - sorts self.intervals ''' interval_before_sequence = Interval( interval.start, shs.tsp - self.max_overhead) interval_after_sequence = Interval(shs.tep, interval.end) self.intervals.remove(interval) if interval_before_sequence.duration > 0: self.intervals.append(interval_before_sequence) if interval_after_sequence.duration > 0: self.intervals.append(interval_after_sequence) self.intervals.sort(key=lambda interval: interval.start, reverse=False) def update_other_deltas(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval): ''' Update deltaTL and deltaTR of sequences planned near this sequence :param interval: Interval in which the sequence was added :side-effect : - modify deltaTL and deltaTR of sequences before and after the interval ''' for sequence_, shs_ in self.sequences: if shs_.status == Sequence.PENDING: if is_nearby_equal(shs_.tep, interval.start): sequence_before_interval, shs_b_i = sequence_, shs_ elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end): sequence_after_interval, shs_a_i = sequence_, shs_ if 'sequence_before_interval' in locals(): shs_b_i.deltaTR = min( shs.tsp - self.max_overhead, sequence_before_interval.jd2) - shs_b_i.tep if 'sequence_after_interval' in locals(): shs_a_i.deltaTL = shs_a_i.tsp - self.max_overhead - \ max(shs.tep, sequence_after_interval.jd1) def try_shifting_sequences(self, sequence: Sequence, shs: ScheduleHasSequences) -> bool: ''' Tries to find a place in the planning for the sequence, moving the other sequences :returns : A boolean -> True if the sequence was placed, False otherwise :side-effect: - might change some sequences' deltaTL and/or deltaTR ''' potential_intervals = self.get_potential_intervals(sequence) potential_intervals.sort(key=attrgetter("duration"), reverse=True) for interval in potential_intervals: ''' we get the adjacent sequences ''' for sequence_, shs_ in self.sequences: if shs_.status == Sequence.PENDING: if is_nearby_equal(shs_.tep, interval.start): sequence_before_interval, shs_b_i = sequence_, shs_ elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end): sequence_after_interval, shs_a_i = sequence_, shs_ available_duration = min( interval.end, sequence.jd2) - max(interval.start, sequence.jd1) missing_duration = sequence.duration - \ available_duration + self.max_overhead if 'sequence_before_interval' in locals(): possible_move_to_left = min( shs_b_i.deltaTL, interval.start - sequence.jd1) else: possible_move_to_left = 0 if 'sequence_after_interval' in locals(): possible_move_to_right = min( shs_a_i.deltaTR, sequence.jd2 - interval.end) else: possible_move_to_right = 0 if is_nearby_sup_or_equal(possible_move_to_left, missing_duration): self.move_sequence( sequence_before_interval, shs_b_i, missing_duration, "LEFT") elif is_nearby_sup_or_equal(possible_move_to_right, missing_duration): self.move_sequence( sequence_after_interval, shs_a_i, missing_duration, "RIGHT") elif is_nearby_sup_or_equal(possible_move_to_left + possible_move_to_right, missing_duration): self.move_sequence( sequence_before_interval, shs_b_i, possible_move_to_left, "LEFT") self.move_sequence( sequence_after_interval, shs_a_i, missing_duration - possible_move_to_left, "RIGHT") else: continue matching_intervals = self.get_matching_intervals(sequence) if len(matching_intervals) != 1: raise ValueError( "There should be one and only one matching interval after shifting") self.place_sequence(sequence, shs, matching_intervals) return True return False def get_potential_intervals(self, sequence: Sequence): ''' Find the intervals where a part of the sequence could be inserted :returns : list of partially-matching Intervals ''' potential_intervals = [] for interval in self.intervals: overlap = min(sequence.jd2, interval.end) - \ max(sequence.jd1, interval.start) - self.max_overhead if overlap > 0: potential_intervals.append(interval) return potential_intervals def move_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, time_shift: Decimal, direction: str): ''' Moves the sequence in the wanted direction, decreasing its deltaTL or deltaTR. :param sequence: sequence to be moved :param time_shift: amplitude of the shift :param direction: "LEFT" or "RIGHT" :side-effect : - modify the sequence in self.sequences - changes the interval before and the interval after the sequence ''' if direction not in ["LEFT", "RIGHT"]: raise ValueError("direction must be 'LEFT' or 'RIGHT'") if time_shift > (shs.deltaTL if direction == "LEFT" else shs.deltaTR): raise ValueError("Shift value is bigger than deltaT(R/L)") for interval in self.intervals: if is_nearby_equal(interval.end, shs.tsp - self.max_overhead): interval_before = interval elif is_nearby_equal(interval.start, shs.tep): interval_after = interval if direction == "LEFT": interval_before.end -= time_shift if "interval_after" in locals(): interval_after.start -= time_shift shs.tsp -= time_shift shs.tep -= time_shift shs.deltaTL -= time_shift shs.deltaTR += time_shift else: if "interval_before" in locals(): interval_before.end += time_shift interval_after.start += time_shift shs.tsp += time_shift shs.tep += time_shift shs.deltaTL += time_shift shs.deltaTR -= time_shift if "interval_before" in locals() and is_nearby_equal(interval_before.duration, 0): self.intervals.remove(interval_before) if "interval_after" in locals() and is_nearby_equal(interval_after.duration, 0): self.intervals.remove(interval_after) def update_quota(self, sequence: Sequence): ''' Update the quota of the user / scientific program / whatever by substracting the sequence duration to the quotas :side-effect: - Modify User quota in DB ''' # TODO: faire les vrais calculs de quota user = sequence.request.pyros_user # action par défaut qui correspond au code de self.determine_quota user.quota -= float(sequence.duration) if SIMULATION == False: user.save() def save_schedule(self): ''' Final function : save in the db all modifications done to sequences, and the schedule :side-effect : - change sequences status and dates in DB - add a schedule in the DB ''' self.schedule.save() for sequence, shs in self.sequences: shs.schedule = self.schedule shs.save() def print_schedule(self): ''' ONLY FOR DEBUG Prints the planned sequences ''' sequences = Sequence.objects.filter( shs__status=Sequence.PENDING).order_by('shs__tsp') print("---- There are %d sequence(s) planned ----" % len(sequences)) for sequence in sequences: print("name: %r\t, start: %d\t, end: %d\t, duration: %d\t, deltaTL: %d\t, deltaTR: %d\t" % (sequence.name, sequence.shs.tsp, sequence.shs.tep, sequence.duration, sequence.shs.deltaTL, sequence.shs.deltaTR)) print("---- There are %d free interval(s) ----" % len(self.intervals)) for interval in self.intervals: print("start: %d\t, end: %d\t" % (interval.start, interval.end)) ''' Notes (1) list(self.sequences) creates a copy in order to modify self.sequences and still iterate on it without unexpected behavior (2) UNPLANNABLE is a definitive status meaning that the sequence will never be able to be scheduled '''