A_Scheduler.py
32.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#!/usr/bin/env python3
#
# To launch this agent from the root of Pyros:
#
# Linux console:
# cd /srv/develop/pyros/docker
# ./PYROS_DOCKER_START.sh
#
# Launch from Power Shell:
# To go from docker to Powershell: pyros_user@ORION:~/app$ exit (or Ctrl+d)
# Prompt is now PS ...>
# cd \srv\develop\pyros
# .\PYROS -t new-start -o tnc -fg -a A_Scheduler
#
# Launch from docker:
# To go from Powershell to docker: PS ...> .\PYROS_DOCKER_SHELL
# Prompt is now pyros_user@ORION:~/app$
# ./PYROS -t new-start -o tnc -fg -a A_Scheduler
#
# To use debug
# ./PYROS -d -t new-start -o tnc -fg -a A_Scheduler
#
# ./PYROS -d -t start -o tnc -fg A_Scheduler
# ---------------------------------------------------
import sys
import time
import argparse
import os
import pickle
import socket
pwd = os.environ['PROJECT_ROOT_PATH']
if pwd not in sys.path:
sys.path.append(pwd)
short_paths = ['src', 'src/core/pyros_django']
for short_path in short_paths:
path = os.path.abspath(os.path.join(pwd, short_path))
if path not in sys.path:
sys.path.insert(0, path)
from src.core.pyros_django.majordome.agent.Agent import Agent, build_agent, log, parse_args
from seq_submit.models import Sequence
from user_mgmt.models import Period, ScientificProgram, SP_Period
from scheduling.models import PredictiveSchedule, EffectiveSchedule
# = Specials
import glob
import shutil
import guitastro
import datetime
from decimal import Decimal
import zoneinfo
import numpy as np
class A_Scheduler(Agent):
DPRINT = True
# - Sampling of the night arrays (bins/night)
BINS_NIGHT = 86400
# - status of the sequence after schedule computation
SEQ_NOT_PROCESSED = 0
SEQ_SCHEDULED = 1
SEQ_SCHEDULED_OVER_QUOTA = 2
SEQ_REJECTED_NO_QUOTA_ENOUGH = -1
SEQ_REJECTED_NO_SLOT_AVAILABLE = -2
# - enum of the matrix line
SEQ_K = 0
SEQ_SEQ_ID = 1
SEQ_KOBS0 = 2
SEQ_SP_ID = 3
SEQ_PRIORITY = 4
SEQ_DURATION = 5
SEQ_STATUS = 6
NB_SEQ = 7
# - All possible running states
RUNNING_NOTHING = 0
RUNNING_SCHEDULE_PROCESSING = 1
_AGENT_SPECIFIC_COMMANDS = {
# Format : “cmd_name” : (timeout, exec_mode)
"do_compute_schedule_1" : (60, Agent.EXEC_MODE.SEQUENTIAL, ''),
"do_create_seq_1" : (60, Agent.EXEC_MODE.SEQUENTIAL, ''),
}
# Test scenario to be executed (option -t)
# "self do_stop_current_processing"
# AgentCmd.CMD_STATUS_CODE.CMD_EXECUTED
_TEST_COMMANDS_LIST = [
# Format : ("self cmd_name cmd_args", timeout, "expected_result", expected_status),
(True, "self do_create_seq_1 6", 200, '', Agent.CMD_STATUS.CMD_EXECUTED),
(True, "self do_stop asap", 500, "STOPPING", Agent.CMD_STATUS.CMD_EXECUTED),
]
"""
=================================================================
Methods running inside main thread
=================================================================
"""
def __init__(self, name:str=None,simulated_computer=None):
if name is None:
name = self.__class__.__name__
super().__init__(simulated_computer=simulated_computer)
def _init(self):
super()._init()
log.debug("end super init()")
log.info(f"self.TEST_MODE = {self.TEST_MODE}")
# === Get the config object
self.config = self._oc['config']
self.pconfig = self._oc['pyros_config']
# === Get agent_alias
hostname = socket.gethostname()
log.info(f"{hostname=}")
log.info(f"{self.name=}")
agent_alias = self.config.get_agent_real_name(self.name, hostname)
log.info(f"{agent_alias=}")
# === Get all file contexts from pyros config
self._fn = self.config.fn
log.info(f"=== List of file name contexts available for the unit")
self.check_contexts(True)
log.info(f"{self._fn.longitude=}")
# TBD duskelev a parametrer from obsconfig (yml)
self._duskelev = -7
# === Status of routine processing
self._routine_running = self.RUNNING_NOTHING
log.debug("end init()")
##### TBD suppress redondant paths in print(f"=>=>=> {sys.path=}")
# Note : called by _routine_process() in Agent
# @override
def _routine_process_iter_start_body(self):
log.debug("in routine_process_before_body()")
# Note : called by _routine_process() in Agent
# @override
def _routine_process_iter_end_body(self):
log.debug("in routine_process_after_body()")
# TODO EP est-ce utile ?
if self._routine_running == self.RUNNING_NOTHING:
# Get files to process
# - Thread TODO
self._routine_running = self.RUNNING_SCHEDULE_PROCESSING
self.do_compute_schedule_1()
"""
=================================================================
Methods of specific commands
=================================================================
"""
def do_create_seq_1(self, nb_seq:int):
"""Create sequences to debug
:raises ExceptionType: Some multi-line
exception description.
"""
try:
self._create_seq_1(nb_seq)
except Exception as e:
self.dprint(f"ERROR {e}")
def do_compute_schedule_1(self):
"""Compute a schedule
According the current time, select the night directory.
List the *.p file list (.p for sequences)
Read the *.p, *.f file contents (.f for ephemeris)
Compute the schedule
Output is a matrix to unpack in the database.
Each line of the matrix is a sequence
Columns are defined by the enum SEQ_* (see the python code itself).
"""
try:
self._compute_schedule_1()
except Exception as e:
self.dprint(f"ERROR {e}")
"""
=================================================================
Methods called by commands or routine. Overload these methods
=================================================================
# ---
# osp = ScientificProgram.objects.get(id=scientific_program_id)
# --- ospperiod is the SP object
# ospperiod = SP_Period.objects.get(period = period_id, scientific_program = osp)
# print(f"dir(ospperiod)={dir(ospperiod)}")
# dir(spperiod)=['DoesNotExist',
# 'IS_VALID', 'IS_VALID_ACCEPTED', 'IS_VALID_REJECTED',
# 'MultipleObjectsReturned', 'SP_Period_Guests', 'SP_Period_Users',
# 'STATUSES', 'STATUSES_ACCEPTED', 'STATUSES_DRAFT',
# 'STATUSES_EVALUATED', 'STATUSES_REJECTED', 'STATUSES_SUBMITTED',
# 'VISIBILITY_CHOICES', 'VISIBILITY_NO', 'VISIBILITY_YES',
# 'VOTES', 'VOTES_NO', 'VOTES_TO_DISCUSS', 'VOTES_YES',
# 'can_submit_sequence', 'check', 'clean', 'clean_fields',
# 'date_error_message', 'delete', 'from_db', 'full_clean',
# 'get_constraints', 'get_deferred_fields', 'get_is_valid_display',
# 'get_public_visibility_display', 'get_status_display',
# 'get_vote_referee1_display', 'get_vote_referee2_display',
# 'id', 'is_currently_active', 'is_valid', 'objects',
# 'over_quota_duration', 'over_quota_duration_allocated',
# 'over_quota_duration_remaining', 'period', 'period_id',
# 'pk', 'prepare_database_save', 'priority', 'public_visibility',
# 'quota_allocated', 'quota_minimal', 'quota_nominal',
# 'quota_remaining', 'reason_referee1', 'reason_referee2',
# 'referee1', 'referee1_id', 'referee2', 'referee2_id',
# 'refresh_from_db', 'save', 'save_base', 'scientific_program',
# 'scientific_program_id', 'serializable_value', 'status', 'token',
# 'token_allocated', 'token_remaining', 'unique_error_message',
# 'validate_constraints', 'validate_unique', 'vote_referee1',
# 'vote_referee2'
"""
def update_db_quota_sequence(sequence, quota_attributes, id_period, night_id, d_total=sequence_info['duration']):
sequence_quota = sequence.quota
sp_quota = sequence.scientific_program
institute_quota =
def _compute_schedule_1(self):
"""Simple scheduler based on selection-insertion one state algorithm.
Quotas are available only fo the night.
No token.
"""
t0 = time.time()
self.DPRINT = True
# --- Get the incoming directory of the night
info = self.get_infos()
rootdir = info['rootdir']
subdir = info['subdir']
# --- Get the night
night = info['night']
# --- Get ephemeris informations of the night and initialize quotas
night_info = self.update_sun_moon_ephems()
quota_total_period = night_info['total'][1]
quota_total_night_start = night_info[night][0]
quota_total_night_end = night_info[night][1]
self.dprint(f"{quota_total_period=}")
self.dprint(f"{quota_total_night_start=}")
self.dprint(f"{quota_total_night_end=}")
# --- Build the wildcard to list the sequences
wildcard = os.path.join(rootdir, subdir, "*.p")
self.dprint(f"{wildcard=}")
# --- List the sequences from the incoming directory
seqfiles = glob.glob(wildcard)
log.info(f"{len(seqfiles)} file sequences to process")
# --- Initialize the predictive schedule from start of the night (=all the night)
schedule_sequence_id = np.zeros(self.BINS_NIGHT, dtype=int) -1
schedule_binary = np.ones(self.BINS_NIGHT, dtype=int)
schedule_visibility = np.zeros(self.BINS_NIGHT, dtype=float)
schedule_order = np.zeros(self.BINS_NIGHT, dtype=int) -1
schedule_jd = np.zeros(self.BINS_NIGHT, dtype=float)
schedule_scientific_programm_id = np.zeros(self.BINS_NIGHT, dtype=int) -1
# --- Initialize the predictive schedule by the effective schedule from start of the current instant (=index)
try:
last_schedule = EffectiveSchedule.objects.last()
except EffectiveSchedule.DoesNotExist:
self.dprint(f"No effective schedule in the database (table is void)")
# --- Get the numpy matrix of the effective schedule from the database (via Json)
if last_schedule != None:
input_matrix = last_schedule.conv_numpy()
# --- Unpack the matrix to effective schedule arrays
schedule_eff_jd, schedule_eff_binary, schedule_eff_sequence_id, schedule_eff_scientific_programm_id, schedule_eff_order, schedule_eff_visibility = input_matrix
# --- Get the index of the current instant in the night
nownight, index = self._fn.date2night("now", self.BINS_NIGHT)
self.dprint(f"{nownight=} {index=}")
# --- Add all ever observed sequences from 0 to index
if nownight == night and (index >= 0 or index < self.BINS_NIGHT):
schedule_sequence_id[0:index] = schedule_eff_sequence_id[0:index]
schedule_binary[0:index] = schedule_eff_binary[0:index]
schedule_visibility[0:index] = schedule_eff_visibility[0:index]
schedule_order[0:index] = schedule_eff_order[0:index]
schedule_jd[0:index] = schedule_eff_jd[0:index]
schedule_scientific_programm_id[0:index] = schedule_eff_scientific_programm_id[0:index]
else:
# --- Case when there is not ever effective schedule for this night
print(f"No effective schedule for this night {night}")
else:
# --- Case of invalid entry in the database
print(f"Invalid entry in the database")
#print(f"{schedule_jd=}")
# ===================================================================
# --- Loop over the sequences of the night to extract useful infos
# ===================================================================
self.dprint("\n" + "="*70 + f"\n=== Read {len(seqfiles)} sequence files of the night {info['night']}\n" + "="*70 + "\n")
sequence_infos = []
# --- Initialize the list of scientific_program_ids
scientific_program_ids = []
kseq = 0
for seqfile in seqfiles:
# --- seqfile = sequence file name
kseq += 1
sequence_info = {}
sequence_info['id'] = -1 # TBD replace by idseq of the database
sequence_info['seqfile'] = seqfile
sequence_info['error'] = ""
sequence_info['kobs0'] = -1
# --- ephfile = ephemeris file name
ephfile = os.path.splitext(seqfile)[0] + ".f"
# --- If ephemeris file exists, read files
if os.path.exists(ephfile):
self.dprint(f"Read file {seqfile}")
# --- seq_info = sequence dictionary
# --- eph_info = ephemeris dictionary
seq_info = pickle.load(open(seqfile,"rb"))
#print("="*20 + "\n" + f"{seq_info=}")
eph_info = pickle.load(open(ephfile,"rb"))
#print("="*20 + "\n" + f"{eph_info=}")
# ---
param = self._fn.naming_get(seqfile)
sequence_info['id'] = int(param['id_seq'])
# --- scientific_program_id is an integer
scientific_program_id = seq_info['sequence']['scientific_program']
# --- Dictionary of informations about the sequence
sequence_info['seq_dico'] = seq_info # useful for duration
# --- Search the last time when the start of the sequence is observable (visibility > 0)
visibility_duration = eph_info['visibility_duration']
kobss = np.where(visibility_duration > 0)
kobss = list(kobss[0])
if len(kobss) == 0:
self.dprint(" Sequence has no visibility")
sequence_info['error'] = f"Sequence has no visibility_duration"
sequence_infos.append(sequence_info)
continue
# --- TODO manage the case the sequence is before the current time (because of the effective schedule)
kobs0 = kobss[0]
sequence_info['kobs0'] = kobs0
sequence_info['visibility'] = eph_info['visibility'] # total slots
sequence_info['visibility_duration'] = visibility_duration # total slots - duration
sequence_info['duration'] = seq_info['sequence']['duration']
sequence_info['scientific_program_id'] = scientific_program_id
self.dprint(f" {scientific_program_id=} range to start={len(kobss)}")
if scientific_program_id not in scientific_program_ids:
scientific_program_ids.append(scientific_program_id)
# --- TODO
# update_db_quota_sequence( id_period, night_id, d_total=sequence_info['duration'] )
else:
sequence_info['error'] = f"File {ephfile} not exists"
sequence_infos.append(sequence_info)
try:
schedule_jd = eph_info['jd']
except:
pass
# ===================================================================
# --- Get informations of priority and quota from scientific programs
# ===================================================================
self.dprint("\n" + "="*70 + f"\n=== Get information from {len(scientific_program_ids)} scientific programs of the night\n" + "="*70 + "\n")
scientific_program_infos = {}
period_id = info['operiod'].id
self.dprint(f"{scientific_program_ids=}")
for scientific_program_id in scientific_program_ids:
scientific_program_info = {}
try:
osp = ScientificProgram.objects.get(id=scientific_program_id)
# --- ospperiod is the SP object
ospperiod = SP_Period.objects.get(period = period_id, scientific_program = osp)
scientific_program_info['priority'] = ospperiod.priority
scientific_program_info['over_quota_duration'] = ospperiod.over_quota_duration
scientific_program_info['over_quota_duration_allocated'] = ospperiod.over_quota_duration_allocated
scientific_program_info['over_quota_duration_remaining'] = ospperiod.over_quota_duration_remaining
scientific_program_info['quota_allocated'] = ospperiod.quota_allocated
scientific_program_info['quota_minimal'] = ospperiod.quota_minimal
scientific_program_info['quota_nominal'] = ospperiod.quota_nominal
scientific_program_info['quota_remaining'] = ospperiod.quota_remaining
scientific_program_info['token_allocated'] = ospperiod.token_allocated
scientific_program_info['token_remaining'] = ospperiod.token_allocated
except:
# --- simulation
scientific_program_info['priority'] = 0
if scientific_program_info['priority'] == 0:
# --- simulation
priority = 50 + scientific_program_id*5
scientific_program_info['priority'] = priority
scientific_program_info['quota_allocated'] = 12000
scientific_program_info['quota_remaining'] = 12000
scientific_program_infos[str(scientific_program_id)] = scientific_program_info
self.dprint(f"{scientific_program_id=} priority={scientific_program_info['priority']} quota={scientific_program_info['quota_remaining']}")
# ===================================================================
# --- Build the numpy matrix seqs to make rapid computations
# ===================================================================
self.dprint("\n" + "="*70 + f"\n=== Build the matrix for scheduling {len(sequence_infos)} sequences\n" + "="*70 + "\n")
self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
nseq = len(sequence_infos)
if nseq == 0:
self._routine_running = self.RUNNING_NOTHING
return
seqs = np.zeros((nseq, self.NB_SEQ), dtype=int)
k = 0
for sequence_info in sequence_infos:
if 'scientific_program_id' not in sequence_info.keys():
self.dprint(f"No scientific program for ID sequence {sequence_info['id']}")
continue
scientific_program_id = sequence_info['scientific_program_id']
scientific_program_info = scientific_program_infos[str(scientific_program_id)]
priority = scientific_program_info['priority']
# Order of the following list refers to the enum
seq = [ k, sequence_info['id'], sequence_info['kobs0'], scientific_program_id, priority, int(np.ceil(sequence_info['duration'])), self.SEQ_NOT_PROCESSED]
self.dprint(f"{seq=}")
seqs[k] = seq
k += 1
seqs = seqs[:k]
# --- Save the matrix sequence
#print(f"{seqs=}")
fpathname = os.path.join(rootdir, subdir, "scheduler_seq_matrix1.txt")
np.savetxt(fpathname, seqs)
# ===================================================================
# --- Compute the matrix seq_sorteds (priority and chronology)
# ===================================================================
self.dprint("\n" + "="*70 + "\n=== Sort the matrix for scheduling by priority and chronology\n" + "="*70 + "\n")
# --- Sort the matrix sequence: priority=SEQ_PRIORITY (decreasing -1) and then chronology=SEQ_KOBS0 (increasing +1)
seq_sorteds = seqs[np.lexsort(([1,-1]*seqs[:,[self.SEQ_KOBS0, self.SEQ_PRIORITY]]).T)]
# --- Save the matrix sequence
self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
self.dprint(f"{seq_sorteds=}")
fpathname = os.path.join(rootdir, subdir, "scheduler_seq_matrix2.txt")
np.savetxt(fpathname, seq_sorteds)
# ===================================================================
# --- Insert sequences in the schedule. Respecting priority and quota
# ===================================================================
self.dprint("\n" + "="*70 + "\n=== Insertion of the sequences in the schedule respecting priority and quota\n" + "="*70 + "\n")
kseq_sorted = -1
for seq_sorted in seq_sorteds:
kseq_sorted += 1
# --- Unpack the sequence
k, sequence_id, kobs0, scientific_program_id, priority, duration, seq_status = seq_sorted
# --- Get the quota remaining of the scientific program
quota_remaining = scientific_program_infos[str(scientific_program_id)]['quota_remaining']
self.dprint('-'*70 + "\n" + f"Process {sequence_id=} {kobs0=} {duration=} sp_id={scientific_program_id} {quota_remaining=}")
# --- Verify if duration < quota_remaining
if duration > quota_remaining:
# --- No remaining quota to insert this sequence
self.dprint(f"{sequence_id=} cannot be inserted because no quota enough")
seqs[k][self.SEQ_STATUS] = self.SEQ_REJECTED_NO_QUOTA_ENOUGH
continue
# --- Compute the remaining visibility and list (k1s) of the best observation start
# =0 if not possible to start observation
# =value with the highest value for the best observation start
# --- Visibility*schedule_binary are transformed into binary
sequence_info = sequence_infos[k]
vis_binarys = sequence_info['visibility'].copy() * schedule_binary
vis_binarys[vis_binarys > 0] = 1
# --- Cumulative sum + offset by -duration to prepare the start_binary computation
obs_starts = np.cumsum(vis_binarys)
obs_ends = obs_starts.copy()
obs_ends[0:-duration] = obs_ends[duration:]
obs_ends[-duration:] = 0
# --- Difference and binarisation to get starts with duration
start_binary = obs_ends - obs_starts
start_binary[start_binary < duration] = 0
start_binary[start_binary == duration] = 1
# --- Compute the remaining visibility (float)
remaining_visibility = sequence_info['visibility'] * start_binary
# --- Check the remaining visibility
if np.sum(remaining_visibility) == 0:
# --- No remaining slot to insert this sequence
self.dprint(f"{sequence_id=} cannot inserted because no more slots available")
seqs[k][self.SEQ_STATUS] = self.SEQ_REJECTED_NO_SLOT_AVAILABLE
continue
# --- From the index of the highest value of remaining visibility to the index of the lowest value of remaining visibility
k1s = np.flip(np.argsort(remaining_visibility))
self.dprint(f"{k1s=} => Start elevation {sequence_info['visibility'][k1s[0]]:+.2f}")
# --- Get k1 as the highest value of remaining visibility
k1 = k1s[0]
k2 = k1 + duration
self.dprint(f"{k} : {sequence_id=} {scientific_program_id=} {priority=} inserted in the slot {k1=} {k2=} (remaining {quota_remaining - duration} s)")
# --- Update the seqs matrix
seqs[k][self.SEQ_STATUS] = self.SEQ_SCHEDULED
# --- Update the schedule arrays
schedule_sequence_id[k1:k2] = sequence_id
schedule_binary[k1:k2] = 0
schedule_visibility[k1:k2] = sequence_info['visibility'][k1:k2]
schedule_order[k1:k2] = kseq_sorted
schedule_scientific_programm_id[k1:k2] = scientific_program_id
# --- Update the scientific program dict
quota_remaining -= duration
scientific_program_infos[str(scientific_program_id)]['quota_remaining'] = quota_remaining
# ===================================================================
# --- Insert sequences in the schedule. Respecting priority but over quota
# ===================================================================
# self.dprint("\n" + "="*70 + "\n=== Insertion of the sequences in the schedule respecting priority but over quota\n" + "="*70 + "\n")
# TBD
# where are remaining free slots
# scan sequences to insert in these free slots
# ===================================================================
# --- Save the schedule
# ===================================================================
self.dprint("\n" + "="*70 + "\n=== Save the schedule\n" + "="*70 + "\n")
self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
self.dprint(f"{seqs=}")
# --- Prepare the output matrix
ouput_matrix = np.array([schedule_jd, schedule_binary, schedule_sequence_id, schedule_scientific_programm_id, schedule_order, schedule_visibility])
# --- Save the numpy matrix in ASCII
fpathname = os.path.join(rootdir, subdir, "scheduler_schedule.txt")
np.savetxt(fpathname, ouput_matrix.T)
# --- Save the numpy matrix in database (via Json)
v = PredictiveSchedule.objects.last()
if v == None:
v = PredictiveSchedule()
#log.info(f"{v=}")
v.scheduler_matrix = ouput_matrix
v.save()
# --- Save the numpy matrix in database (via Json)
v = EffectiveSchedule.objects.last()
if v==None:
v = EffectiveSchedule()
v.scheduler_matrix = ouput_matrix
v.save()
# --- Update the running state
self._routine_running = self.RUNNING_NOTHING
log.info(f"_compute_schedule_1 finished in {time.time() - t0:.2f} seconds")
def _create_seq_1(self, nb_seq: int):
t0 = time.time()
self.dprint("Debut _create_seq_1")
seq_template = {'sequence': {'id': 4, 'start_expo_pref': 'IMMEDIATE', 'pyros_user': 2, 'scientific_program': 1, 'name': 'seq_20230628T102140', 'desc': None, 'last_modified_by': 2, 'is_alert': False, 'status': 'TBP', 'with_drift': False, 'priority': None, 'analysis_method': None, 'moon_min': None, 'alt_min': None, 'type': None, 'img_current': None, 'img_total': None, 'not_obs': False, 'obsolete': False, 'processing': False, 'flag': None, 'period': 1, 'start_date': datetime.datetime(2023, 6, 28, 10, 21, 40, tzinfo=zoneinfo.ZoneInfo(key='UTC')), 'end_date': datetime.datetime(2023, 6, 28, 10, 21, 40, 999640, tzinfo=datetime.timezone.utc), 'jd1': Decimal('0E-8'), 'jd2': Decimal('0E-8'), 'tolerance_before': '1s', 'tolerance_after': '1min', 'duration': -1.0, 'overhead': Decimal('0E-8'), 'submitted': False, 'config_attributes': {'tolerance_before': '1s', 'tolerance_after': '1min', 'target': 'RADEC 0H10M -15D', 'conformation': 'WIDE', 'layout': 'Altogether'}, 'ra': None, 'dec': None, 'complete': True, 'night_id': '20230627'}, 'albums': {'Altogether': {'plans': [{'id': 4, 'album': 4, 'duration': 0.0, 'nb_fnges': 1, 'config_attributes': {'binnings': {'binxy': [1, 1], 'readouttime': 6}, 'exposuretime': 1.0}, 'complete': True}]}}}
# decode general variables info a dict info
info = self.get_infos()
rootdir = info['rootdir']
subdir = info['subdir']
# --- Read or create the sun ephemeris
ephem_sun = self.ephem_target2night("sun")
# --- Read or create the moon ephemeris
ephem_moon = self.ephem_target2night("moon")
# --- Prepare ephemeris object
eph = guitastro.Ephemeris()
eph.set_home(self.config.getHome())
# --- Horizon (TBD get from config)
self.dprint("Debut _create_seq_1 Horizon")
hor = guitastro.Horizon(eph.home)
hor.horizon_altaz = self.config.getHorizonLine(self.config.unit_name)
# --- Delete all existing *.p and *.f files in the night directory
fn_param = {
"period" : f"{info['period_id']}",
"version": "1",
"unit": self.config.unit_name,
"date": info['night'],
"id_seq": 0
}
fname = self._fn.naming_set(fn_param)
self.dprint(f":: {fname=}")
seq_file = self._fn.join(fname)
path_night = os.path.dirname(seq_file)
cards = ['*.p', '*.f']
for card in cards:
wildcard = os.path.join(path_night, card)
seq_dfiles = glob.glob(wildcard)
#print(f"::: {seq_dfiles=}")
for seq_dfile in seq_dfiles:
#print(f":::.1 : os.remove {seq_dfile=}")
os.remove(seq_dfile)
# --- Create new sequences
for k in range(nb_seq):
#print("B"*20 + f" {info['operiod'].id} {info['night']} {k}")
time.sleep(1)
seq = seq_template.copy()
seq['sequence']['period'] = info['operiod'].id # int
seq['sequence']['night_id'] = info['night'] # str
seq['sequence']['config_attributes']['target'] = k # int
# ---
start_expo_pref = "BESTELEV" #"IMMEDIATE"
scientific_program = int(k/2)
start_date = datetime.datetime(2023, 6, 28, 10, 21, 40)
end_date = datetime.datetime(2023, 6, 28, 10, 21, 40, 999640, tzinfo=datetime.timezone.utc)
jd1 = Decimal('0E-8')
jd2 = Decimal('0E-8')
tolerance_before = '1s'
tolerance_after = '1min'
duration = 3000.0
target = f"RADEC {k}h {10+2*k}d"
# ---
seq['sequence']['start_expo_pref'] = start_expo_pref
seq['sequence']['scientific_program'] = scientific_program
seq['sequence']['start_date'] = start_date
seq['sequence']['end_date'] = end_date
seq['sequence']['jd1'] = jd1
seq['sequence']['jd2'] = jd2
seq['sequence']['tolerance_before'] = tolerance_before
seq['sequence']['tolerance_after'] = tolerance_after
seq['sequence']['duration'] = duration
seq['sequence']['config_attributes']['target'] = target
# --- Build the path and file name of the sequence file
fn_param["id_seq"] = int("999" + f"{k:07d}")
self.dprint(f"{k} : {self._fn.fcontext=}")
self._fn.fname = self._fn.naming_set(fn_param)
self.dprint(f"{k} : {self._fn.fname=}")
seq_file = self._fn.join(self._fn.fname)
self.dprint(f"{k} : {seq_file=}")
# --- Build the path and file name of the ephemeris file
eph_file = f"{seq_file[:-2]}.f"
# --- Create directory if it doesn't exist
self.dprint(f"{k} : {seq_file=}")
os.makedirs(os.path.dirname(seq_file), exist_ok=True)
# --- Compute the ephemeris of the sequence and manage errors
#print(f"{k} : TRY")
errors = []
try:
ephem = eph.target2night(seq["sequence"]["config_attributes"]["target"], info['night'], ephem_sun, ephem_moon, preference=seq['sequence']['start_expo_pref'], duskelev=self._duskelev, horizon=hor, duration=duration)
except ValueError:
errors.append("Target value is not valid")
except guitastro.ephemeris.EphemerisException as ephemException:
errors.append(str(ephemException))
if len(errors) == 0 and np.sum(ephem["visibility"]) == 0 :
errors.append("Target is not visible.")
if len(errors) == 0:
pickle.dump(ephem, open(eph_file,"wb"))
pickle.dump(seq, open(seq_file,"wb"))
#dprint(f"{errors=}")
#dprint("C"*20)
log.info(f"_create_seq_1 finished in {time.time() - t0:.2f} seconds")
def load_sequence(self):
sequence = ""
return sequence
def get_infos(self):
self._fn.fcontext = "pyros_seq"
rootdir = self._fn.rootdir
operiod = Period.objects.exploitation_period()
if operiod == None:
log.info("No period valid in the database")
self._routine_running = self.RUNNING_NOTHING
return
# retourne un str -> id de la période sous le format Pxxx
period_id = operiod.get_id_as_str()
night_id = self._fn.date2night("now")
subdir = os.path.join(period_id, night_id)
dico = {}
dico['rootdir'] = rootdir
dico['subdir'] = subdir
dico['operiod'] = operiod # object
dico['period_id'] = period_id # str formated (P000)
dico['night'] = night_id # str (YYYYMMDD)
return dico
def dprint(self, *args, **kwargs):
if self.DPRINT:
log.info(*args, **kwargs)
if __name__ == "__main__":
agent = build_agent(A_Scheduler)
print(agent)
agent.run()