Blame view

Bin.py/run.py 15 KB
90a0ee4e   Elena.Budnik   python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from datetime import datetime, date, time, timedelta
import pandas as pd
import numpy as np
import os
import sys
from lxml import etree
from netCDF4 import Dataset
import logging
from logging.handlers import RotatingFileHandler
import time as myTime

def main():

	J2000REF = 946679400 # 2000-01-01T00:00:00 -30min

	# CHECK ARGS
e2271bb5   Elena.Budnik   work
17
	checkArgs(3, 'Usage : python run.py (target) (Solar Wind XML config file)')
f5a5ef6f   Elena.Budnik   work
18
	
90a0ee4e   Elena.Budnik   python
19
	prefix =  sys.argv[1]
e2271bb5   Elena.Budnik   work
20
	xmlFile = sys.argv[2]
90a0ee4e   Elena.Budnik   python
21
22
23
24
25
26
27
28
	
	start_time = myTime.time()

	# GET ENVIRONMENT VARIABLES
	SW2ROOT     = os.getenv('SW2ROOT')
	SW2MISSIONS = os.getenv('REQ')
	SW2DATA     = os.getenv('SW2DATA')
	SW2NC       = os.getenv('SW2NC')
90a0ee4e   Elena.Budnik   python
29
	
f5a5ef6f   Elena.Budnik   work
30
31
	# GET INFOS FROM XML CONFIG FILE
	start,stop,plasmaVi,srcVi,srcR,srcLon,tgtVi,tgtR,tgtLon = getXMLConfig(xmlFile)
e2271bb5   Elena.Budnik   work
32
       src = plasmaVi.split('_')[0]
f5a5ef6f   Elena.Budnik   work
33

90a0ee4e   Elena.Budnik   python
34
	# CREATE A DIRECTORY FOR THE NEW QUERY
f5a5ef6f   Elena.Budnik   work
35
36
37
	MYDIR = SW2DATA+'/'+src+'/'+prefix+'_'+datetime.now().strftime('%Y%m%d')
	if not os.path.exists(MYDIR):
		os.makedirs(MYDIR,0775)
90a0ee4e   Elena.Budnik   python
38
39
40
	
	# CREATION OF A LOGGER
	logFile = prefix+'_'+datetime.now().strftime('%Y%m%d')+'.log'
f5a5ef6f   Elena.Budnik   work
41
	logger = initLogger(MYDIR+'/'+logFile)	
90a0ee4e   Elena.Budnik   python
42
43
44
45
	logger.info("Start : " + start)
	logger.info("Stop : " + stop)
	logger.info("Plasma VI : " + plasmaVi)
	logger.info("Source VI : " + srcVi)
f5a5ef6f   Elena.Budnik   work
46
47
	logger.info("Source distance : " + srcR)
	logger.info("Source longitude : " + srcLon)
90a0ee4e   Elena.Budnik   python
48
	logger.info("Target VI : " + tgtVi)
f5a5ef6f   Elena.Budnik   work
49
50
	logger.info("Target distance : " + tgtR)
	logger.info("Target longitude : " + tgtLon)
90a0ee4e   Elena.Budnik   python
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


	# COMPUTING BOUNDARIES
	marginPlasma      = getMarginDays(tgtVi) #Days
	plasmaStart       = shiftedDate(start, days=-marginPlasma, seconds=-1)
	plasmaDDStart     = time2ddtime(plasmaStart)
	plasmaStop        = shiftedDate(stop, days=marginPlasma)
	plasmaStop        = shiftedDate(stop)
	plasmaDDStop      = time2ddtime(plasmaStop)
	ddTimeDeltaPlasma = DDTimeDelta(plasmaStart, plasmaStop)
	
	marginOrbit       = 20 # Hours
	orbitsStart       = shiftedDate(plasmaStart, hours=-marginOrbit)
	orbitsStop        = shiftedDate(plasmaStop, hours=marginOrbit)
	orbitsDDStart     = time2ddtime(orbitsStart)
	ddTimeDeltaOrbit  = DDTimeDelta(orbitsStart, orbitsStop)

	# GET DATA FROM DD BASE DEPENDING ON SW INPUT 
	if plasmaVi == 'omni_hour_all':
		plasmaCmd    = ['get_OMNI_1H',MYDIR+'/plasma.csv',plasmaDDStart,ddTimeDeltaPlasma]
	elif plasmaVi == 'ace_swepam_real':
		plasmaCmd    = ['get_ACE_RT',MYDIR+'/plasma.csv',MYDIR+'/mag.csv',plasmaDDStart,ddTimeDeltaPlasma]
		
		
	srcCmd   = ['get_R_LON_HCI',MYDIR+'/source.csv',srcVi,srcR,srcLon,orbitsDDStart,ddTimeDeltaOrbit]
	tgtCmd = ['get_R_LON_HCI',MYDIR+'/target.csv',tgtVi,tgtR,tgtLon,orbitsDDStart,ddTimeDeltaOrbit]
	os.system(' '.join(plasmaCmd))
	os.system(' '.join(srcCmd))
	os.system(' '.join(tgtCmd))

	if os.path.getsize(MYDIR+'/plasma.csv') == 0:
		logger.error('Failed to load plasma data')
		sys.exit(2)
	elif os.path.getsize(MYDIR+'/source.csv') == 0:
		logger.error('Failed to load source orbit data')
		sys.exit(2)
	elif os.path.getsize(MYDIR+'/target.csv') == 0:
		logger.error('Failed to load target orbit data')
		sys.exit(2)

	# PLASMA DATAFRAME
	if plasmaVi == 'omni_hour_all':
		plasma = pd.read_csv(MYDIR+'/plasma.csv', dtype='S16,f4,f4,f4,f4,f4,f4,f4,f4')		
	elif plasmaVi == 'ace_swepam_real':
		if os.path.getsize(MYDIR+'/mag.csv') == 0:
			logger.error('Failed to load mag data')
			sys.exit(2)
		sw = pd.read_csv(MYDIR+'/plasma.csv', dtype='S16,f4,f4,f4')				 
		mag = pd.read_csv(MYDIR+'/mag.csv', dtype='S16,f4,f4,f4')				 
		plasma = sw.merge(mag, on='Time')
		
	plasma['Time'] = ddTime2Datetime(plasma['Time'])
	plasma = plasma.set_index('Time')
	 	 
				
f5a5ef6f   Elena.Budnik   work
106
	logger.info('Number of NaNs for plasma data before cleaning : %d' % plasma.isnull().sum().sum())
90a0ee4e   Elena.Budnik   python
107
	plasma = plasma.interpolate().fillna(method='bfill')
f5a5ef6f   Elena.Budnik   work
108
	logger.info('Number of NaNs for plasma data after cleaning : %d' % plasma.isnull().sum().sum())
90a0ee4e   Elena.Budnik   python
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

	# SOURCE DATAFRAME
	source = pd.read_csv(MYDIR+'/source.csv', dtype='S16,f4,f4,f4')
	source['Time'] = ddTime2Datetime(source['Time'])
	source.columns = ['Time','R_HCI_source', 'LON_HCI_source']
	source = source.set_index('Time')

	# TARGET DATAFRAME
	target = pd.read_csv(MYDIR+'/target.csv', dtype='S16,f4,f4,f4')
	target['Time'] = ddTime2Datetime(target['Time'])
	target.columns = ['Time','R_HCI_target', 'LON_HCI_target']
	target = target.set_index('Time')

	# CARTESIAN TO SPHERICAL COORDS
	r_source = source['R_HCI_source']
	lon_source_deg = np.degrees(source['LON_HCI_source'])
	lon_source_deg[lon_source_deg < 0] = lon_source_deg+360.0 #-180/180 -> 0/360

	sourceData = np.array([source.index,r_source,lon_source_deg]).T
	sourceColumns = ['Time','R_source','Lon_source']
	source = pd.DataFrame(data=sourceData,columns=sourceColumns)
	source = source.set_index('Time')

	r_target = target['R_HCI_target']
	lon_target_deg = np.degrees(target['LON_HCI_target'])
	lon_target_deg[lon_target_deg < 0] = lon_target_deg+360.0 #-180/180 -> 0/360

	targetData = np.array([target.index,r_target,lon_target_deg]).T
	targetColumns = ['Time','R_target','Lon_target']
	target = pd.DataFrame(data=targetData,columns=targetColumns)
	target = target.set_index('Time')


	# SPHERICAL TO CARTESIAN COORDS
	if plasmaVi == 'omni_hour_all':
		vlon = np.radians(plasma['Vlon'])
		vlat = np.radians(plasma['Vlat'])
	elif plasmaVi == 'ace_swepam_real': 
		vlon = np.radians(-2.0)
		vlat = np.radians(1.0)
		
	vx = plasma['V']*np.cos(vlat)*np.cos(vlon)
	vy = -plasma['V']*np.cos(vlat)*np.sin(vlon)
	vz = plasma['V']*np.sin(vlat)

	# ROTATION
	bx = -np.array(plasma['Bx'])
	by = -np.array(plasma['By'])
	bz = np.array(plasma['Bz'])

	# FINAL PLASMA DATAFRAME
	plasmaData = np.array([plasma.index,plasma.Density,plasma.Temperature,vx,vy,vz,bx,by,bz])
	plasmaColumns = ['Time','Density','Temperature','Vx','Vy','Vz','Bx','By','Bz']
	plasma = pd.DataFrame(data=plasmaData.T,columns=plasmaColumns)
	plasma = plasma.set_index('Time')

	# FINAL DATAFRAME
	combined = plasma.join(source,how='outer').join(target,how='outer')

	# trunk = combined.truncate(before=start, after=stop)
	trunk = combined.truncate(after=stop)
	df = trunk.groupby(trunk.index).first()

	df = df.resample('1H')
	df = df.interpolate().fillna(method='backfill')
f5a5ef6f   Elena.Budnik   work
174
175
	
	if df['R_target'].mean() < df['R_source'].mean():		
90a0ee4e   Elena.Budnik   python
176
177
178
179
180
181
		df = df.reindex(index=df.index[::-1])
		idprop = -1
		xmax1  = 1.3
		xmin1  = 0.3
	else:
		idprop = 1
af920889   Elena.Budnik   ajust
182
183
		xmax1  = 10.8
		xmin1  = 0.8
90a0ee4e   Elena.Budnik   python
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
		
	# QUALITY FLAG
	dataFlagData = np.array( [df.index,np.zeros(len(df.index)).astype(int)])
	# dataFlagData = np.array( [df.index,np.ones(len(df.index)).astype(int)])
	dataFlagColumns = ['Time','QualityFlag']
	dataFlag = pd.DataFrame(data=dataFlagData.T,columns=dataFlagColumns)
	dataFlag = dataFlag.set_index('Time')
	df = df.join(dataFlag,how='outer')

	# WRITE TO A DATA FILE
	df.to_csv(MYDIR+'/myInputs.txt',date_format='%Y-%m-%dT%H:%M:%S',float_format="%.2f",header=False, sep=" ")
	

	# WRITE THE INPUTS FILE
	myT = [ time2J2000(str(t),J2000REF) for t in df.index ]

	filename = MYDIR+"/inputs.txt"
	fmt = 'e'
	sftFmt = ''
	with open(filename, "w") as myFile:
	    for ti,di,tempi,vxi,vyi,vzi,bxi,byi,bzi,rsrci,lonsrci,rtgti,lontgti,qfi in zip(myT, df['Density'], df['Temperature'], df['Vx'], df['Vy'], df['Vz'], df['Bx'], df['By'], df['Bz'], df['R_source'], df['Lon_source'],df['R_target'],df['Lon_target'],df['QualityFlag']):
	        line = [sftFmt,ti,format(di, fmt),format(tempi, fmt),format(vxi, fmt),format(vyi, fmt),format(vzi, fmt),format(bxi, fmt),format(byi, fmt),format(bzi, fmt),format(rsrci, fmt),format(lonsrci, fmt),format(rtgti, fmt),format(lontgti, fmt),format(qfi, fmt)]
	        myFile.write('   '.join(line)+'\n')

	myFile.close()

	# SW MHD CODE
	writeNamelist(MYDIR,idprop,xmax1,xmin1)
	logger.info('Computing solar wind propagation ...')
	os.system('sw.exe')
	
	# PROCESSING OUTPUTS OF SW CODE
	years,months,days,t,n,temp,vx,vy,by,pdyn,dphi,qualFlag = np.loadtxt(MYDIR+'/outputs.txt', comments="#", unpack="True", dtype=str,usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11))

	myDates = []
	for yi,mi,di,ti, in zip(years,months,days,t):
		if ti=='24:00:00':
			ti='23:00:00'
		myDates.append(datetime.strptime(yi+'-'+mi+'-'+di+' '+ti, '%Y-%m-%d %H:%M:%S'))
	
	myDates = np.array(myDates)

	outputsData = np.array([myDates,n.astype(float),temp.astype(float),vx.astype(float),vy.astype(float),by.astype(float),pdyn.astype(float),dphi.astype(float),qualFlag.astype(float)])
	outputsColumns = ['Time','Density','Temperature','Vx','Vy','By','pdyn','dphi','qualFlag']
	outputs = pd.DataFrame(data=outputsData.T,columns=outputsColumns)
	outputs = outputs.set_index('Time')

	outputs = outputs.truncate(before=start)

	outputs.to_csv(MYDIR+'/myOutputs.txt',date_format='%Y-%m-%dT%H:%M:%S',float_format="%.2f",header=False, sep=" ")

	# WRITE THE NETCDF OUTPUT
	ddTime = []
	for ti in outputs.index:
		ddTime.append(str(ti.year)+'{:03}'.format(ti.dayofyear-1)+'{:02}'.format(ti.hour)+'{:02}'.format(ti.minute)+'{:02}'.format(ti.second)+'000')

   	with open('ddTime.txt','w') as ddFile:
		os.system('chmod ug+w ddTime.txt')
   		for i in ddTime:
   			ddFile.write(i+'\n')
   
   	ddFile.close()
f5a5ef6f   Elena.Budnik   work
246
247
248
249
250
251
   	
	if not os.path.exists(SW2NC):
		os.makedirs(SW2NC,0775)
		
   	ncFile = SW2NC+'/'+os.path.basename(xmlFile).split('.')[0]+'.nc'
	 
90a0ee4e   Elena.Budnik   python
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
	os.system('WriteDDTime '+ncFile)

	os.system('chmod ug+w ' + ncFile)

	nc = Dataset( ncFile, "a", format="NETCDF4" )

	nc.createDimension( "Vector", 2 )

	v = [ (vix, viy) for vix, viy in zip(np.array(outputs['Vx']), np.array(outputs['Vy'])) ]

	velocityVar    = nc.createVariable( 'V', 'f4', (u'Time', u'Vector') )
	velocityVar.units = 'km/s'
	velocityVar[:] = v

	magVar    = nc.createVariable( 'B', 'f4', (u'Time',) )
	magVar.units = 'nT'
	magVar[:] = np.array(outputs['By'])

	densityVar    = nc.createVariable( 'N', 'f4', (u'Time',) )
	densityVar.units = 'cm-3'
	densityVar[:] = np.array(outputs['Density'])

	temperatureVar    = nc.createVariable( 'T', 'f4', (u'Time',) )
	tempKelvin = [ tempi/11600.0 for tempi in np.array(outputs['Temperature']) ]
	temperatureVar.units = 'K'
	temperatureVar[:] = tempKelvin

	deltaPhiVar    = nc.createVariable( 'Delta_angle', 'f4', (u'Time',) )
	deltaPhiVar.units = 'degrees'
	deltaPhiVar[:] = np.array(outputs['dphi'])

	pdynVar    = nc.createVariable( 'P_dyn', 'f4', (u'Time',) )
	pdynVar.units = 'nPa'
	pdynVar[:] = np.array(outputs['pdyn'])

	qualFlagVar    = nc.createVariable( 'QualityFlag', 'i4', (u'Time',) )
	qualFlagVar[:] = np.array(outputs['qualFlag'])
	                     
	globAttr = {'Source': 'Solar Wind Model', 'Created': str(datetime.now())}
	nc.setncatts( globAttr )

	nc.close()

	# END OF PROCESS
	os.system('mv namelist '+MYDIR)
	os.system('mv fort.* '+MYDIR)
	os.system('mv ddTime.txt '+MYDIR)
	stop_time = myTime.time() 
	interval = stop_time - start_time
	logger.info('Program terminated in ' + '{:.2f}'.format(interval) + ' seconds.')

def checkArgs(nbArgs, message):
	if len(sys.argv) != nbArgs:
		print(message)
		sys.exit(2)

def initLogger(logfile):
	logger = logging.getLogger()
	logger.setLevel(logging.INFO)
 
	fileFormatter = logging.Formatter('%(asctime)s :: [%(levelname)s] :: %(message)s')
	fileHandler   = RotatingFileHandler(logfile, 'a', 1000000, 1)
	fileHandler.setLevel(logging.ERROR)
	fileHandler.setFormatter(fileFormatter)
	logger.addHandler(fileHandler)
 
	consoleFormatter = logging.Formatter('[%(levelname)s] %(message)s')
	consoleHandler   = logging.StreamHandler()
	consoleHandler.setLevel(logging.INFO)
	consoleHandler.setFormatter(consoleFormatter)
	logger.addHandler(consoleHandler)

	return logger


def getXMLConfig(XMLFilename):

	myXml    = etree.parse(XMLFilename)
	start    = myXml.xpath("/MISSION/START")[0].text
	stop     = myXml.xpath("/MISSION/STOP")[0].text
	plasmaVI = myXml.xpath("/MISSION/PLASMA_VI")[0].text
	srcVI    = myXml.xpath("/MISSION/SOURCE_VI")[0].text
	srcR     = myXml.xpath("/MISSION/SOURCE_R_PARAM")[0].text
	srcLon   = myXml.xpath("/MISSION/SOURCE_LON_PARAM")[0].text
	tgtVI    = myXml.xpath("/MISSION/TARGET_VI")[0].text
	tgtR     = myXml.xpath("/MISSION/TARGET_R_PARAM")[0].text
	tgtLon   = myXml.xpath("/MISSION/TARGET_LON_PARAM")[0].text

	return start,stop,plasmaVI,srcVI,srcR,srcLon,tgtVI,tgtR,tgtLon


def getMarginDays(tgtName):
	if tgtName == 'mercury':
		distAU == 0.48
	elif tgtName == 'venus':
		distAU = 0.48
	elif tgtName == 'mars':
		distAU = 0.52
	elif tgtName == 'jupiter':
		distAU = 4.21
	elif tgtName == 'saturn':
		distAU = 8.54
	elif tgtName == 'p67':
		distAU = 4.0
	elif tgtName == 'juno':
		distAU = 6.0
	else:
		distAU = 9.0

	return np.ceil( (distAU*150000000)/(200*24*3600) )

def shiftedDate(myDate, days=0, hours=0, minutes=0, seconds=0):
    fmt    = "%Y-%m-%dT%H:%M:%S"
    d      = datetime.strptime(myDate, fmt)

    myShiftedDate = d + timedelta(days=days, hours=hours, minutes=minutes, seconds=seconds)

    return myShiftedDate.strftime("%Y-%m-%dT%H:%M:%S")

def time2ddtime(myDate):
    fmt    = "%Y-%m-%dT%H:%M:%S"
    d      = datetime.strptime(myDate, fmt)
    dddoy  = '{:03}'.format(int(d.strftime("%j"))-1)
    hour   = '{:02}'.format(d.hour)
    minute = '{:02}'.format(d.minute)
    second = '{:02}'.format(d.second)
    
    ddtime = str(d.year) + dddoy + hour + minute + second +'000'

    return ddtime

def timeDelta(date1, date2):
    fmt    = "%Y-%m-%dT%H:%M:%S"
    d1     = datetime.strptime(date1, fmt) 
    d2     = datetime.strptime(date2, fmt) 
    td = d2 - d1

    intDays    = td.days
    intHours   = td.seconds//3600
    intMinutes = (td.seconds//60)%60
    intSeconds = td.seconds-intHours*3600-intMinutes*60

    return intDays, intHours, intMinutes, intSeconds

def DDTimeDelta(date1, date2):
    interD, interH, interM, interS = timeDelta(date1, date2)
    ddTimeDelta = '0000' + '{:03}'.format(interD) + '{:02}'.format(interH) + '{:02}'.format(interM) + '{:02}'.format(interS) + '000'

    return ddTimeDelta

def ddTime2Datetime(ddTime):
    myDatetime = []
    for t in ddTime:
        year = int(t[0:4])
        day = int(t[4:7]) + 1
        myDate = datetime(year, 1, 1) + timedelta(day - 1)
        
        hour = int(t[7:9])
        minute = int(t[9:11])
        seconds = int(t[11:13])
        ms = int(t[13:16])*1000
        myTime = time(hour, minute,seconds,ms)
        
        myDatetime.append( datetime.combine(myDate, myTime) )
            
    return myDatetime

f5a5ef6f   Elena.Budnik   work
419
# ISO to J2000
90a0ee4e   Elena.Budnik   python
420
421
422
423
424
425
def time2J2000(myDate, j2000):
    fmt    = "%Y-%m-%d %H:%M:%S"
    d      = int(datetime.strptime(myDate, fmt).strftime("%s"))

    return str(d-j2000)

f5a5ef6f   Elena.Budnik   work
426
# make NAMELIST
90a0ee4e   Elena.Budnik   python
427
428
429
430
431
432
433
def writeNamelist(directory,idprop,xmax1,xmin1):
	with open('namelist', "w") as nl:
		nl.write('&INPARA1\n')
		nl.write('	idp_in=1\n')
		nl.write('	idp_prop=1\n')
		nl.write('	idp_out=1\n')
		#nl.write('	angref(1)=0.,30.,60.,90.,120.,150.,180.,210.,240.,270.,300.,330.\n')
af920889   Elena.Budnik   ajust
434
		nl.write('	angref(1)=0.,60.,120.,180.,240.,300.\n')
90a0ee4e   Elena.Budnik   python
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
		nl.write('	idprop='+str(idprop)+'\n')
		nl.write('	fnin=\''+directory+'/inputs.txt\'\n')
		nl.write('	fnout=\''+directory+'/outputs.txt\'\n')
		nl.write('	fdirtmp=\''+directory+'/\'\n')
		nl.write('	instop=0\n')
		nl.write('	dtr=300.\n')
		nl.write('	touts=12.\n')
		nl.write('	xmin1='+str(xmin1)+'\n')
		nl.write('	xmax1='+str(xmax1)+'\n')
		nl.write('/\n')
		nl.write('&INPARA2\n')
		nl.write('	npout=10\n')
		nl.write('	bx0at1au=0.001d0\n')
		nl.write('	gm=1.40\n')
		nl.write('/\n')
	nl.close()

if __name__ == '__main__':
	main()