wcscon.java
37.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
//=== File Prolog =============================================================
// This code was developed by NASA, Goddard Space Flight Center, Code 588
// for the Scientist's Expert Assistant (SEA) project.
//
//--- Contents ----------------------------------------------------------------
// class wcscon
//
//--- Description -------------------------------------------------------------
//
//--- Notes -------------------------------------------------------------------
//
//--- Development History -----------------------------------------------------
//
// 07/16/98 J. Jones / 588
//
// Original implementation.
//
//--- DISCLAIMER---------------------------------------------------------------
//
// This software is provided "as is" without any warranty of any kind, either
// express, implied, or statutory, including, but not limited to, any
// warranty that the software will conform to specification, any implied
// warranties of merchantability, fitness for a particular purpose, and
// freedom from infringement, and any warranty that the documentation will
// conform to the program, or any warranty that the software will be error
// free.
//
// In no event shall NASA be liable for any damages, including, but not
// limited to direct, indirect, special or consequential damages, arising out
// of, resulting from, or in any way connected with this software, whether or
// not based upon warranty, contract, tort or otherwise, whether or not
// injury was sustained by persons or property or otherwise, and whether or
// not loss was sustained from or arose out of the results of, or use of,
// their software or services provided hereunder.
//
//=== End File Prolog =========================================================
/*** File wcscon.c
*** Doug Mink, Harvard-Smithsonian Center for Astrophysics
*** Based on Starlink subroutines by Patrick Wallace
*** March 20, 1997
* Module: wcscon.c (World Coordinate System conversion)
* Purpose: Convert between various sky coordinate systems
* Subroutine: fk524 (ra,dec) Convert J2000(FK5) to B1950(FK4) coordinates
* Subroutine: fk524e (ra, dec, epoch) (more accurate for known position epoch
* Subroutine: fk524m (ra,dec,rapm,decpm) exact
* Subroutine: fk425 (ra,dec) Convert B1950(FK4) to J2000(FK5) coordinates
* Subroutine: fk425e (ra, dec, epoch) (more accurate for known position epoch
* Subroutine: fk425m (ra, dec, rapm, decpm) exact
* Subroutine: fk42gal (dtheta,dphi) Convert B1950(FK4) to galactic coordinates
* Subroutine: fk52gal (dtheta,dphi) Convert J2000(FK5) to galactic coordinates
* Subroutine: gal2fk4 (dtheta,dphi) Convert galactic coordinates to B1950(FK4)
* Subroutine: gal2fk5 (dtheta,dphi) Convert galactic coordinates to J2000<FK5)
* Subroutine: fk5prec (ep0, ep1, ra, dec) Precession ep0 to ep1, FK5 system
* Subroutine: fk4prec (ep0, ep1, ra, dec) Precession ep0 to ep1, FK4 system
*/
package jsky.coords;
import java.awt.geom.*;
@SuppressWarnings({"SuspiciousNameCombination"})
public class wcscon {
/* Constant vector and matrix (by columns)
These values were obtained by inverting C.Hohenkerk's forward matrix
(private communication), which agrees with the one given in reference
2 but which has one additional decimal place. */
static double a[] = {-1.62557e-6, -0.31919e-6, -0.13843e-6};
static double ad[] = {1.245e-3, -1.580e-3, -0.659e-3};
/* FK524 convert J2000 FK5 star data to B1950 FK4
based on Starlink sla_fk524 by P.T.Wallace 27 October 1987 */
static double[][] emi = {
{0.999925679499910, -0.011181482788805, -0.004859004008828,
-0.000541640798032, -0.237963047085011, 0.436218238658637},
{0.011181482840782, 0.999937484898031, -0.000027155744957,
0.237912530551179, -0.002660706488970, -0.008537588719453},
{0.004859003889183, -0.000027177143501, 0.999988194601879,
-0.436101961325347, 0.012258830424865, 0.002119065556992},
{-0.000002423898405, 0.000000027105439, 0.000000011777422,
0.999904322043106, -0.011181451601069, -0.004858519608686},
{-0.000000027105439, -0.000002423927017, 0.000000000065851,
0.011181451608968, 0.999916125340107, -0.000027162614355},
{-0.000000011777422, 0.000000000065846, -0.000002424049954,
0.004858519590501, -0.000027165866691, 0.999966838131419}};
/* Right ascension in degrees (J2000 in, B1950 out) */
/* Declination in degrees (J2000 in, B1950 out) */
public static Point2D.Double fk524(Point2D.Double input) {
/* Proper motion in right ascension */
/* Proper motion in declination */
/* In: deg/jul.yr. Out: deg/trop.yr. */
Point2D.Double pm = new Point2D.Double(0.0, 0.0);
return fk524m(input, pm);
}
/* Right ascension in degrees (J2000 in, B1950 out) */
/* Declination in degrees (J2000 in, B1950 out) */
/* Besselian epoch in years */
public static Point2D.Double fk524e(Point2D.Double input, double epoch) {
/* Proper motion in right ascension */
/* Proper motion in declination */
/* In: deg/jul.yr. Out: deg/trop.yr. */
Point2D.Double pm = new Point2D.Double(0.0, 0.0);
Point2D.Double output = fk524m(input, pm);
output.x = output.x + (pm.x * (epoch - 1950.0));
output.y = output.y + (pm.y * (epoch - 1950.0));
return output;
}
/* Right ascension in degrees (J2000 in, B1950 out) */
/* Declination in degrees (J2000 in, B1950 out) */
/* Proper motion in right ascension */
/* Proper motion in declination */
/* In: deg/jul.yr. Out: deg/trop.yr. */
/* This routine converts stars from the new, IAU 1976, FK5, Fricke
system, to the old, Bessel-Newcomb, FK4 system, using Yallop's
implementation (see ref 2) of a matrix method due to Standish
(see ref 3). The numerical values of ref 2 are used canonically.
* Notes:
1) The proper motions in ra are dra / dt rather than
cos(dec) * dra / dt, and are per year rather than per century.
2) Note that conversion from Julian epoch 2000.0 to Besselian
epoch 1950.0 only is provided for. Conversions involving
other epochs will require use of the appropriate precession,
proper motion, and e-terms routines before and/or after
fk524 is called.
3) In the fk4 catalogue the proper motions of stars within
10 degrees of the poles do not embody the differential
e - term effect and should, strictly speaking, be handled
in a different manner from stars outside these regions.
however, given the general lack of homogeneity of the star
data available for routine astrometry, the difficulties of
handling positions that may have been determined from
astrometric fields spanning the polar and non - polar regions,
the likelihood that the differential e - terms effect was not
taken into account when allowing for proper motion in past
astrometry, and the undesirability of a discontinuity in
the algorithm, the decision has been made in this routine to
include the effect of differential e - terms on the proper
motions for all stars, whether polar or not. at epoch 2000,
and measuring on the sky rather than in terms of dra, the
errors resulting from this simplification are less than
1 milliarcsecond in position and 1 milliarcsecond per
century in proper motion.
References:
1 "Mean and apparent place computations in the new IAU System.
I. The transformation of astrometric catalog systems to the
equinox J2000.0." Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Yallop, B.D.; Hohenkerk, C.Y.
Astronomical Journal vol. 97, Jan. 1989, p. 265-273.
2 "Mean and apparent place computations in the new IAU System.
II. Transformation of mean star places from FK4 B1950.0 to
FK5 J2000.0 using matrices in 6-space." Yallop, B.D.;
Hohenkerk, C.Y.; Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Astronomical Journal vol. 97, Jan. 1989,
p. 274-279.
3 "Conversion of positions and proper motions from B1950.0 to the
IAU system at J2000.0", Standish, E.M. Astronomy and
Astrophysics, vol. 115, no. 1, Nov. 1982, p. 20-22.
P.T.Wallace Starlink 27 October 1987
Doug Mink Smithsonian Astrophysical Observatory 7 June 1995 */
public static Point2D.Double fk524m(Point2D.Double input, Point2D.Double pm) {
double r2000,d2000; /* J2000.0 ra,dec (radians) */
double dr2000,dd2000; /* J2000.0 proper motions (rad/jul.yr)*/
double r1950,d1950; /* B1950.0 ra,dec (rad) */
double dr1950,dd1950; /* B1950.0 proper motions (rad/trop.yr) */
/* Miscellaneous */
double ur,ud;
double sr,cr,sd,cd,x,y,z,w;
double v1[] = new double[6], v2[] = new double[6];
double xd,yd,zd;
double rxyz,rxysq,rxy;
int i,j;
/* Constants */
double d2pi = 6.283185307179586476925287; /* two PI */
double pmf; /* radians per year to arcsec per century */
double tiny = 1.e-30; /* small number to avoid arithmetic problems */
double zero = 0.0;
pmf = 100. * 60. * 60. * 360. / d2pi;
/* Pick up J2000 data (units radians and arcsec / jc) */
r2000 = WCSTransform.degrad(input.x);
d2000 = WCSTransform.degrad(input.y);
dr2000 = WCSTransform.degrad(pm.x);
dd2000 = WCSTransform.degrad(pm.y);
ur = dr2000 * pmf;
ud = dd2000 * pmf;
/* Spherical to Cartesian */
sr = Math.sin(r2000);
cr = Math.cos(r2000);
sd = Math.sin(d2000);
cd = Math.cos(d2000);
x = cr * cd;
y = sr * cd;
z = sd;
v1[0] = x;
v1[1] = y;
v1[2] = z;
if (ur != zero || ud != zero) {
v1[3] = -(ur * y) - (cr * sd * ud);
v1[4] = (ur * x) - (sr * sd * ud);
v1[5] = (cd * ud);
} else {
v1[3] = zero;
v1[4] = zero;
v1[5] = zero;
}
/* Convert position + velocity vector to bn system */
for (i = 0; i < 6; i++) {
w = zero;
for (j = 0; j < 6; j++) {
w = w + emi[j][i] * v1[j];
}
v2[i] = w;
}
/* Vector components */
x = v2[0];
y = v2[1];
z = v2[2];
xd = v2[3];
yd = v2[4];
zd = v2[5];
/* Magnitude of position vector */
rxyz = Math.sqrt(x * x + y * y + z * z);
/* Include e-terms */
x = x + a[0] * rxyz;
y = y + a[1] * rxyz;
z = z + a[2] * rxyz;
xd = xd + ad[0] * rxyz;
yd = yd + ad[1] * rxyz;
zd = zd + ad[2] * rxyz;
/* Convert to spherical */
rxysq = x * x + y * y;
rxy = Math.sqrt(rxysq);
if (x == zero && y == zero)
r1950 = zero;
else {
r1950 = Math.atan2(y, x);
if (r1950 < zero)
r1950 = r1950 + d2pi;
}
d1950 = Math.atan2(z, rxy);
if (rxy > tiny) {
ur = (x * yd - y * xd) / rxysq;
ud = (zd * rxysq - z * (x * xd + y * yd)) / ((rxysq + z * z) * rxy);
}
dr1950 = ur / pmf;
dd1950 = ud / pmf;
/* Return results */
input.x = WCSTransform.raddeg(r1950);
input.y = WCSTransform.raddeg(d1950);
pm.x = WCSTransform.raddeg(dr1950);
pm.y = WCSTransform.raddeg(dd1950);
// if (diag > 0) {
// scon = WCSTransform.raddeg(3.6e3);
// tcon = WCSTransform.raddeg(2.4e2);
// ddec = scon * (d1950 - d2000);
// printf("B1950-J2000: dra= %11.5f sec ddec= %f11.5f arcsec\n",
// dra, ddec);
// }
return input;
}
/* Convert B1950.0 fk4 star data to J2000.0 fk5 */
static double[][] em = {
{0.999925678186902, 0.011182059571766, 0.004857946721186,
-0.000541652366951, 0.237917612131583, -0.436111276039270},
{-0.011182059642247, 0.999937478448132, -0.000027147426498,
-0.237968129744288, -0.002660763319071, 0.012259092261564},
{-0.004857946558960, -0.000027176441185, 0.999988199738770,
0.436227555856097, -0.008537771074048, 0.002119110818172},
{0.000002423950176, 0.000000027106627, 0.000000011776559,
0.999947035154614, 0.011182506007242, 0.004857669948650},
{-0.000000027106627, 0.000002423978783, -0.000000000065816,
-0.011182506121805, 0.999958833818833, -0.000027137309539},
{-0.000000011776558, -0.000000000065874, 0.000002424101735,
-0.004857669684959, -0.000027184471371, 1.000009560363559}};
/* Right ascension in degrees (B1950 in, J2000 out) */
/* Declination in degrees (B1950 in, J2000 out) */
public static Point2D.Double fk425(Point2D.Double input) {
/* Proper motion in right ascension */
/* Proper motion in declination */
/* In: rad/trop.yr. Out: rad/jul.yr. */
Point2D.Double pm = new Point2D.Double(0.0, 0.0);
return fk425m(input, pm);
}
/* Right ascension in degrees (B1950 in, J2000 out) */
/* Declination in degrees (B1950 in, J2000 out) */
/* Besselian epoch in years */
public static Point2D.Double fk425e(Point2D.Double input, double epoch) {
/* Proper motion in right ascension */
/* Proper motion in declination */
/* In: rad/trop.yr. Out: rad/jul.yr. */
Point2D.Double pm = new Point2D.Double(0.0, 0.0);
Point2D.Double output = fk425m(input, pm);
output.x = output.x + (pm.x * (epoch - 2000.0));
output.y = output.y + (pm.y * (epoch - 2000.0));
return output;
}
/* Right ascension and declination in degrees
input: B1950.0,fk4 returned: J2000.0,fk5 */
/* Proper motion in right ascension and declination
input: B1950.0,fk4 returned: J2000.0,fk5
deg/trop.yr. deg/jul.yr. */
/* This routine converts stars from the old, Bessel-Newcomb, FK4
system to the new, IAU 1976, FK5, Fricke system, using Yallop's
implementation (see ref 2) of a matrix method due to Standish
(see ref 3). The numerical values of ref 2 are used canonically.
Notes:
1) The proper motions in ra are dra/dt rather than
cos(dec)*dra/dt, and are per year rather than per century.
2) Conversion from besselian epoch 1950.0 to Julian epoch
2000.0 only is provided for. Conversions involving other
epochs will require use of the appropriate precession,
proper motion, and e-terms routines before and/or
after fk425 is called.
3) In the FK4 catalogue the proper motions of stars within
10 degrees of the poles do not embody the differential
e-term effect and should, strictly speaking, be handled
in a different manner from stars outside these regions.
However, given the general lack of homogeneity of the star
data available for routine astrometry, the difficulties of
handling positions that may have been determined from
astrometric fields spanning the polar and non-polar regions,
the likelihood that the differential e-terms effect was not
taken into account when allowing for proper motion in past
astrometry, and the undesirability of a discontinuity in
the algorithm, the decision has been made in this routine to
include the effect of differential e-terms on the proper
motions for all stars, whether polar or not. At epoch 2000,
and measuring on the sky rather than in terms of dra, the
errors resulting from this simplification are less than
1 milliarcsecond in position and 1 milliarcsecond per
century in proper motion.
References:
1 "Mean and apparent place computations in the new IAU System.
I. The transformation of astrometric catalog systems to the
equinox J2000.0." Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Yallop, B.D.; Hohenkerk, C.Y.
Astronomical Journal vol. 97, Jan. 1989, p. 265-273.
2 "Mean and apparent place computations in the new IAU System.
II. Transformation of mean star places from FK4 B1950.0 to
FK5 J2000.0 using matrices in 6-space." Yallop, B.D.;
Hohenkerk, C.Y.; Smith, C.A.; Kaplan, G.H.; Hughes, J.A.;
Seidelmann, P.K.; Astronomical Journal vol. 97, Jan. 1989,
p. 274-279.
3 "Conversion of positions and proper motions from B1950.0 to the
IAU system at J2000.0", Standish, E.M. Astronomy and
Astrophysics, vol. 115, no. 1, Nov. 1982, p. 20-22.
P.T.Wallace Starlink 27 October 1987
Doug Mink Smithsonian Astrophysical Observatory 7 June 1995 */
public static Point2D.Double fk425m(Point2D.Double input, Point2D.Double pm) {
double r1950,d1950; /* B1950.0 ra,dec (rad) */
double dr1950,dd1950; /* B1950.0 proper motions (rad/trop.yr) */
double r2000,d2000; /* J2000.0 ra,dec (rad) */
double dr2000,dd2000; /*J2000.0 proper motions (rad/jul.yr) */
/* Miscellaneous */
double ur,ud,sr,cr,sd,cd,w,wd;
double x,y,z,xd,yd,zd;
double rxysq,rxyzsq,rxy,spxy;
int i,j;
double r0[] = new double[3], r1[] = new double[3]; /* star position and velocity vectors */
double v1[] = new double[6], v2[] = new double[6]; /* combined position and velocity vectors */
/* Constants */
double d2pi = 6.283185307179586476925287; /* two PI */
double pmf; /* radians per year to arcsec per century */
double tiny = 1.e-30; /* small number to avoid arithmetic problems */
double zero = 0.0;
pmf = 100 * 60 * 60 * 360 / d2pi;
/* Pick up B1950 data (units radians and arcsec / tc) */
r1950 = WCSTransform.degrad(input.x);
d1950 = WCSTransform.degrad(input.y);
dr1950 = WCSTransform.degrad(pm.x);
dd1950 = WCSTransform.degrad(pm.y);
ur = dr1950 * pmf;
ud = dd1950 * pmf;
/* Spherical to cartesian */
sr = Math.sin(r1950);
cr = Math.cos(r1950);
sd = Math.sin(d1950);
cd = Math.cos(d1950);
r0[0] = cr * cd;
r0[1] = sr * cd;
r0[2] = sd;
r1[0] = -sr * cd * ur - cr * sd * ud;
r1[1] = cr * cd * ur - sr * sd * ud;
r1[2] = cd * ud;
/* Allow for e-terms and express as position + velocity 6-vector */
w = r0[0] * a[0] + r0[1] * a[1] + r0[2] * a[2];
wd = r0[0] * ad[0] + r0[1] * ad[1] + r0[2] * ad[2];
for (i = 0; i < 3; i++) {
v1[i] = r0[i] - a[i] + w * r0[i];
v1[i + 3] = r1[i] - ad[i] + wd * r0[i];
}
/* Convert position + velocity vector to Fricke system */
for (i = 0; i < 6; i++) {
w = zero;
for (j = 0; j < 6; j++) {
w = w + em[j][i] * v1[j];
}
v2[i] = w;
}
/* Revert to spherical coordinates */
x = v2[0];
y = v2[1];
z = v2[2];
xd = v2[3];
yd = v2[4];
zd = v2[5];
rxysq = x * x + y * y;
rxyzsq = rxysq + z * z;
rxy = Math.sqrt(rxysq);
spxy = x * xd + y * yd;
if (x == zero && y == zero)
r2000 = zero;
else {
r2000 = Math.atan2(y, x);
if (r2000 < zero)
r2000 = r2000 + d2pi;
}
d2000 = Math.atan2(z, rxy);
if (rxy > tiny) {
ur = (x * yd - y * xd) / rxysq;
ud = (zd * rxysq - z * spxy) / (rxyzsq * rxy);
}
dr2000 = ur / pmf;
dd2000 = ud / pmf;
/* Return results */
input.x = WCSTransform.raddeg(r2000);
input.y = WCSTransform.raddeg(d2000);
pm.x = WCSTransform.raddeg(dr2000);
pm.y = WCSTransform.raddeg(dd2000);
// if (diag > 0) {
// scon = WCSTransform.raddeg(3.6e3);
// tcon = WCSTransform.raddeg(2.4e2);
// printf("J2000-B1950: dra= %11.5f sec ddec= %f11.5f arcsec\n",
// dra, ddec);
// }
return input;
}
static int idg = 0;
/* l2,b2 system of galactic coordinates
* p = 192.25 ra of galactic north pole (mean b1950.0)
* q = 62.6 inclination of galactic to mean b1950.0 equator
* r = 33 longitude of ascending node
* p,q,r are degrees
* Equatorial to galactic rotation matrix
(The Eulerian angles are p, q, 90-r)
+cp.cq.sr-sp.cr +sp.cq.sr+cp.cr -sq.sr
-cp.cq.cr-sp.sr -sp.cq.cr+cp.sr +sq.cr
cp.sq +sp.sq +cq
*/
static double[][] bgal = {
{-0.066988739415, -0.872755765852, -0.483538914632},
{0.492728466075, -0.450346958020, 0.744584633283},
{-0.867600811151, -0.188374601723, 0.460199784784}};
/*--- Transform b1950.0 'fk4' equatorial coordinates to
* IAU 1958 galactic coordinates */
/* b1950.0 'fk4' ra in degrees
Galactic longitude (l2) in degrees (returned) */
/* b1950.0 'fk4' dec in degrees
Galactic latitude (b2) in degrees (returned) */
/* Note: The equatorial coordinates are b1950.0 'fk4'. use the
routine jpgalj if conversion from j2000.0 coordinates
is required.
Reference: blaauw et al, MNRAS,121,123 (1960) */
public static Point2D.Double fk42gal(Point2D.Double input) {
double pos[] = new double[3],pos1[] = new double[3],dl,db,rra,rdec,dra,ddec;
int i;
dra = input.x;
ddec = input.y;
rra = WCSTransform.degrad(dra);
rdec = WCSTransform.degrad(ddec);
/* remove e-terms */
/* call jpabe (rra,rdec,-1,idg) */
/* Spherical to Cartesian */
Point2D.Double pos0 = new Point2D.Double();
Point2D.Double pos2 = new Point2D.Double();
jpcop(rra, rdec, 1.0, pos0, pos2);
pos[0] = pos0.x;
pos[1] = pos0.y;
pos[2] = pos2.x;
/* rotate to galactic */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0] * bgal[i][0] + pos[1] * bgal[i][1] + pos[2] * bgal[i][2];
}
/* Cartesian to spherical */
Point2D.Double rPos = new Point2D.Double();
Point2D.Double r = new Point2D.Double();
jpcon(pos1, rPos, r);
dl = WCSTransform.raddeg(rPos.x);
db = WCSTransform.raddeg(rPos.y);
input.x = dl;
input.y = db;
/* Print result if in diagnostic mode */
if (idg > 0) {
//eqcoor = eqstrn (dra,ddec);
//printf ("FK42GAL: B1950 RA,Dec= %s\n",eqcoor);
//printf ("FK42GAL: long = %.5f lat = %.5f\n",dl,db);
//free (eqcoor);
}
return input;
}
/*--- Transform IAU 1958 galactic coordinates to B1950.0 'fk4'
* equatorial coordinates */
/* Galactic longitude (l2) in degrees
B1950 FK4 RA in degrees (returned) */
/* Galactic latitude (b2) in degrees
B1950 FK4 Dec in degrees (returned) */
/* Note:
The equatorial coordinates are B1950.0 FK4. Use the
routine GAL2FK5 if conversion to J2000 coordinates
is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
public static Point2D.Double gal2fk4(Point2D.Double input) {
double pos[] = new double[3],pos1[] = new double[3],dl,db,rl,rb,dra,ddec;
int i;
/* spherical to cartesian */
dl = input.x;
db = input.y;
rl = WCSTransform.degrad(dl);
rb = WCSTransform.degrad(db);
Point2D.Double pos0 = new Point2D.Double();
Point2D.Double pos2 = new Point2D.Double();
jpcop(rl, rb, 1.0, pos0, pos2);
pos[0] = pos0.x;
pos[1] = pos0.y;
pos[2] = pos2.x;
/* rotate to equatorial coordinates */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0] * bgal[0][i] + pos[1] * bgal[1][i] + pos[2] * bgal[2][i];
}
/* cartesian to spherical */
Point2D.Double rPos = new Point2D.Double();
Point2D.Double r = new Point2D.Double();
jpcon(pos1, rPos, r);
/* introduce e-terms */
/* jpabe (rra,rdec,-1,idg); */
dra = WCSTransform.raddeg(rPos.x);
ddec = WCSTransform.raddeg(rPos.y);
input.x = dra;
input.y = ddec;
/* print result if in diagnostic mode */
if (idg > 0) {
//printf ("GAL2FK4: long = %.5f lat = %.5f\n",dl,db);
//eqcoor = eqstrn (dra,ddec);
//printf ("GAL2FK4: B1950 RA,Dec= %s\n",eqcoor);
//free (eqcoor);
}
return input;
}
/* l2,b2 system of galactic coordinates
p = 192.25 ra of galactic north pole (mean b1950.0)
q = 62.6 inclination of galactic to mean b1950.0 equator
r = 33 longitude of ascending node
p,q,r are degrees */
/* Equatorial to galactic rotation matrix
The eulerian angles are p, q, 90-r
+cp.cq.sr-sp.cr +sp.cq.sr+cp.cr -sq.sr
-cp.cq.cr-sp.sr -sp.cq.cr+cp.sr +sq.cr
+cp.sq +sp.sq +cq */
static double[][] jgal = {
{-0.054875539726, -0.873437108010, -0.483834985808},
{0.494109453312, -0.444829589425, 0.746982251810},
{-0.867666135858, -0.198076386122, 0.455983795705}};
/* Transform J2000 equatorial coordinates to IAU 1958 galactic coordinates */
/* J2000 right ascension in degrees
Galactic longitude (l2) in degrees (returned) */
/* J2000 declination in degrees
Galactic latitude (b2) in degrees (returned) */
/* Rotation matrices by P.T.Wallace, Starlink eqgal and galeq, March 1986 */
/* Note:
The equatorial coordinates are J2000 FK5. Use the routine
GAL2FK4 if conversion from B1950 FK4 coordinates is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
public static Point2D.Double fk52gal(Point2D.Double input) {
double pos[] = new double[3],pos1[] = new double[3],dl,db,rra,rdec,dra,ddec;
int i;
/* Spherical to cartesian */
dra = input.x;
ddec = input.y;
rra = WCSTransform.degrad(dra);
rdec = WCSTransform.degrad(ddec);
Point2D.Double pos0 = new Point2D.Double();
Point2D.Double pos2 = new Point2D.Double();
jpcop(rra, rdec, 1.0, pos0, pos2);
pos[0] = pos0.x;
pos[1] = pos0.y;
pos[2] = pos2.x;
/* Rotate to galactic */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0] * jgal[i][0] + pos[1] * jgal[i][1] + pos[2] * jgal[i][2];
}
/* Cartesian to spherical */
Point2D.Double rPos = new Point2D.Double();
Point2D.Double r = new Point2D.Double();
jpcon(pos1, rPos, r);
dl = WCSTransform.raddeg(rPos.x);
db = WCSTransform.raddeg(rPos.y);
input.x = dl;
input.y = db;
/* Print result if in diagnostic mode */
if (idg > 0) {
//eqcoor = eqstrn (dra,ddec);
//printf ("FK52GAL: J2000 RA,Dec= %s\n",eqcoor);
//printf ("FK52GAL: long = %.5f lat = %.5f\n",dl,db);
//free (eqcoor);
}
return input;
}
/*--- Transform IAU 1958 galactic coordinates to J2000 equatorial coordinates */
/* Galactic longitude (l2) in degrees
J2000.0 ra in degrees (returned) */
/* Galactic latitude (b2) in degrees
J2000.0 dec in degrees (returned) */
/* Note:
The equatorial coordinates are J2000. Use the routine FK42GAL
if conversion to J2000 coordinates is required.
Reference: Blaauw et al, MNRAS,121,123 (1960) */
public static Point2D.Double gal2fk5(Point2D.Double input) {
double pos[] = new double[3],pos1[] = new double[3],dl,db,rl,rb,dra,ddec;
int i;
/* Spherical to Cartesian */
dl = input.x;
db = input.y;
rl = WCSTransform.degrad(dl);
rb = WCSTransform.degrad(db);
Point2D.Double pos0 = new Point2D.Double();
Point2D.Double pos2 = new Point2D.Double();
jpcop(rl, rb, 1.0, pos0, pos2);
pos[0] = pos0.x;
pos[1] = pos0.y;
pos[2] = pos2.x;
/* Rotate to equatorial coordinates */
for (i = 0; i < 3; i++) {
pos1[i] = pos[0] * jgal[0][i] + pos[1] * jgal[1][i] + pos[2] * jgal[2][i];
}
/* Cartesian to Spherical */
Point2D.Double rPos = new Point2D.Double();
Point2D.Double r = new Point2D.Double();
jpcon(pos1, rPos, r);
dra = WCSTransform.raddeg(rPos.x);
ddec = WCSTransform.raddeg(rPos.y);
input.x = dra;
input.y = ddec;
/* Print result if in diagnostic mode */
if (idg > 0) {
//printf ("GAL2FK5: long = %.5f lat = %.5f\n",dl,db);
//eqcoor = eqstrn (dra,ddec);
//printf ("GAL2FK5: J2000 RA,Dec= %s\n",eqcoor);
//free (eqcoor);
}
return input;
}
/* Convert geocentric equatorial rectangular coordinates to
right ascension and declination, and distance */
/* x,y,z geocentric equatorial position of object */
/* Right ascension in radians */
/* Declination in radians */
/* Distance to object in same units as pos */
protected static void jpcon(double pos[], Point2D.Double rPos, Point2D.Double r) {
double x,y,z,rxy,rxy2,z2;
x = pos[0];
y = pos[1];
z = pos[2];
rPos.x = Math.atan2(y, x);
if (rPos.x < 0.) rPos.x = rPos.x + 6.283185307179586;
rxy2 = x * x + y * y;
rxy = Math.sqrt(rxy2);
rPos.y = Math.atan2(z, rxy);
z2 = z * z;
r.x = Math.sqrt(rxy2 + z2); // store r in x component so can return through object ref
}
/* Convert right ascension, declination, and distance to
geocentric equatorial rectangular coordinates */
/* Right ascension in radians */
/* Declination in radians */
/* Distance to object in same units as pos */
/* x,y,z geocentric equatorial position of object */
protected static void jpcop(double rra, double rdec, double r, Point2D.Double result0, Point2D.Double result2) {
result0.x = r * Math.cos(rra) * Math.cos(rdec);
result0.y = r * Math.sin(rra) * Math.cos(rdec);
result2.x = r * Math.sin(rdec);
}
/* The following routines are almost verbatim from Patrick Wallace's SLALIB */
/* Starting Besselian epoch */
/* Ending Besselian epoch */
/* RA in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/* Dec in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/*
** slaPreces:
** Precession - FK4 (Bessel-Newcomb, pre-IAU1976)
**
** Note:
** This routine will not correctly convert between the old and
** the new systems - for example conversion from B1950 to J2000.
** For these purposes see fk425, fk524, fk45m and fk54m.
**
** P.T.Wallace Starlink 22 December 1993
*/
public static Point2D.Double fk4prec(double ep0, double ep1, Point2D.Double input) {
double rra = WCSTransform.degrad(input.x);
double rdec = WCSTransform.degrad(input.y);
/* Generate appropriate precession matrix */
double[][] pm = mprecfk4(ep0, ep1);
/* Convert RA,Dec to x,y,z */
double[] v1 = slasubs.slaDcs2c(rra, rdec);
/* Precess */
double[] v2 = slasubs.slaDmxv(pm, v1);
/* Back to RA,Dec */
Point2D.Double rPoint = slasubs.slaDcc2s(v2);
rra = rPoint.x;
rdec = rPoint.y;
rra = slasubs.slaDranrm(rra);
input.x = WCSTransform.raddeg(rra);
input.y = WCSTransform.raddeg(rdec);
return input;
}
/* Starting epoch */
/* Ending epoch */
/* RA in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/* Dec in degrees mean equator & equinox of epoch ep0
mean equator & equinox of epoch ep1 (returned) */
/*
** slaPreces:
** Precession - FK5 (Fricke, post-IAU1976)
**
** Note:
** This routine will not correctly convert between the old and
** the new systems - for example conversion from B1950 to J2000.
** For these purposes see fk425, fk524, fk45m and fk54m.
**
** P.T.Wallace Starlink 22 December 1993
*/
public static Point2D.Double fk5prec(double ep0, double ep1, Point2D.Double input) {
double rra = WCSTransform.degrad(input.x);
double rdec = WCSTransform.degrad(input.y);
/* Generate appropriate precession matrix */
double[][] pm = mprecfk5(ep0, ep1);
/* Convert RA,Dec to x,y,z */
double[] v1 = slasubs.slaDcs2c(rra, rdec);
/* Precess */
double[] v2 = slasubs.slaDmxv(pm, v1);
/* Back to RA,Dec */
Point2D.Double rPoint = slasubs.slaDcc2s(v2);
rra = rPoint.x;
rdec = rPoint.y;
rra = slasubs.slaDranrm(rra);
input.x = WCSTransform.raddeg(rra);
input.y = WCSTransform.raddeg(rdec);
return input;
}
/* pi/(180*3600): arcseconds to radians */
public static final double DAS2R = 4.8481368110953599358991410235794797595635330237270e-6;
/* Beginning Besselian epoch */
/* Ending Besselian epoch */
/* 3x3 Precession matrix (returned) */
/*
** slaPrebn:
** Generate the matrix of precession between two epochs,
** using the old, pre-IAU1976, Bessel-Newcomb model, using
** Kinoshita's formulation (double precision)
**
** The matrix is in the sense v(bep1) = rmatp * v(bep0)
**
** Reference:
** Kinoshita, H. (1975) 'Formulas for precession', SAO Special
** Report No. 364, Smithsonian Institution Astrophysical
** Observatory, Cambridge, Massachusetts.
**
** P.T.Wallace Starlink 30 October 1993
*/
public static double[][] mprecfk4(double bep0, double bep1) {
double bigt, t, tas2r, w, zeta, z, theta;
/* Interval between basic epoch B1850.0 and beginning epoch in TC */
bigt = (bep0 - 1850.0) / 100.0;
/* Interval over which precession required, in tropical centuries */
t = (bep1 - bep0) / 100.0;
/* Euler angles */
tas2r = t * DAS2R;
w = 2303.5548 + (1.39720 + 0.000059 * bigt) * bigt;
zeta = (w + (0.30242 - 0.000269 * bigt + 0.017996 * t) * t) * tas2r;
z = (w + (1.09478 + 0.000387 * bigt + 0.018324 * t) * t) * tas2r;
theta = (2005.1125 + (-0.85294 - 0.000365 * bigt) * bigt +
(-0.42647 - 0.000365 * bigt - 0.041802 * t) * t) * tas2r;
/* Rotation matrix */
return slasubs.slaDeuler("ZYZ", -zeta, theta, -z);
}
/* Beginning epoch */
/* Ending epoch */
/* 3x3 Precession matrix (returned) */
/*
** slaPrec:
** Form the matrix of precession between two epochs (IAU 1976, FK5).
** Notes:
** 1) The epochs are TDB (loosely ET) Julian epochs.
** 2) The matrix is in the sense v(ep1) = rmatp * v(ep0) .
**
** References:
** Lieske,J.H., 1979. Astron. Astrophys.,73,282.
** equations (6) & (7), p283.
** Kaplan,G.H., 1981. USNO circular no. 163, pa2.
**
** P.T.Wallace Starlink 31 October 1993
*/
public static double[][] mprecfk5(double ep0, double ep1) {
double t0, t, tas2r, w, zeta, z, theta;
/* Interval between basic epoch J2000.0 and beginning epoch (JC) */
t0 = (ep0 - 2000.0) / 100.0;
/* Interval over which precession required (JC) */
t = (ep1 - ep0) / 100.0;
/* Euler angles */
tas2r = t * DAS2R;
w = 2306.2181 + ((1.39656 - (0.000139 * t0)) * t0);
zeta = (w + ((0.30188 - 0.000344 * t0) + 0.017998 * t) * t) * tas2r;
z = (w + ((1.09468 + 0.000066 * t0) + 0.018203 * t) * t) * tas2r;
theta = ((2004.3109 + (-0.85330 - 0.000217 * t0) * t0)
+ ((-0.42665 - 0.000217 * t0) - 0.041833 * t) * t) * tas2r;
/* Rotation matrix */
return slasubs.slaDeuler("ZYZ", -zeta, theta, -z);
}
/*
* Nov 6 1995 Include stdlib.h instead of malloc.h
* Apr 1 1996 Add arbitrary epoch precession
* Apr 26 1996 Add FK4 <-> FK5 subroutines for use when epoch is known
* Aug 6 1996 Clean up after lint
* Nov 4 1996 Break SLA subroutines into separate file slasubs.c
* Dec 9 1996 Change arguments to degrees in FK4 and FK5 precession programs
* Dec 10 1996 All subroutine arguments are degrees except vector conversions
*
* Mar 20 1997 Drop unused variables after lint
*/
}