Blame view

src/jsky/coords/worldpos.java 23.8 KB
fe0fb87e   Elodie Bourrec   First push to cre...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
//=== File Prolog =============================================================
//	This code was developed by NASA, Goddard Space Flight Center, Code 588
//	for the Scientist's Expert Assistant (SEA) project.
//
//--- Contents ----------------------------------------------------------------
//	class worldpos
//
//--- Description -------------------------------------------------------------
//
//--- Notes -------------------------------------------------------------------
//
//--- Development History -----------------------------------------------------
//
//	07/16/98	J. Jones / 588
//
//		Original implementation.
//
//--- DISCLAIMER---------------------------------------------------------------
//
//	This software is provided "as is" without any warranty of any kind, either
//	express, implied, or statutory, including, but not limited to, any
//	warranty that the software will conform to specification, any implied
//	warranties of merchantability, fitness for a particular purpose, and
//	freedom from infringement, and any warranty that the documentation will
//	conform to the program, or any warranty that the software will be error
//	free.
//
//	In no event shall NASA be liable for any damages, including, but not
//	limited to direct, indirect, special or consequential damages, arising out
//	of, resulting from, or in any way connected with this software, whether or
//	not based upon warranty, contract, tort or otherwise, whether or not
//	injury was sustained by persons or property or otherwise, and whether or
//	not loss was sustained from or arose out of the results of, or use of,
//	their software or services provided hereunder.
//
//=== End File Prolog =========================================================

/*  worldpos.c -- WCS Algorithms from Classic AIPS.
 *  February 6, 1998
 *  Copyright (C) 1994
 *  Associated Universities, Inc. Washington DC, USA.
 *  With code added by Doug Mink, Smithsonian Astrophysical Observatory

 * Module:	worldpos.c
 * Purpose:	Perform forward and reverse WCS computations for 8 projections
 * Subroutine:	worldpos() converts from pixel location to RA,Dec
 * Subroutine:	worldpix() converts from RA,Dec         to pixel location

    This library is free software; you can redistribute it and/or modify it
    under the terms of the GNU Library General Public License as published by
    the Free Software Foundation; either version 2 of the License, or (at your
    option) any later version.

    This library is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
    License for more details.

    You should have received a copy of the GNU Library General Public License
    along with this library; if not, write to the Free Software Foundation,
    Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.

    Correspondence concerning AIPS should be addressed as follows:
	   Internet email: aipsmail@nrao.edu
	   Postal address: AIPS Group
	                   National Radio Astronomy Observatory
	                   520 Edgemont Road
	                   Charlottesville, VA 22903-2475 USA

	         -=-=-=-=-=-=-

    These two ANSI C functions, worldpos() and worldpix(), perform
    forward and reverse WCS computations for 8 types of projective
    geometries ("-SIN", "-TAN", "-ARC", "-NCP", "-GLS", "-MER", "-AIT"
    and "-STG"):

	worldpos() converts from pixel location to RA,Dec
	worldpix() converts from RA,Dec         to pixel location

    where "(RA,Dec)" are more generically (long,lat). These functions
    are based on the WCS implementation of Classic AIPS, an
    implementation which has been in production use for more than ten
    years. See the two memos by Eric Greisen

	ftp://fits.cv.nrao.edu/fits/documents/wcs/aips27.ps.Z
	ftp://fits.cv.nrao.edu/fits/documents/wcs/aips46.ps.Z

    for descriptions of the 8 projective geometries and the
    algorithms.  Footnotes in these two documents describe the
    differences between these algorithms and the 1993-94 WCS draft
    proposal (see URL below). In particular, these algorithms support
    ordinary field rotation, but not skew geometries (CD or PC matrix
    cases). Also, the MER and AIT algorithms work correctly only for
    CRVALi=(0,0). Users should note that GLS projections with yref!=0
    will behave differently in this code than in the draft WCS
    proposal.  The NCP projection is now obsolete (it is a special
    case of SIN).  WCS syntax and semantics for various advanced
    features is discussed in the draft WCS proposal by Greisen and
    Calabretta at:

	ftp://fits.cv.nrao.edu/fits/documents/wcs/wcs.all.ps.Z

	        -=-=-=-

    The original version of this code was Emailed to D.Wells on
    Friday, 23 September by Bill Cotton <bcotton@gorilla.cv.nrao.edu>,
    who described it as a "..more or less.. exact translation from the
    AIPSish..". Changes were made by Don Wells <dwells@nrao.edu>
    during the period October 11-13, 1994:
    1) added GNU license and header comments
    2) added testpos.c program to perform extensive circularity tests
    3) changed float-->double to get more than 7 significant figures
    4) testpos.c circularity test failed on MER and AIT. B.Cotton
       found that "..there were a couple of lines of code [in] the wrong
       place as a result of merging several Fortran routines."
    5) testpos.c found 0h wraparound in worldpix() and worldpos().
    6) E.Greisen recommended removal of various redundant if-statements,
       and addition of a 360d difference test to MER case of worldpos().
    7) D.Mink changed input to data structure and implemented rotation matrix.
*/

package jsky.coords;

import java.awt.geom.*;

public class worldpos {

    /* Routine to determine accurate position for pixel coordinates */
    /* returns 0 if successful otherwise 1 = angle too large for projection; */
    /* does: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT projections */
    /* anything else is linear */
    /* Input: */
    /* x pixel number  (RA or long without rotation) */
    /* y pixel number  (Dec or lat without rotation) */
    /* Output: */
    /* x (RA) coordinate (deg) */
    /* y (dec) coordinate (deg) */
    public static Point2D.Double getPosition(double xpix, double ypix, WCSTransform wcs) {
        double cosr, sinr, dx, dy, dz, tx;
        double sins, coss, dect = 0.0, rat = 0.0, dt, l, m, mg, da, dd, cos0, sin0;
        double dec0, ra0, decout, raout;
        double geo1, geo2, geo3;
        double cond2r = 1.745329252e-2;
        double twopi = 6.28318530717959;
        double deps = 1.0e-5;

        /* Structure elements */
        double xref;		/* X reference coordinate value (deg) */
        double yref;		/* Y reference coordinate value (deg) */
        double xrefpix;	/* X reference pixel */
        double yrefpix;	/* Y reference pixel */
        double xinc;		/* X coordinate increment (deg) */
        double yinc;		/* Y coordinate increment (deg) */
        double rot;		/* Optical axis rotation (deg)  (N through E) */
        int itype = wcs.pcode;

        double xpos;
        double ypos;

        /* Set local projection parameters */
        xref = wcs.xref;
        yref = wcs.yref;
        xrefpix = wcs.xrefpix;
        yrefpix = wcs.yrefpix;
        xinc = wcs.xinc;
        yinc = wcs.yinc;
        rot = WCSTransform.degrad(wcs.rot);
        cosr = Math.cos(rot);
        sinr = Math.sin(rot);

        /* Offset from ref pixel */
        dx = xpix - xrefpix;
        dy = ypix - yrefpix;

        /* Scale and rotate using CD matrix */
        if (wcs.rotmat > 0) {
            tx = dx * wcs.cd11 + dy * wcs.cd12;
            dy = dx * wcs.cd21 + dy * wcs.cd22;
            dx = tx;
        } else {
            /* Check axis increments - bail out if either 0 */
            if ((xinc == 0.0) || (yinc == 0.0)) {
                return null;
            }

            /* Scale using CDELT */
            dx = dx * xinc;
            dy = dy * yinc;

            /* Take out rotation from CROTA */
            if (rot != 0.0) {
                tx = dx * cosr - dy * sinr;
                dy = dx * sinr + dy * cosr;
                dx = tx;
            }
        }

        /* Default, linear result for error or pixel return  */
        xpos = xref + dx;
        ypos = yref + dy;
        if (itype < 0) {
            return new Point2D.Double(xpos, ypos);
        }

        /* Convert to radians  */
        if (wcs.coorflip > 0) {
            dec0 = WCSTransform.degrad(xref);
            ra0 = WCSTransform.degrad(yref);
            tx = dx;
            dx = dy;
            dy = tx;
        } else {
            ra0 = WCSTransform.degrad(xref);
            dec0 = WCSTransform.degrad(yref);
        }

        l = WCSTransform.degrad(dx);
        m = WCSTransform.degrad(dy);
        sins = l * l + m * m;
        cos0 = Math.cos(dec0);
        sin0 = Math.sin(dec0);

        /* process by case  */
        switch (itype) {
            case -1:   /* pixel */
            case 0:   /* linear */
                rat = ra0 + l;
                dect = dec0 + m;
                break;

            case 1:   /* -SIN sin*/
//                if (sins > 1.0) return null;
                coss = Math.sqrt(1.0 - sins);
                dt = sin0 * coss + cos0 * m;
                if ((dt > 1.0) || (dt < -1.0)) return null;
                dect = Math.asin(dt);
                rat = cos0 * coss - sin0 * m;
                if ((rat == 0.0) && (l == 0.0)) return null;
                rat = Math.atan2(l, rat) + ra0;
                break;

            case 2:   /* -TAN tan */
//                if (sins > 1.0) return null;
                dect = cos0 - m * sin0;
                if (dect == 0.0) return null;
                rat = ra0 + Math.atan2(l, dect);
                dect = Math.atan(Math.cos(rat - ra0) * (m * cos0 + sin0) / dect);
                break;

            case 3:   /* -ARC Arc*/
                if (sins >= twopi * twopi / 4.0) return null;
                sins = Math.sqrt(sins);
                coss = Math.cos(sins);
                if (sins != 0.0)
                    sins = Math.sin(sins) / sins;
                else
                    sins = 1.0;
                dt = m * cos0 * sins + sin0 * coss;
                if ((dt > 1.0) || (dt < -1.0)) return null;
                dect = Math.asin(dt);
                da = coss - dt * sin0;
                dt = l * sins * cos0;
                if ((da == 0.0) && (dt == 0.0)) return null;
                rat = ra0 + Math.atan2(dt, da);
                break;

            case 4:   /* -NCP North celestial pole*/
                dect = cos0 - m * sin0;
                if (dect == 0.0) return null;
                rat = ra0 + Math.atan2(l, dect);
                dt = Math.cos(rat - ra0);
                if (dt == 0.0) return null;
                dect = dect / dt;
                if ((dect > 1.0) || (dect < -1.0)) return null;
                dect = Math.acos(dect);
                if (dec0 < 0.0) dect = -dect;
                break;

            case 5:   /* -GLS global sinusoid */
                dect = dec0 + m;
                if (Math.abs(dect) > twopi / 4.0) return null;
                coss = Math.cos(dect);
                if (Math.abs(l) > twopi * coss / 2.0) return null;
                rat = ra0;
                if (coss > deps) rat = rat + l / coss;
                break;

            case 6:   /* -MER mercator*/
                dt = yinc * cosr + xinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dy = WCSTransform.degrad(yref / 2.0 + 45.0);
                dx = dy + dt / 2.0 * cond2r;
                dy = Math.log(Math.tan(dy));
                dx = Math.log(Math.tan(dx));
                geo2 = WCSTransform.degrad(dt) / (dx - dy);
                geo3 = geo2 * dy;
                geo1 = Math.cos(WCSTransform.degrad(yref));
                if (geo1 <= 0.0) geo1 = 1.0;
                rat = l / geo1 + ra0;
                if (Math.abs(rat - ra0) > twopi) return null; /* added 10/13/94 DCW/EWG */
                dt = 0.0;
                if (geo2 != 0.0) dt = (m + geo3) / geo2;
                dt = Math.exp(dt);
                dect = 2.0 * Math.atan(dt) - twopi / 4.0;
                break;

            case 7:   /* -AIT Aitoff*/
                dt = yinc * cosr + xinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dt = WCSTransform.degrad(dt);
                dy = WCSTransform.degrad(yref);
                dx = Math.sin(dy + dt) / Math.sqrt((1.0 + Math.cos(dy + dt)) / 2.0) -
                        Math.sin(dy) / Math.sqrt((1.0 + Math.cos(dy)) / 2.0);
                if (dx == 0.0) dx = 1.0;
                geo2 = dt / dx;
                dt = xinc * cosr - yinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dt = WCSTransform.degrad(dt);
                dx = 2.0 * Math.cos(dy) * Math.sin(dt / 2.0);
                if (dx == 0.0) dx = 1.0;
                geo1 = dt * Math.sqrt((1.0 + Math.cos(dy) * Math.cos(dt / 2.0)) / 2.0) / dx;
                geo3 = geo2 * Math.sin(dy) / Math.sqrt((1.0 + Math.cos(dy)) / 2.0);
                rat = ra0;
                dect = dec0;
                if ((l == 0.0) && (m == 0.0)) break;
                dz = 4.0 - l * l / (4.0 * geo1 * geo1) - ((m + geo3) / geo2) * ((m + geo3) / geo2);
                if ((dz > 4.0) || (dz < 2.0)) return null;
                dz = 0.5 * Math.sqrt(dz);
                dd = (m + geo3) * dz / geo2;
                if (Math.abs(dd) > 1.0) return null;
                dd = Math.asin(dd);
                if (Math.abs(Math.cos(dd)) < deps) return null;
                da = l * dz / (2.0 * geo1 * Math.cos(dd));
                if (Math.abs(da) > 1.0) return null;
                da = Math.asin(da);
                rat = ra0 + 2.0 * da;
                dect = dd;
                break;

            case 8:   /* -STG Sterographic*/
                dz = (4.0 - sins) / (4.0 + sins);
                if (Math.abs(dz) > 1.0) return null;
                dect = dz * sin0 + m * cos0 * (1.0 + dz) / 2.0;
                if (Math.abs(dect) > 1.0) return null;
                dect = Math.asin(dect);
                rat = Math.cos(dect);
                if (Math.abs(rat) < deps) return null;
                rat = l * (1.0 + dz) / (2.0 * rat);
                if (Math.abs(rat) > 1.0) return null;
                rat = Math.asin(rat);
                mg = 1.0 + Math.sin(dect) * sin0 + Math.cos(dect) * cos0 * Math.cos(rat);
                if (Math.abs(mg) < deps) return null;
                mg = 2.0 * (Math.sin(dect) * cos0 - Math.cos(dect) * sin0 * Math.cos(rat)) / mg;
                if (Math.abs(mg - m) > deps) rat = twopi / 2.0 - rat;
                rat = ra0 + rat;
                break;
        }

        /*  return ra in range  */
        raout = rat;
        decout = dect;
        if (raout - ra0 > twopi / 2.0) raout = raout - twopi;
        if (raout - ra0 < -twopi / 2.0) raout = raout + twopi;
        if (raout < 0.0) raout += twopi; /* added by DCW 10/12/94 */

        /*  correct units back to degrees  */
        xpos = WCSTransform.raddeg(raout);
        ypos = WCSTransform.raddeg(decout);

        return new Point2D.Double(xpos, ypos);
    }  /* End of worldpos */

    /*-----------------------------------------------------------------------*/
    /* routine to determine accurate pixel coordinates for an RA and Dec     */
    /* returns 0 if successful otherwise:                                    */
    /*  1 = angle too large for projection;                                  */
    /*  2 = bad values                                                       */
    /* does: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT projections            */
    /* anything else is linear                                               */
    /* Input: */
    /* x (RA) coordinate (deg) */
    /* y (dec) coordinate (deg) */
    /* Output: */
    /* x pixel number  (RA or long without rotation) */
    /* y pixel number  (dec or lat without rotation) */
    public static Point2D.Double getPixels(double xpos, double ypos, WCSTransform wcs) {
        double dx, dy, ra0 = 0.0, dec0 = 0.0, ra = 0.0, dec = 0.0, coss = 0.0, sins = 0.0, dt, da, dd, sint = 0.0;
        double l = 0.0, m = 0.0, geo1, geo2, geo3, sinr, cosr, tx;
        double cond2r = 1.745329252e-2, deps = 1.0e-5, twopi = 6.28318530717959;

        /* Structure elements */
        double xref;		/* x reference coordinate value (deg) */
        double yref;		/* y reference coordinate value (deg) */
        double xrefpix;	/* x reference pixel */
        double yrefpix;	/* y reference pixel */
        double xinc;		/* x coordinate increment (deg) */
        double yinc;		/* y coordinate increment (deg) */
        double rot;		/* Optical axis rotation (deg)  (from N through E) */
        int itype;

        /* Set local projection parameters */
        xref = wcs.xref;
        yref = wcs.yref;
        xrefpix = wcs.xrefpix;
        yrefpix = wcs.yrefpix;
        xinc = wcs.xinc;
        yinc = wcs.yinc;
        rot = WCSTransform.degrad(wcs.rot);
        cosr = Math.cos(rot);
        sinr = Math.sin(rot);

        /* Projection type */
        itype = wcs.pcode;

        /* Nonlinear position */
        if (itype > 0 && itype < 9) {
            if (wcs.coorflip > 0) {
                dec0 = WCSTransform.degrad(xref);
                ra0 = WCSTransform.degrad(yref);
                dt = xpos - yref;
            } else {
                ra0 = WCSTransform.degrad(xref);
                dec0 = WCSTransform.degrad(yref);
                dt = xpos - xref;
            }

            /* 0h wrap-around tests added by D.Wells 10/12/94: */
            if (itype >= 0) {
                if (dt > 180.0) xpos -= 360.0;
                if (dt < -180.0) xpos += 360.0;
                /* NOTE: changing input argument xpos is OK (call-by-value in C!) */
            }

            ra = WCSTransform.degrad(xpos);
            dec = WCSTransform.degrad(ypos);

            /* Compute direction cosine */
            coss = Math.cos(dec);
            sins = Math.sin(dec);
            l = Math.sin(ra - ra0) * coss;
            sint = sins * Math.sin(dec0) + coss * Math.cos(dec0) * Math.cos(ra - ra0);
        }

        /* Process by case  */
        switch (itype) {
            case 1:   /* -SIN sin*/
                if (sint < 0.0) return null;
                m = sins * Math.cos(dec0) - coss * Math.sin(dec0) * Math.cos(ra - ra0);
                break;

            case 2:   /* -TAN tan */
                if (sint <= 0.0) return null;
                m = sins * Math.sin(dec0) + coss * Math.cos(dec0) * Math.cos(ra - ra0);
                l = l / m;
                m = (sins * Math.cos(dec0) - coss * Math.sin(dec0) * Math.cos(ra - ra0)) / m;
                break;

            case 3:   /* -ARC Arc*/
                m = sins * Math.sin(dec0) + coss * Math.cos(dec0) * Math.cos(ra - ra0);
                if (m < -1.0) m = -1.0;
                if (m > 1.0) m = 1.0;
                m = Math.acos(m);
                if (m != 0)
                    m = m / Math.sin(m);
                else
                    m = 1.0;
                l = l * m;
                m = (sins * Math.cos(dec0) - coss * Math.sin(dec0) * Math.cos(ra - ra0)) * m;
                break;

            case 4:   /* -NCP North celestial pole*/
                if (dec0 == 0.0)
                    return null;  /* can't stand the equator */
                else
                    m = (Math.cos(dec0) - coss * Math.cos(ra - ra0)) / Math.sin(dec0);
                break;

            case 5:   /* -GLS global sinusoid */
                dt = ra - ra0;
                if (Math.abs(dec) > twopi / 4.0) return null;
                if (Math.abs(dec0) > twopi / 4.0) return null;
                m = dec - dec0;
                l = dt * coss;
                break;

            case 6:   /* -MER mercator*/
                dt = yinc * cosr + xinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dy = WCSTransform.degrad(yref / 2.0 + 45.0);
                dx = dy + dt / 2.0 * cond2r;
                dy = Math.log(Math.tan(dy));
                dx = Math.log(Math.tan(dx));
                geo2 = WCSTransform.degrad(dt) / (dx - dy);
                geo3 = geo2 * dy;
                geo1 = Math.cos(WCSTransform.degrad(yref));
                if (geo1 <= 0.0) geo1 = 1.0;
                dt = ra - ra0;
                l = geo1 * dt;
                dt = dec / 2.0 + twopi / 8.0;
                dt = Math.tan(dt);
                if (dt < deps) return null;
                m = geo2 * Math.log(dt) - geo3;
                break;

            case 7:   /* -AIT Aitoff*/
                da = (ra - ra0) / 2.0;
                if (Math.abs(da) > twopi / 4.0) return null;
                dt = yinc * cosr + xinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dt = WCSTransform.degrad(dt);
                dy = WCSTransform.degrad(yref);
                dx = Math.sin(dy + dt) / Math.sqrt((1.0 + Math.cos(dy + dt)) / 2.0) -
                        Math.sin(dy) / Math.sqrt((1.0 + Math.cos(dy)) / 2.0);
                if (dx == 0.0) dx = 1.0;
                geo2 = dt / dx;
                dt = xinc * cosr - yinc * sinr;
                if (dt == 0.0) dt = 1.0;
                dt = WCSTransform.degrad(dt);
                dx = 2.0 * Math.cos(dy) * Math.sin(dt / 2.0);
                if (dx == 0.0) dx = 1.0;
                geo1 = dt * Math.sqrt((1.0 + Math.cos(dy) * Math.cos(dt / 2.0)) / 2.0) / dx;
                geo3 = geo2 * Math.sin(dy) / Math.sqrt((1.0 + Math.cos(dy)) / 2.0);
                dt = Math.sqrt((1.0 + Math.cos(dec) * Math.cos(da)) / 2.0);
                if (Math.abs(dt) < deps) return null;
                l = 2.0 * geo1 * Math.cos(dec) * Math.sin(da) / dt;
                m = geo2 * Math.sin(dec) / dt - geo3;
                break;

            case 8:   /* -STG Sterographic*/
                da = ra - ra0;
                if (Math.abs(dec) > twopi / 4.0) return null;
                dd = 1.0 + sins * Math.sin(dec0) + coss * Math.cos(dec0) * Math.cos(da);
                if (Math.abs(dd) < deps) return null;
                dd = 2.0 / dd;
                l = l * dd;
                m = dd * (sins * Math.cos(dec0) - coss * Math.sin(dec0) * Math.cos(da));
                break;
        }  /* end of itype switch */

        /* Back to degrees  */
        if (itype > 0 && itype < 9) {
            dx = WCSTransform.raddeg(l);
            dy = WCSTransform.raddeg(m);
        }
        /* For linear or pixel projection */
        else {
            dx = xpos - xref;
            dy = ypos - yref;
        }

        if (wcs.coorflip > 0) {
            tx = dx;
            dx = dy;
            dy = tx;
        }

        /* Scale and rotate using CD matrix */
        if (wcs.rotmat > 0) {
            tx = dx * wcs.dc11 + dy * wcs.dc12;
            dy = dx * wcs.dc21 + dy * wcs.dc22;
            dx = tx;
        } else {
            /* Correct for rotation */
            if (rot != 0.0) {
                tx = dx * cosr + dy * sinr;
                dy = dy * cosr - dx * sinr;
                dx = tx;
            }

            /* Scale using CDELT */
            if (xinc != 0.)
                dx = dx / xinc;
            if (yinc != 0.)
                dy = dy / yinc;
        }

        /* Convert to pixels  */
        double xpix = dx + xrefpix;
        double ypix = dy + yrefpix;

        return new Point2D.Double(xpix, ypix);
    }  /* end worldpix */

    /* Oct 26 1995	Fix bug which interchanged RA and Dec twice when coorflip
     * Oct 31 1996	Fix CD matrix use in WORLDPIX
     * Nov  4 1996	Eliminate extra code for linear projection in WORLDPIX
     * Nov  5 1996	Add coordinate flip in WORLDPIX
     *
     * May 22 1997	Avoid angle wraparound when CTYPE is pixel
     * Jun  4 1997	Return without angle conversion from worldpos if type is PIXEL
     * Oct 20 1997	Add chip rotation; compute rotation angle trig functions
     * Feb  6 1998	Move coordinate exchange to correct place
     * Feb  6 1998	Drop chip rotation; more CD->rotation to WCSINIT()
     */
}