from copy import deepcopy import geopy import sqlalchemy from flask import Blueprint, render_template, flash, request, redirect, \ url_for, abort, send_from_directory, Response from os.path import join from flaskr.extensions import cache, basic_auth from flaskr.forms import LoginForm, EstimateForm from flaskr.models import db, User, Estimation, StatusEnum, ScenarioEnum from flaskr.geocoder import CachedGeocoder from flaskr.core import generate_unique_id, \ get_emission_models, increment_hit_counter from flaskr.content import content from wtforms import validators from yaml import safe_dump as yaml_dump import csv # from io import StringIO from cStringIO import StringIO import pandas from pandas.compat import StringIO as PandasStringIO main = Blueprint('main', __name__) OUT_ENCODING = 'utf-8' # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- @main.route('/favicon.ico') @cache.cached(timeout=10000) def favicon(): # we want it served from the root, not from static/ return send_from_directory( join(main.root_path, '..', 'static', 'img'), 'favicon.ico', mimetype='image/vnd.microsoft.icon' ) @main.route('/') @main.route('/home') @main.route('/home.html') @cache.cached(timeout=1000) def home(): models = get_emission_models() models_dict = {} for model in models: models_dict[model.slug] = model.__dict__ increment_hit_counter() return render_template( 'home.html', models=models_dict, colors=[model.color for model in models], labels=[model.name for model in models], ) def gather_addresses(from_list, from_file): addresses = [] if from_file: file_mimetype = from_file.mimetype file_contents = from_file.read() rows_dicts = None if 'text/csv' == file_mimetype: rows_dicts = pandas \ .read_csv(PandasStringIO(file_contents)) \ .rename(str.lower, axis='columns') \ .to_dict(orient="row") # Here are just *some* of the mimetypes that Microsoft's # garbage spreadsheet files may have. # application/vnd.ms-excel (official) # application/msexcel # application/x-msexcel # application/x-ms-excel # application/x-excel # application/x-dos_ms_excel # application/xls # application/x-xls # application/vnd.openxmlformats-officedocument.spreadsheetml.sheet # ... Let's check extension instead. elif from_file.filename.endswith('xls') \ or from_file.filename.endswith('xlsx'): rows_dicts = pandas \ .read_excel(PandasStringIO(file_contents)) \ .rename(str.lower, axis='columns') \ .to_dict(orient="row") # Python 3.7 only # elif from_file.filename.endswith('ods'): # # rows_dicts = read_ods(PandasStringIO(file_contents), 1) \ # .rename(str.lower, axis='columns') \ # .to_dict(orient="row") if rows_dicts is not None: for row_dict in rows_dicts: if 'address' in row_dict: addresses.append(row_dict['address']) continue address = None if 'city' in row_dict: address = row_dict['city'] if 'country' in row_dict: if address is None: address = row_dict['country'] else: address += "," + row_dict['country'] if address is not None: addresses.append(address) else: raise validators.ValidationError( "We could not find Address data in the spreadsheet." ) else: raise validators.ValidationError( "We could not find any data in the spreadsheet." ) else: addresses = from_list.replace("\r", '').split("\n") clean_addresses = [] for address in addresses: if not address: continue elif type(address).__name__ == 'str': clean_addresses.append(unicode(address, 'utf-8')) else: clean_addresses.append(address) addresses = clean_addresses # Remove empty lines (if any) and white characters addresses = [a.strip() for a in addresses if a] return "\n".join(addresses) @main.route("/estimate", methods=["GET", "POST"]) @main.route("/estimate.html", methods=["GET", "POST"]) def estimate(): models = get_emission_models() form = EstimateForm() def show_form(): return render_template("estimate.html", form=form, models=models) if form.validate_on_submit(): id = generate_unique_id() estimation = Estimation() # estimation.email = form.email.data estimation.first_name = form.first_name.data estimation.last_name = form.last_name.data estimation.institution = form.institution.data estimation.status = StatusEnum.pending try: estimation.origin_addresses = gather_addresses( form.origin_addresses.data, form.origin_addresses_file.data ) except validators.ValidationError as e: form.origin_addresses_file.errors.append(e.message) return show_form() try: estimation.destination_addresses = gather_addresses( form.destination_addresses.data, form.destination_addresses_file.data ) except validators.ValidationError as e: form.destination_addresses_file.errors.append(e.message) return show_form() estimation.use_train_below_km = form.use_train_below_km.data models_slugs = [] for model in models: if getattr(form, 'use_model_%s' % model.slug).data: models_slugs.append(model.slug) estimation.models_slugs = "\n".join(models_slugs) db.session.add(estimation) db.session.commit() flash("Estimation request submitted successfully.", "success") return redirect(url_for( endpoint=".consult_estimation", public_id=estimation.public_id, extension='html' )) # return render_template("estimate-debrief.html", form=form) return show_form() @main.route("/invalidate") @main.route("/invalidate.html") def invalidate(): stuck_estimations = Estimation.query \ .filter_by(status=StatusEnum.working) \ .all() for estimation in stuck_estimations: estimation.status = StatusEnum.failure estimation.errors = "Invalidated. Try again." db.session.commit() return "" @main.route("/compute") def compute(): # process the queue of estimation requests def _respond(_msg): return "
%s
" % _msg def _handle_failure(_estimation, _failure_message): _estimation.status = StatusEnum.failure _estimation.errors = _failure_message db.session.commit() def _handle_warning(_estimation, _warning_message): _estimation.warnings = _warning_message db.session.commit() response = "" count_working = Estimation.query \ .filter_by(status=StatusEnum.working) \ .count() if 0 < count_working: return _respond("Already working on estimation.") try: estimation = Estimation.query \ .filter_by(status=StatusEnum.pending) \ .order_by(Estimation.id.asc()) \ .first() except sqlalchemy.orm.exc.NoResultFound: return _respond("No estimation in the queue.") except Exception as e: return _respond("Database error: %s" % (e,)) if not estimation: return _respond("No estimation in the queue.") estimation.status = StatusEnum.working db.session.commit() response += u"Processing estimation `%s`...\n" % ( estimation.public_id ) geocoder = CachedGeocoder() # GEOCODE ORIGINS ######################################################### origins_addresses = estimation.origin_addresses.strip().split("\n") origins = [] for i in range(len(origins_addresses)): origin_address = origins_addresses[i].strip() try: origin = geocoder.geocode(origin_address.encode('utf-8')) except geopy.exc.GeopyError as e: response += u"Failed to geocode origin `%s`.\n%s\n" % ( origin_address, e, ) _handle_warning(estimation, response) continue if origin is None: response += u"Failed to geocode origin `%s`.\n" % ( origin_address, ) _handle_warning(estimation, response) continue origins.append(origin) response += u"Origin: %s == %s (%f, %f)\n" % ( origin_address, origin.address, origin.latitude, origin.longitude, ) # GEOCODE DESTINATIONS #################################################### destinations_addresses = estimation.destination_addresses.strip().split("\n") destinations = [] for i in range(len(destinations_addresses)): destination_address = destinations_addresses[i].strip() try: destination = geocoder.geocode(destination_address.encode('utf-8')) except geopy.exc.GeopyError as e: response += u"Failed to geocode destination `%s`.\n%s\n" % ( destination_address, e, ) _handle_warning(estimation, response) continue if destination is None: response += u"Failed to geocode destination `%s`.\n" % ( destination_address, ) _handle_warning(estimation, response) continue # print(repr(destination.raw)) destinations.append(destination) response += u"Destination: %s == %s (%f, %f)\n" % ( destination_address, destination.address, destination.latitude, destination.longitude, ) # GTFO IF NO ORIGINS OR NO DESTINATIONS ################################### if 0 == len(origins): response += u"Failed to geocode all the origin(s).\n" _handle_failure(estimation, response) return _respond(response) if 0 == len(destinations): response += u"Failed to geocode all the destination(s).\n" _handle_failure(estimation, response) return _respond(response) # GRAB AND CONFIGURE THE EMISSION MODELS ################################## emission_models = estimation.get_models() # print(emission_models) extra_config = { 'use_train_below_distance': estimation.use_train_below_km, # 'use_train_below_distance': 300, } # PREPARE RESULT DICTIONARY THAT WILL BE STORED ########################### results = {} # UTILITY PRIVATE FUNCTION(S) ############################################# def get_city_key(_location): # Will this hack hold? Suspense... return _location.address.split(',')[0] # _city_key = _location.address # # if 'address100' in _location.raw['address']: # # _city_key = _location.raw['address']['address100'] # if 'city' in _location.raw['address']: # _city_key = _location.raw['address']['city'] # elif 'state' in _location.raw['address']: # _city_key = _location.raw['address']['state'] # return _city_key def compute_one_to_many( _origin, _destinations, _extra_config=None ): _results = {} footprints = {} destinations_by_city_key = {} cities_sum_foot = {} cities_sum_dist = {} cities_dict_first_model = None for model in emission_models: cities_dict = {} for _destination in _destinations: footprint = model.compute_travel_footprint( origin_latitude=_origin.latitude, origin_longitude=_origin.longitude, destination_latitude=_destination.latitude, destination_longitude=_destination.longitude, extra_config=_extra_config, ) _key = get_city_key(_destination) destinations_by_city_key[_key] = _destination if _key not in cities_dict: cities_dict[_key] = { 'city': _key, 'address': _destination.address, 'footprint': 0.0, 'distance': 0.0, 'train_trips': 0, 'plane_trips': 0, } cities_dict[_key]['footprint'] += footprint['co2eq_kg'] cities_dict[_key]['distance'] += footprint['distance_km'] cities_dict[_key]['train_trips'] += footprint['train_trips'] cities_dict[_key]['plane_trips'] += footprint['plane_trips'] if _key not in cities_sum_foot: cities_sum_foot[_key] = 0.0 cities_sum_foot[_key] += footprint['co2eq_kg'] if _key not in cities_sum_dist: cities_sum_dist[_key] = 0.0 cities_sum_dist[_key] += footprint['distance_km'] cities = sorted(cities_dict.values(), key=lambda c: c['footprint']) footprints[model.slug] = { 'cities': cities, } if cities_dict_first_model is None: cities_dict_first_model = deepcopy(cities_dict) _results['footprints'] = footprints total_foot = 0.0 total_dist = 0.0 total_train_trips = 0 total_plane_trips = 0 cities_mean_dict = {} for city in cities_sum_foot.keys(): city_mean_foot = 1.0 * cities_sum_foot[city] / len(emission_models) city_mean_dist = 1.0 * cities_sum_dist[city] / len(emission_models) city_train_trips = cities_dict_first_model[city]['train_trips'] city_plane_trips = cities_dict_first_model[city]['plane_trips'] cities_mean_dict[city] = { 'address': destinations_by_city_key[city].address, 'city': city, 'footprint': city_mean_foot, 'distance': city_mean_dist, 'train_trips': city_train_trips, 'plane_trips': city_plane_trips, } total_foot += city_mean_foot total_dist += city_mean_dist total_train_trips += city_train_trips total_plane_trips += city_plane_trips cities_mean = [cities_mean_dict[k] for k in cities_mean_dict.keys()] cities_mean = sorted(cities_mean, key=lambda c: c['footprint']) _results['mean_footprint'] = { # DEPRECATED? 'cities': cities_mean } _results['cities'] = cities_mean _results['total'] = total_foot # DEPRECATED _results['footprint'] = total_foot _results['distance'] = total_dist _results['train_trips'] = total_train_trips _results['plane_trips'] = total_plane_trips return _results # SCENARIO A : One Origin, At Least One Destination ####################### # # In this scenario, we compute the sum of each of the travels' footprint, # for each of the Emission Models, and present a mean of all Models. # if 1 == len(origins): estimation.scenario = ScenarioEnum.one_to_many results = compute_one_to_many( _origin=origins[0], _destinations=destinations, _extra_config=extra_config, ) # SCENARIO B : At Least One Origin, One Destination ####################### # # Same as A for now. # elif 1 == len(destinations): estimation.scenario = ScenarioEnum.many_to_one results = compute_one_to_many( _origin=destinations[0], _destinations=origins, _extra_config=extra_config, ) # SCENARIO C : At Least One Origin, At Least One Destination ############## # # Run Scenario A for each Destination, and expose optimum Destination. # else: estimation.scenario = ScenarioEnum.many_to_many unique_city_keys = [] result_cities = [] for destination in destinations: city_key = get_city_key(destination) if city_key in unique_city_keys: continue else: unique_city_keys.append(city_key) city_results = compute_one_to_many( _origin=destination, _destinations=origins, _extra_config=extra_config, ) city_results['city'] = city_key city_results['address'] = destination.address result_cities.append(city_results) result_cities = sorted(result_cities, key=lambda c: int(c['footprint'])) results = { 'cities': result_cities, } # WRITE RESULTS INTO THE DATABASE ######################################### estimation.status = StatusEnum.success estimation.output_yaml = yaml_dump(results) db.session.commit() # FINALLY, RESPOND ######################################################## response += yaml_dump(results) + "\n" return _respond(response) @main.route("/estimation/.") def consult_estimation(public_id, extension): try: estimation = Estimation.query \ .filter_by(public_id=public_id) \ .one() except sqlalchemy.orm.exc.NoResultFound: return abort(404) except Exception as e: # TODO: log return abort(500) # allowed_formats = ['html'] # if format not in allowed_formats: # abort(404) unavailable_statuses = [StatusEnum.pending, StatusEnum.working] if extension in ['xhtml', 'html', 'htm']: if estimation.status in unavailable_statuses: return render_template( "estimation-queue-wait.html", estimation=estimation ) else: estimation_output = estimation.get_output_dict() estimation_sum = 0 for city in estimation_output['cities']: estimation_sum += city['footprint'] return render_template( "estimation.html", estimation=estimation, estimation_output=estimation_output, estimation_sum=estimation_sum, ) elif extension in ['yaml', 'yml']: if estimation.status in unavailable_statuses: abort(404) return estimation.output_yaml elif 'csv' == extension: if estimation.status in unavailable_statuses: abort(404) si = StringIO() cw = csv.writer(si, quoting=csv.QUOTE_ALL) cw.writerow([ u"city", u"address", u"co2 (kg)", u"distance (km)", u"plane trips", u'train trips', ]) results = estimation.get_output_dict() for city in results['cities']: cw.writerow([ city['city'].encode(OUT_ENCODING), city['address'].encode(OUT_ENCODING), round(city['footprint'], 3), round(city['distance'], 3), city['plane_trips'], city['train_trips'], ]) # return si.getvalue().strip('\r\n') return Response( response=si.getvalue().strip('\r\n'), headers={ 'Content-type': 'text/csv', 'Content-disposition': "attachment; filename=%s.csv"%public_id, }, ) else: abort(404) @main.route("/scaling_laws.csv") def get_scaling_laws_csv(): distances = content.laws_plot.distances models = get_emission_models() si = StringIO() cw = csv.writer(si, quoting=csv.QUOTE_ALL) header = ['distance'] + [model.slug for model in models] cw.writerow(header) for distance in distances: row = [distance] for model in models: row.append(model.compute_airplane_distance_footprint(distance)) cw.writerow(row) return Response( response=si.getvalue().strip('\r\n'), headers={ 'Content-type': 'text/csv', 'Content-disposition': 'attachment; filename=scaling_laws.csv', }, ) @main.route("/test") @basic_auth.required def dev_test(): import os return os.getenv('ADMIN_USERNAME')